1
|
Kumar R, Pathak NK, Sarkar JK, Tripathy U, Datta PK. Vibrational spectra of serotonin by terahertz time domain spectroscopy and DFT simulations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125541. [PMID: 39642626 DOI: 10.1016/j.saa.2024.125541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/11/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
Serotonin is an important biogenic monoamine neurotransmitter that has major influences on mental health disorders; its structural and conformational changes have important roles in the biological functions of the human body. The decreased serotonin levels in the human body are majorly attributed to the causes of anxiety, depressive disorders, mood disorders, etc. Therefore, the quantification of serotonin in our bodies is of utmost importance in unearthing the origin of such physiological disorders. In this study, Terahertz-Time Domain Spectroscopy (THz-TDS) is employed to characterize the unique THz fingerprint of serotonin in the frequency range 0-3 THz. The characteristic THz absorption peaks of serotonin are observed at 0.54, 0.84, and 1.10 THz. In addition, Density Functional Theory (DFT) calculations are performed to investigate the vibrational properties of serotonin. For the vibrational assignment of modes, we have used Potential Energy Distribution (PED) analysis. Furthermore, studies have been conducted on the variation of serotonin concentration in a polyethylene (PE) host medium. The effect of the serotonin concentration in the PE host is studied using the complex refractive index (CRI) model. The sensitivity of detection of serotonin concentration is 0.015 for an increment of 2% concentration in PE medium. This work maps the spectral features of serotonin in the THz range, suggesting that THz-TDS can be used to understand and treat the physiological disorders related to serotonergic systems.
Collapse
Affiliation(s)
- Rajat Kumar
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Nitesh Kumar Pathak
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Jayanta Kumar Sarkar
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Umakanta Tripathy
- Department of Physics, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| | - Prasanta Kumar Datta
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
2
|
Beg S, Ahirwar K, Almalki WH, Almujri SS, Alhamyani A, Rahman M, Shukla R. Nondestructive techniques for pharmaceutical drug product characterization. Drug Discov Today 2025; 30:104249. [PMID: 39580022 DOI: 10.1016/j.drudis.2024.104249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 09/22/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024]
Abstract
Pharmaceutical product development involves multiple steps; therefore product quality must be assessed to ensure robustness and acceptability. Raw components, production methods, and ambient conditions yield highly variable end products with low batch-to-batch consistency. Although end testing is performed to ensure product quality, intermediate quality checks are limited. Nondestructive techniques like terahertz, near-infrared, X-ray, and Raman spectroscopy are common tools for in-line quality checks and real-time data monitoring. Handheld devices based on these analytical techniques also help in identifying counterfeit drugs products. This review discusses modern regulatory perspectives on the use of nondestructive tools in pharmaceutical quality monitoring.
Collapse
Affiliation(s)
- Sarwar Beg
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Kailash Ahirwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow 226002, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Salem S Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Asir-Abha 61421, Saudi Arabia
| | - Abdulrahman Alhamyani
- Pharmaceuticals Chemistry Department, Faculty of Clinical Pharmacy, Al Baha University, Al Baha 65779, Saudi Arabia
| | - Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow 226002, India.
| |
Collapse
|
3
|
Fink E, Celikovic S, Martins Fraga R, Remmelgas J, Rehrl J, Khinast J. In-line porosity and hardness monitoring of tablets by means of optical coherence tomography. Int J Pharm 2024; 666:124808. [PMID: 39378956 DOI: 10.1016/j.ijpharm.2024.124808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/18/2024] [Accepted: 10/05/2024] [Indexed: 10/10/2024]
Abstract
In-line monitoring of critical quality attributes (CQAs) during a tableting process is an essential step toward a real-time release strategy. Such CQAs can be the tablet mass, the API content, dissolution, hardness and tensile strength. Since dissolution testing is laborious and time-consuming and cannot be performed in-line, it is desirable to replace dissolution testing with predictive models based on other CQAs that affect the dissolution characteristics, such as the tablet porosity and hardness. Traditionally, porosity is determined offline via gas adsorption methods or other techniques, such as Terahertz spectroscopy or gas in scattering media absorption spectroscopy. Tablet hardness is typically established using a hardness tester. While these destructive tests can readily be performed at-line, they have limited applicability in in-line settings for a high-percentage inspection. Optical coherence tomography (OCT) has recently been proposed as a possible tool for determining quality attributes. This work describes the first application of OCT for the prediction of tablet porosity and hardness. OCT measurements of tablets produced in a ConsiGma 25™ tableting line and a Stylcam 200R compaction simulator in several compaction force settings were performed and correlated with the porosity and hardness. It was demonstrated that OCT can easily be installed in-line and provide real-time information about critical material attributes. These insights confirm the applicability of OCT as a real-time quality control tool and its potential to replace time-consuming and destructive offline measurements.
Collapse
Affiliation(s)
- Elisabeth Fink
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria.
| | - Selma Celikovic
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria; Institute of Automation and Control, Graz University of Technology, Inffeldgasse 21/B/I, 8010 Graz, Austria
| | - Rúben Martins Fraga
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Johan Remmelgas
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Jakob Rehrl
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Johannes Khinast
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria; Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria
| |
Collapse
|
4
|
Heidrich L, Wiener J, Castro-Camus E, Koch M, Ornik J. Automated in-situ monitoring of accelerated crystallization processes of nifedipine using terahertz time-domain spectroscopy. Sci Rep 2024; 14:29928. [PMID: 39622901 PMCID: PMC11611916 DOI: 10.1038/s41598-024-81316-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
We developed and tested an automated measurement platform which can fit multiple samples for their investigation in transmission mode using terahertz time-domain spectroscopy. The temperature inside the platform can be varied to simulate different storage conditions of the samples, in our case, pharmaceuticals. As a proof-of-concept, the setup was successfully tested to monitor the crystallization process of amorphous nifedipine, as a model drug, at 24 °C, 30 °C and 35 °C for over 144 h. To the best of our knowledge, this is the first study to follow the crystallization of nifedipine with quasi-continuous measurements over a time frame of several days. The influence of the storage temperature on the crystallization rate was monitored including the appearance of polymorphic intermediate states of nifedipine throughout the process. The platform developed in combination with terahertz time-domain spectroscopy is a helpful tool for deepening the understanding of the crystallization behavior of amorphous and polymorphic materials and can be, for example, of great importance for the development of novel amorphous pharmaceutical formulations.
Collapse
Affiliation(s)
- Lara Heidrich
- Department of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032, Marburg, Germany.
| | - Julian Wiener
- Department of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032, Marburg, Germany
| | - Enrique Castro-Camus
- Department of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032, Marburg, Germany
- Centro de Investigaciones en Optica A.C, Loma del Bosque 115, Lomas del Campestre, Leon, Guanajuato, 37150, Mexico
| | - Martin Koch
- Department of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032, Marburg, Germany.
| | - Jan Ornik
- Department of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032, Marburg, Germany
- Leibniz Institute of Photonic Technology, Member of the Research Alliance, Leibniz Health Technologies, 07745, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743, Jena, Germany
| |
Collapse
|
5
|
Heidrich L, Brand B, Brackmann S, Schäuble J, Aly MA, Reher R, Pommerening T, Koch M. Multispectral investigation of natural resins. Arch Pharm (Weinheim) 2024; 357:e2400517. [PMID: 39279545 DOI: 10.1002/ardp.202400517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024]
Abstract
Resins have been used as remedies since ancient times and various embalming resins have been identified in recent years. In Europe, Mumia vera aegyptiaca, a resinous substance from ancient Egyptian mummies, was even sold in pharmacies as a tonic until the early 20th century. It is difficult to examine the composition of these archeological samples in detail as the well-established analytical techniques, that is, gas chromatography-mass spectrometry or liquid chromatography coupled with tandem mass spectrometry, are destructive and therefore do not allow the analysis of valuable archeological samples. Hence, there is an urgent need for alternative, nondestructive methods for the identification of resin residues. This study aims to explore and compare the use of five spectroscopic methods as an alternative to established analytical procedures. For that, 15 resin samples of known origin and three samples from an Egyptian market were studied. While laser induced-breakdown spectroscopy and terahertz time-domain spectroscopy provide only limited information for resin classification, nuclear magnetic resonance spectroscopy and Fourier-transform infrared spectroscopy can be used to classify the resin samples more accurately. Furthermore, photoluminescence/photoluminescence excitation spectroscopy shows a promising potential in combination with its general advantages, such as cost-efficiency, nondestructive nature, and fast data acquisition.
Collapse
Affiliation(s)
- Lara Heidrich
- Department of Physics and Material Sciences Center, Philipps-Universität Marburg, Marburg, Germany
| | - Bastian Brand
- Institute of Pharmaceutical Biology and Biotechnology, Philipps-Universität Marburg, Marburg, Germany
| | - Stefan Brackmann
- Department of Physics and Material Sciences Center, Philipps-Universität Marburg, Marburg, Germany
| | - Jan Schäuble
- Institute of the History of Pharmacy and Medicine, Philipps-Universität Marburg, Marburg, Germany
| | - Mohammed Adel Aly
- Department of Physics and Material Sciences Center, Philipps-Universität Marburg, Marburg, Germany
- Department of Physics, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Raphael Reher
- Institute of Pharmaceutical Biology and Biotechnology, Philipps-Universität Marburg, Marburg, Germany
| | - Tanja Pommerening
- Institute of the History of Pharmacy and Medicine, Philipps-Universität Marburg, Marburg, Germany
| | - Martin Koch
- Department of Physics and Material Sciences Center, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
6
|
Kawabata R, Li K, Araki T, Akiyama M, Sugimachi K, Matsuoka N, Takahashi N, Sakai D, Matsuzaki Y, Koshimizu R, Yamamoto M, Takai L, Odawara R, Abe T, Izumi S, Kurihira N, Uemura T, Kawano Y, Sekitani T. Ultraflexible Wireless Imager Integrated with Organic Circuits for Broadband Infrared Thermal Analysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309864. [PMID: 38213132 DOI: 10.1002/adma.202309864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/22/2023] [Indexed: 01/13/2024]
Abstract
Flexible imagers are currently under intensive development as versatile optical sensor arrays, designed to capture images of surfaces and internals, irrespective of their shape. A significant challenge in developing flexible imagers is extending their detection capabilities to encompass a broad spectrum of infrared light, particularly terahertz (THz) light at room temperature. This advancement is crucial for thermal and biochemical applications. In this study, a flexible infrared imager is designed using uncooled carbon nanotube (CNT) sensors and organic circuits. The CNT sensors, fabricated on ultrathin 2.4 µm substrates, demonstrate enhanced sensitivity across a wide infrared range, spanning from near-infrared to THz wavelengths. Moreover, they retain their characteristics under bending and crumpling. The design incorporates light-shielded organic transistors and circuits, functioning reliably under light irradiation, and amplifies THz detection signals by a factor of 10. The integration of both CNT sensors and shielded organic transistors into an 8 × 8 active-sensor matrix within the imager enables sequential infrared imaging and nondestructive assessment for heat sources and in-liquid chemicals through wireless communication systems. The proposed imager, offering unique functionality, shows promise for applications in biochemical analysis and soft robotics.
Collapse
Affiliation(s)
- Rei Kawabata
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1, Mihogaoka, Ibaraki-shi, Osaka, 567-0047, Japan
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kou Li
- Department of Electrical, Electronic, and Communication Engineering, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Teppei Araki
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1, Mihogaoka, Ibaraki-shi, Osaka, 567-0047, Japan
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Mihoko Akiyama
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1, Mihogaoka, Ibaraki-shi, Osaka, 567-0047, Japan
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kaho Sugimachi
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1, Mihogaoka, Ibaraki-shi, Osaka, 567-0047, Japan
- Division of Applied Science, School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Nozomi Matsuoka
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1, Mihogaoka, Ibaraki-shi, Osaka, 567-0047, Japan
- Division of Applied Science, School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Norika Takahashi
- Department of Electrical, Electronic, and Communication Engineering, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Daiki Sakai
- Department of Electrical, Electronic, and Communication Engineering, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Yuto Matsuzaki
- Department of Electrical, Electronic, and Communication Engineering, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Ryo Koshimizu
- Department of Electrical, Electronic, and Communication Engineering, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Minami Yamamoto
- Department of Electrical, Electronic, and Communication Engineering, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Leo Takai
- Department of Electrical, Electronic, and Communication Engineering, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Ryoga Odawara
- Department of Electrical, Electronic, and Communication Engineering, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Takaaki Abe
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1, Mihogaoka, Ibaraki-shi, Osaka, 567-0047, Japan
| | - Shintaro Izumi
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1, Mihogaoka, Ibaraki-shi, Osaka, 567-0047, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Naoko Kurihira
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1, Mihogaoka, Ibaraki-shi, Osaka, 567-0047, Japan
| | - Takafumi Uemura
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1, Mihogaoka, Ibaraki-shi, Osaka, 567-0047, Japan
- Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Yukio Kawano
- Department of Electrical, Electronic, and Communication Engineering, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
- National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo, 101-8430, Japan
| | - Tsuyoshi Sekitani
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1, Mihogaoka, Ibaraki-shi, Osaka, 567-0047, Japan
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Advanced Photonics and Biosensing Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
- Division of Applied Science, School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
7
|
Li Y, Xu L, Ouyang J, Lei J, Hu J, Xing X, Chen P, Li J, Zhong C, Yang B, Li H. Harmonic and anharmonic studies on THz spectra of two vanillin polymorphs. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123869. [PMID: 38198992 DOI: 10.1016/j.saa.2024.123869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/05/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Polymorphism commonly exists in organic molecular crystals. The fingerprint features in low-frequency vibrational range are important information reflecting different intermolecular interactions of polymorphs. Interpreting these features is very helpful to understand vibrational property of polymorphs and reveal the thermodynamic stability. In this work, the low-frequency vibrations of form I and II of vanillin are investigated using terahertz time-domain spectroscopy. Static DFT calculation and ab initio molecular dynamics (AIMD) are employed to interpret their low-frequency vibrations of both forms in harmonic and anharmonic ways, respectively. Their low-frequency vibration characteristics in harmonic calculations are discussed, and anharmonic mode couplings between OH bond stretch and the stretching and bending motion of hydrogen bonds are uncovered. Moreover, the thermodynamic energies including electronic potential energy and vibrational/kinetic energy arising from nuclear motions are calculated. The result reveals that the stability order of the two forms is mainly dependent on their electric potential energy difference.
Collapse
Affiliation(s)
- Yin Li
- School of Physics and Materials Science, Nanchang University, Xuefu Avenue 999, Nanchang City 330031, China.
| | - Li Xu
- School of Chemistry, Biology and Materials Science, East China University of Technology, Guanglan Avenue 418, Nanchang City 330013, China
| | - Jinbo Ouyang
- School of Chemistry, Biology and Materials Science, East China University of Technology, Guanglan Avenue 418, Nanchang City 330013, China.
| | - Jiangtao Lei
- Institute of Space Science and Technology, Nanchang University, Xuefu Avenue 999, Nanchang City 330031, China
| | - Jun Hu
- School of Mechatronics & Vehicle Engineering, East China Jiaotong University, Nanchang, Jiangxi 330013, China
| | - Xiaohong Xing
- School of Chemistry, Biology and Materials Science, East China University of Technology, Guanglan Avenue 418, Nanchang City 330013, China
| | - Peng Chen
- School of Chemistry, Biology and Materials Science, East China University of Technology, Guanglan Avenue 418, Nanchang City 330013, China
| | - Jiaqing Li
- School of Physics and Materials Science, Nanchang University, Xuefu Avenue 999, Nanchang City 330031, China
| | - Changqing Zhong
- School of Physics and Materials Science, Nanchang University, Xuefu Avenue 999, Nanchang City 330031, China
| | - Bo Yang
- School of Physics and Materials Science, Nanchang University, Xuefu Avenue 999, Nanchang City 330031, China
| | - Heng Li
- Fujian Provincial Key Laboratory of Semiconductors and Applications, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Department of Physics, Xiamen University, Xiamen 361005, China; Jiujiang Research Institute, Xiamen University, Jiujiang 332000, China
| |
Collapse
|
8
|
Zhang D, Li L, Zhang J, Ren J, Gu J, Li L, Jiang B, Zhang S. Quantitative Detection of Defects in Multi-Layer Lightweight Composite Structures Using THz-TDS Based on a U-Net-BiLSTM Network. MATERIALS (BASEL, SWITZERLAND) 2024; 17:839. [PMID: 38399090 PMCID: PMC10890636 DOI: 10.3390/ma17040839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 02/25/2024]
Abstract
Multi-layer lightweight composite structures are widely used in the field of aviation and aerospace during the processes of manufacturing and use, and, as such, they inevitably produce defects, damage, and other quality problems, creating the need for timely non-destructive testing procedures and the convenient repair or replacement of quality problems related to the material. When using terahertz non-destructive testing technology to detect defects in multi-layer lightweight composite materials, due to the complexity of their structure and defect types, there are many signal characteristics of terahertz waves propagating in the structures, and there is no obvious rule behind them, resulting in a large gap between the recognition results and the actual ones. In this study, we introduced a U-Net-BiLSTM network that combines the strengths of the U-Net and BiLSTM networks. The U-Net network extracts the spatial features of THz signals, while the BiLSTM network captures their temporal features. By optimizing the network structure and various parameters, we obtained a model tailored to THz spectroscopy data. This model was subsequently employed for the identification and quantitative analysis of defects in multi-layer lightweight composite structures using THz non-destructive testing. The proposed U-Net-BiLSTM network achieved an accuracy of 99.45% in typical defect identification, with a comprehensive F1 score of 99.43%, outperforming the CNN, ResNet, U-Net, and BiLSTM networks. By leveraging defect classification and thickness recognition, this study successfully reconstructed three-dimensional THz defect images, thereby realizing quantitative defect detection.
Collapse
Affiliation(s)
- Dandan Zhang
- Key Laboratory of Optoelectronic Measurement and Control and Optical Information Transmission Technology, Ministry of Education, Changchun University of Science and Technology, Changchun 130022, China
- School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun 130022, China
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528400, China
| | - Lulu Li
- Key Laboratory of Optoelectronic Measurement and Control and Optical Information Transmission Technology, Ministry of Education, Changchun University of Science and Technology, Changchun 130022, China
- School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun 130022, China
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528400, China
| | - Jiyang Zhang
- Key Laboratory of Optoelectronic Measurement and Control and Optical Information Transmission Technology, Ministry of Education, Changchun University of Science and Technology, Changchun 130022, China
- School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun 130022, China
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528400, China
| | - Jiaojiao Ren
- Key Laboratory of Optoelectronic Measurement and Control and Optical Information Transmission Technology, Ministry of Education, Changchun University of Science and Technology, Changchun 130022, China
- School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun 130022, China
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528400, China
| | - Jian Gu
- Key Laboratory of Optoelectronic Measurement and Control and Optical Information Transmission Technology, Ministry of Education, Changchun University of Science and Technology, Changchun 130022, China
- School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun 130022, China
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528400, China
| | - Lijuan Li
- Key Laboratory of Optoelectronic Measurement and Control and Optical Information Transmission Technology, Ministry of Education, Changchun University of Science and Technology, Changchun 130022, China
- School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun 130022, China
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528400, China
| | - Baihong Jiang
- Institute of Aerospace Special Materials and Technology, Beijing 100074, China
| | - Shida Zhang
- Key Laboratory of Optoelectronic Measurement and Control and Optical Information Transmission Technology, Ministry of Education, Changchun University of Science and Technology, Changchun 130022, China
- School of Optoelectronic Engineering, Changchun University of Science and Technology, Changchun 130022, China
- Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528400, China
| |
Collapse
|
9
|
Fink E, Celikovic S, Rehrl J, Sacher S, Alberto Afonso Urich J, Khinast J. Prediction of Dissolution Performance of Uncoated Solid Oral Dosage Forms via Optical Coherence Tomography. Eur J Pharm Biopharm 2023:S0939-6411(23)00175-3. [PMID: 37423415 DOI: 10.1016/j.ejpb.2023.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/26/2023] [Accepted: 07/07/2023] [Indexed: 07/11/2023]
Abstract
Real-time prediction of the dissolution behavior of solid oral dosage forms is an important research topic. Although methods such as Terahertz and Raman can provide measurements that can be linked to the dissolution performance, they typically require a longer time off-line for analysis. In this paper, we present a novel strategy for analyzing uncoated compressed tablets by means of optical coherence tomography (OCT). Using OCT, which is fast and in-line capable, makes it possible to predict the dissolution behavior of tablets based on images. In our study, OCT images were obtained of individual tablets from differently produced batches. Differences between tablets or batches in these images were hardly visible to the human eye. Advanced image analysis metrics were developed to quantify the light scattering behavior captured by the OCT probe and depicted in the OCT images. Detailed investigations assured the repeatability and robustness of the measurements. A correlation between these measurements and the dissolution behavior was established. A tree-based machine learning model was used to predict the amount of dissolved active pharmaceutical ingredient (API) at certain time points for each immediate-release tablet. Our results indicate that OCT, which is a non-destructive and real-time technology, can be used for in-line monitoring of tableting processes.
Collapse
Affiliation(s)
- Elisabeth Fink
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse, 13, 8010 Graz, Austria.
| | - Selma Celikovic
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse, 13, 8010 Graz, Austria; Institute of Automation and Control, Graz University of Technology, Inffeldgasse 21/B/I, 8010 Graz, Austria
| | - Jakob Rehrl
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse, 13, 8010 Graz, Austria
| | - Stephan Sacher
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse, 13, 8010 Graz, Austria
| | | | - Johannes Khinast
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse, 13, 8010 Graz, Austria; Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria
| |
Collapse
|
10
|
Banks PA, Kleist EM, Ruggiero MT. Investigating the function and design of molecular materials through terahertz vibrational spectroscopy. Nat Rev Chem 2023; 7:480-495. [PMID: 37414981 DOI: 10.1038/s41570-023-00487-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 07/08/2023]
Abstract
Terahertz spectroscopy has proved to be an essential tool for the study of condensed phase materials. Terahertz spectroscopy probes the low-frequency vibrational dynamics of atoms and molecules, usually in the condensed phase. These nuclear dynamics, which typically involve displacements of entire molecules, have been linked to bulk phenomena ranging from phase transformations to semiconducting efficiency. The terahertz region of the electromagnetic spectrum has historically been referred to as the 'terahertz gap', but this is a misnomer, as there exist a multitude of methods for accessing terahertz frequencies, and now there are cost-effective instruments that have made terahertz studies much more user-friendly. This Review highlights some of the most exciting applications of terahertz vibrational spectroscopy so far, and provides an in-depth overview of the methods of this technique and its utility to the study of the chemical sciences.
Collapse
Affiliation(s)
- Peter A Banks
- Department of Chemistry, University of Vermont, Burlington, VT, USA
| | - Elyse M Kleist
- Department of Chemistry, University of Vermont, Burlington, VT, USA
| | | |
Collapse
|
11
|
Zhou S, Tang X, Zou J, Zhu S. Quantitative analysis of terahertz signals using CWT-based spectrogram and Zernike image moments. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122234. [PMID: 36565505 DOI: 10.1016/j.saa.2022.122234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
The combination of terahertz (THz) spectroscopic measurements and multivariate calibration techniques has become a well-established technique in many research fields. However, intentional or unintentional changes in environmental conditions, THz instruments and/or of the substance itself make the established calibration model becoming insufficient and inadequate for the further application. In this article, we introduce, discuss, and evaluate a new multivariate calibration method, the CWT-ZM, that combines the merits of the Zernike moment (ZM) invariance and the continuous wavelet transform (CWT) time-frequency analysis. With the help of a wavelet time-frequency analysis, the THz pulse is expanded into a two-dimensional (2D) time-frequency plane that provides richer and more direct characteristic information in the time and frequency domain simultaneously. In addition, Zernike moments provide linearly independent descriptors for the 2D time-frequency intensity image and are invariant to THz signal affine transformations, such as peak shifting, baseline drifting, and scaling. In this manner, we obtain a set of features that exhibit a high capability to capture the concentrations of the target compounds and a high invariance of the different measuring instruments and the variable environment. This approach results in a more robust regression system with improved generalization properties with respect to standard methods. Experiments were then conducted on a THz dataset of pharmaceutical tablets acquired by two different THz instruments, and these confirmed the effectiveness of the proposed approach. Furthermore, CWT-ZM is an extensible framework that can be combined with various spectral qualitative and quantitative analysis algorithms.
Collapse
Affiliation(s)
- Shengling Zhou
- College of Engineering and Technology, Southwest University, 400716 Chongqing, China; Chongqing Key Laboratory of Agricultural Equipment in Hilly and Mountainous Areas, Southwest University, 400716 Chongqing, China.
| | - Xin Tang
- College of Engineering and Technology, Southwest University, 400716 Chongqing, China
| | - Jiaqi Zou
- College of Engineering and Technology, Southwest University, 400716 Chongqing, China
| | - Shiping Zhu
- College of Engineering and Technology, Southwest University, 400716 Chongqing, China; Chongqing Key Laboratory of Agricultural Equipment in Hilly and Mountainous Areas, Southwest University, 400716 Chongqing, China.
| |
Collapse
|
12
|
Heidrich L, Ornik J, Keck CM, Castro-Camus E, Koch M. Polyvinylpyrrolidone as co-inhibitor of crystallization of nifedipine in paper tablets. Int J Pharm 2023; 635:122721. [PMID: 36781082 DOI: 10.1016/j.ijpharm.2023.122721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/13/2023]
Abstract
Techniques to maintain drugs amorphous that would otherwise crystallize is an extensively studied approach to enhance the dissolution characteristics of poorly soluble drugs. However, their performance is limited by the low physical stability of the amorphous phase which can lead to recrystallization which in turn results in decreased solubility and bioavailability of the drug. In this work, the crystallinity of nifedipine loaded into a cellulose-based paper matrix, so called smartFilms, was determined by terahertz time-domain spectroscopy. By adding polyvinylpyrrolidone as an extra carrier, the capability of smartFilms to transfer nifedipine into its amorphous state improved. Moreover, the performance of the formulation to inhibit recrystallization of the amorphous drug over a period of six months increased. For formulations containing up to 10 w% drug loading and additional polyvinylpyrrolidone (nifedipine/polyvinylpyrrolidone: 4:1 mass ratio), nifedipine was found to be completely amorphous after six months of storage.
Collapse
Affiliation(s)
- Lara Heidrich
- Department of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032 Marburg, Germany.
| | - Jan Ornik
- Department of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032 Marburg, Germany
| | - Cornelia M Keck
- Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Robert‑Koch‑Str. 4, 35037 Marburg, Germany
| | - Enrique Castro-Camus
- Department of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032 Marburg, Germany
| | - Martin Koch
- Department of Physics and Material Sciences Center, Philipps-Universität Marburg, Renthof 5, 35032 Marburg, Germany
| |
Collapse
|
13
|
Terahertz frequency-domain sensing combined with quantitative multivariate analysis for pharmaceutical tablet inspection. Int J Pharm 2023; 632:122545. [PMID: 36581106 DOI: 10.1016/j.ijpharm.2022.122545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/09/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
Near infrared (NIR) and Raman spectroscopy combined with multivariate analysis are established techniques for the identification and quantification of chemical properties of pharmaceutical tablets like the concentration of active pharmaceutical ingredients (API). However, these techniques suffer from a high sensitivity to particle size variations and are not ideal for the characterization of physical properties of tablets such as tablet density. In this work, we have explored the feasibility of terahertz frequency-domain spectroscopy, with the advantage of low scattering effects, combined with multivariate analysis to quantify API concentration and tablet density. We studied 33 tablets, consisting of Ibuprofen, Mannitol, and a lubricant with API concentration and filler particle size as the design factors. The terahertz signal was measured in transmission mode across the frequency range 750 GHz to 1.5 THz using a vector network analyzer, frequency extenders, horn antennas, and four off-axis parabolic mirrors. The attenuation spectral data were pre-processed and orthogonal partial least square (OPLS) regression was applied to the spectral data to obtain quantitative prediction models for API concentration and tablet density. The performance of the models was assessed using test sets. While a fair model was obtained for API concentration, a high-quality model was demonstrated for tablet density. The coefficient of determination (R2) for the calibration set was 0.97 for tablet density and 0.98 for API concentration, while the relative prediction errors for the test set were 0.7% and 6% for tablet density and API concentration models, respectively. In conclusion, terahertz spectroscopy demonstrated to be a complementary technique to Raman and NIR spectroscopy, which enables the characterization of physical properties of tablets like tablet density, and the characterization of API concentration with the advantage of low scattering effects.
Collapse
|
14
|
Quancheng L, Hu D, Hongzhen L, Minchang W, Qi Z, Ying K, Liping S. Terahertz spectral identification and low-frequency vibrational analysis of dinitrotoluene isomers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 283:121722. [PMID: 35952591 DOI: 10.1016/j.saa.2022.121722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Identifying dinitrotoluene (DNT) isomers has always been a challenging problem. In this study, five DNT isomers were investigated using terahertz time-domain spectroscopy (THz-TDS), which demonstrated significant spectral differences including variations in absorption positions and intensities. This suggests that THz-TDS is ideal for rapid identification of DNT isomers. We also employed density functional theory to further discuss the origin of these spectral differences. The results indicate that steric effects between substitute groups, rather than inter-molecular hydrogen bonding, lead to differences in low-frequency vibrations.
Collapse
Affiliation(s)
- Liu Quancheng
- School of Information Engineering, Southwest University of Science and Technology, Mianyang, China.
| | - Deng Hu
- School of Information Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Li Hongzhen
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, China
| | - Wang Minchang
- State Key Laboratory of Fluorine&Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, China
| | - Zhang Qi
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, China
| | - Kang Ying
- State Key Laboratory of Fluorine&Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, China
| | - Shang Liping
- School of Information Engineering, Southwest University of Science and Technology, Mianyang, China
| |
Collapse
|
15
|
Pretreatment to terahertz absorption curves by narrow undulation constraint and Its quick implementation suggested by convex hull. Sci Rep 2022; 12:17806. [PMID: 36280682 PMCID: PMC9592622 DOI: 10.1038/s41598-022-21770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/30/2022] [Indexed: 01/19/2023] Open
Abstract
In this work, a method of pretreating THz absorption curve is proposed, which leads to minimal range in absorption, reserving necessary undulation of curve for identification by convolutional neural network. The kernel thought of proposed method is about confining the undulation of curve with a pair of narrow parallel lines and solving their optimal position by consecutively rotation of normalized curve at two fixed points. A fast algorithm is further proposed based on features of convex hull, whose procedure is described in detail. The algorithm involves definition of some important point sets, calculating and comparing slopes and determining best choice out of 4 potential rotations. The rationality of searching critical point is illustrated in a geometric way. Additionally, the adaption of the method is discussed and real examples are given to show the capacity of method to extract nonlinear information of a curve. The study suggests that methods regarding computer graphics also contributes to feature extraction with respect to THz curve and pattern recognition.
Collapse
|
16
|
Zeng Q, Wang L, Wu S, Fang G, Zhao M, Li Z, Li W. Research progress on the application of spectral imaging technology in pharmaceutical tablet analysis. Int J Pharm 2022; 625:122100. [PMID: 35961418 DOI: 10.1016/j.ijpharm.2022.122100] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/23/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
Tablet as a traditional dosage form in pharmacy has the advantages of accurate dosage, ideal dissolution and bioavailability, convenient to carry and transport. The most concerned tablet quality attributes include active pharmaceutical ingredient (API) contents and polymorphic forms, components distribution, hardness, density, coating state, dissolution behavior, etc., which greatly affect the bioavailability and consistency of tablet final products. In the pharmaceutical industry, there are usually industry standard methods to analyze the tablet quality attributes. However, these methods are generally time-consuming and laborious, and lack a comprehensive understanding of the properties of tablets, such as spatial information. In recent years, spectral imaging technology makes up for the shortcomings of traditional tablet analysis methods because it provides non-contact and rich information in time and space. As a promising technology to replace the traditional tablet analysis methods, it has attracted more and more attention. The present paper briefly describes a series of spectral imaging techniques and their applications in tablet analysis. Finally, the possible application prospect of this technology and the deficiencies that need to be improved were also prospected.
Collapse
Affiliation(s)
- Qi Zeng
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Long Wang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Sijun Wu
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Guangpu Fang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Mingwei Zhao
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Wenlong Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; State key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
17
|
Casian T, Nagy B, Kovács B, Galata DL, Hirsch E, Farkas A. Challenges and Opportunities of Implementing Data Fusion in Process Analytical Technology-A Review. Molecules 2022; 27:4846. [PMID: 35956791 PMCID: PMC9369811 DOI: 10.3390/molecules27154846] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/03/2022] Open
Abstract
The release of the FDA's guidance on Process Analytical Technology has motivated and supported the pharmaceutical industry to deliver consistent quality medicine by acquiring a deeper understanding of the product performance and process interplay. The technical opportunities to reach this high-level control have considerably evolved since 2004 due to the development of advanced analytical sensors and chemometric tools. However, their transfer to the highly regulated pharmaceutical sector has been limited. To this respect, data fusion strategies have been extensively applied in different sectors, such as food or chemical, to provide a more robust performance of the analytical platforms. This survey evaluates the challenges and opportunities of implementing data fusion within the PAT concept by identifying transfer opportunities from other sectors. Special attention is given to the data types available from pharmaceutical manufacturing and their compatibility with data fusion strategies. Furthermore, the integration into Pharma 4.0 is discussed.
Collapse
Affiliation(s)
- Tibor Casian
- Department of Pharmaceutical Technology and Biopharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Brigitta Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (D.L.G.); (E.H.); (A.F.)
| | - Béla Kovács
- Department of Biochemistry and Environmental Chemistry, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 540139 Târgu Mureș, Romania;
| | - Dorián László Galata
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (D.L.G.); (E.H.); (A.F.)
| | - Edit Hirsch
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (D.L.G.); (E.H.); (A.F.)
| | - Attila Farkas
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, H-1111 Budapest, Hungary; (D.L.G.); (E.H.); (A.F.)
| |
Collapse
|
18
|
Sultan T, Xu X, Hasan Rozin E, Sorjonen J, Ketolainen J, Wikström H, Martin de Juan L, Tajarobi P, Cetinkaya C. Effect of shape on the physical properties of pharmaceutical tablets. Int J Pharm 2022; 624:121993. [PMID: 35811040 DOI: 10.1016/j.ijpharm.2022.121993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 10/17/2022]
Abstract
Despite a well-established process understanding, quality issues for compressed oral solid dosage forms are frequently encountered during various drug product development and production stages. In the current work, a non-destructive contact ultrasonic experimental rig integrated with a collaborative robot arm and an advanced vision system is presented and employed to quantify the effect of the shape of a compressed tablet on its mechanical properties. It is observed that these properties are affected by the tablet geometric shapes and found to be linearly sensitive to the compaction pressures. It is demonstrated that the presented approach significantly improves the repeatability of the experimental waveform acquisition. In addition, with the increased confidence levels in waveform acquisition accuracy and corresponding pressure and shear wave speeds due to improved measurement repeatability, we conclude that pharmaceutical compact materials can indeed have a negative Poisson's ratio, therefore can be auxetic. The presented technique and instrument could find critical applications in continuous tablet manufacturing, and its real-time quality monitoring as measurement repeatability has been significantly improved, minimizing product quality variations.
Collapse
Affiliation(s)
- Tipu Sultan
- Photo-Acoustics Research Laboratory, Department of Mechanical and Aerospace Engineering, Clarkson University, Potsdam, NY 13699-5725, USA
| | - Xiaochi Xu
- Photo-Acoustics Research Laboratory, Department of Mechanical and Aerospace Engineering, Clarkson University, Potsdam, NY 13699-5725, USA
| | - Enamul Hasan Rozin
- Photo-Acoustics Research Laboratory, Department of Mechanical and Aerospace Engineering, Clarkson University, Potsdam, NY 13699-5725, USA
| | - Joona Sorjonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jarkko Ketolainen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Håkan Wikström
- Early Product Development and Manufacturing, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Luis Martin de Juan
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Pirjo Tajarobi
- Early Product Development and Manufacturing, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Cetin Cetinkaya
- Photo-Acoustics Research Laboratory, Department of Mechanical and Aerospace Engineering, Clarkson University, Potsdam, NY 13699-5725, USA.
| |
Collapse
|
19
|
Santitewagun S, Thakkar R, Zeitler JA, Maniruzzaman M. Detecting Crystallinity Using Terahertz Spectroscopy in 3D Printed Amorphous Solid Dispersions. Mol Pharm 2022; 19:2380-2389. [PMID: 35670498 DOI: 10.1021/acs.molpharmaceut.2c00163] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This study demonstrates the applicability of terahertz time-domain spectroscopy (THz-TDS) in evaluating the solid-state of the drug in selective laser sintering-based 3D printed dosage forms. Selective laser sintering is a powder bed-based 3D printing platform, which has recently demonstrated applicability in manufacturing amorphous solid dispersions (ASDs) through a layer-by-layer fusion process. When formulating ASDs, it is critical to confirm the final solid state of the drug as residual crystallinity can alter the performance of the formulation. Moreover, SLS 3D printing does not involve the mixing of the components during the process, which can lead to partially amorphous systems causing reproducibility and storage stability problems along with possibilities of unwanted polymorphism. In this study, a previously investigated SLS 3D printed ASD was characterized using THz-TDS and compared with traditionally used solid-state characterization techniques, including differential scanning calorimetry (DSC) and powder X-ray diffractometry (pXRD). THz-TDS provided deeper insights into the solid state of the dosage forms and their properties. Moreover, THz-TDS was able to detect residual crystallinity in granules prepared using twin-screw granulation for the 3D printing process, which was undetectable by the DSC and XRD. THz-TDS can prove to be a useful tool in gaining deeper insights into the solid-state properties and further aid in predicting the stability of amorphous solid dispersions.
Collapse
Affiliation(s)
- Supawan Santitewagun
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K
| | - Rishi Thakkar
- Pharmaceutical Engineering and 3D printing Lab (PharmE3D), The Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - J Axel Zeitler
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K
| | - Mohammed Maniruzzaman
- Pharmaceutical Engineering and 3D printing Lab (PharmE3D), The Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
20
|
Li F, Zhang J, Wang Y. Vibrational Spectroscopy Combined with Chemometrics in Authentication of Functional Foods. Crit Rev Anal Chem 2022; 54:333-354. [PMID: 35533108 DOI: 10.1080/10408347.2022.2073433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Many foods have both edible and medical importance and are appreciated as functional foods, preventing diseases. However, due to unscrupulous vendors and imperfect market supervision mechanisms, curative foods are prone to adulteration or some other events that harm the interests of consumers. However, traditional analytical methods are unsuitable and expensive for a broad and complex application. Therefore, people urgently need a fast, efficient, and accurate detection method to protect self-interests. Recently, the study of target samples by vibration spectrum shows strong qualitative and quantitative ability. The model established by platform technology combined with the stoichiometric analysis method can obtain better parameters, which it has good robustness and can detect functional food efficiently, quickly and nondestructive. The review compared and prospect five different vibrational spectroscopic techniques (near-infrared, Fourier transform infrared, Raman, hyperspectral imaging spectroscopy and Terahertz spectroscopy). In order to better solve some of the actual situations faced by certification, we explore and through relevant research and investigation to appropriately highlight the applicability and importance of technology combined with chemometrics in functional food authentication. There are four categories of authentication discussed: functional food authenticated in source, processing method, fraud and ingredient ratio. This paper provides an innovative process for the authentication of functional food, which has a meaningful reference value for future review or scientific research of relevant departments.
Collapse
Affiliation(s)
- Fengjiao Li
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Jinyu Zhang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
21
|
Koskela J, Sutton JJ, Lipiäinen T, Gordon KC, Strachan CJ, Fraser-Miller SJ. Low- versus Mid-frequency Raman Spectroscopy for in Situ Analysis of Crystallization in Slurries. Mol Pharm 2022; 19:2316-2326. [PMID: 35503753 PMCID: PMC9257757 DOI: 10.1021/acs.molpharmaceut.2c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Slurry studies are
useful for exhaustive polymorph and solid-state
stability screening of drug compounds. Raman spectroscopy is convenient
for monitoring crystallization in such slurries, as the measurements
can be performed in situ even in aqueous environments.
While the mid-frequency region (400–4000 cm–1) is dominated by intramolecular vibrations and has traditionally
been used for such studies, the low-frequency spectral region (<200
cm–1) probes solid-state related lattice vibrations
and is potentially more valuable for understanding subtle and/or complex
crystallization behavior. The aim of the study was to investigate
low-frequency Raman spectroscopy for in situ monitoring
of crystallization of an amorphous pharmaceutical in slurries for
the first time and directly compare the results with those simultaneously
obtained with mid-frequency Raman spectroscopy. Amorphous indomethacin
(IND) slurries were prepared at pH 1.2 and continuously monitored in situ at 5 and 25 °C with both low- and mid-frequency
Raman spectroscopy. At 25 °C, both spectral regions profiled
amorphous IND in slurries as converting directly from the amorphous
form toward the α crystalline form. In contrast, at 5 °C,
principal component analysis revealed a divergence in the detected
conversion profiles: the mid-frequency Raman suggested a direct conversion
to the α crystalline form, but the low-frequency region showed
additional transition points. These were attributed to the appearance
of minor amounts of the ε-form. The additional solid-state sensitivity
of the low-frequency region was attributed to the better signal-to-noise
ratio and more consistent spectra in this region. Finally, the low-frequency
Raman spectrum of the ε-form of IND is reported for the first
time.
Collapse
Affiliation(s)
- Jaana Koskela
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland
| | - Joshua J Sutton
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
| | - Tiina Lipiäinen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland
| | - Keith C Gordon
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
| | - Clare J Strachan
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland
| | - Sara J Fraser-Miller
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
22
|
Khani ME, Arbab MH. Translation-Invariant Zero-Phase Wavelet Methods for Feature Extraction in Terahertz Time-Domain Spectroscopy. SENSORS (BASEL, SWITZERLAND) 2022; 22:2305. [PMID: 35336476 PMCID: PMC8952727 DOI: 10.3390/s22062305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/24/2022]
Abstract
Wavelet transform is an important tool in the computational signal processing of terahertz time-domain spectroscopy (THz-TDS) measurements. Despite its prevalence, the effects of using different forms of wavelet transforms in THz-TDS studies have not been investigated. In this paper, we explore the implications of using the maximal overlap discrete wavelet transform (MODWT) versus the well-known discrete wavelet transform (DWT). We demonstrate that the spectroscopic features extracted using DWT can vary over different overlapping frequency ranges. On the contrary, MODWT is translation-invariant and results in identical features, regardless of the spectral range used for its implementation.We also demonstrate that the details coefficients obtained by the multiresolution analysis (MRA) using MODWT are associated with zero-phase filters. In contrast, DWT details coefficients suffer from misalignments originated from the down- and upsampling operations in DWT pyramid algorithm. Such misalignments have adverse effects when it is critical to retain the exact location of the absorption lines. We study the differences of DWT and MODWT both analytically and experimentally, using reflection THz-TDS measurements of α-lactose monohydrate. This manuscript can guide the researchers to select the right wavelet analysis tool for their specific application of the THz spectroscopy.
Collapse
Affiliation(s)
| | - Mohammad Hassan Arbab
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY 11790, USA;
| |
Collapse
|
23
|
Prost E, Loriot V, Constant E, Compagnon I, Bergé L, Lépine F, Skupin S. Air-photonics terahertz platform with versatile micro-controller based interface and data acquisition. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:033004. [PMID: 35365014 DOI: 10.1063/5.0082593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
We present a terahertz (THz) platform employing air plasma produced by an ultrashort two-color laser pulse as a broadband THz source and air biased coherent detection (ABCD) of the THz field. In contrast to previous studies, a simple peak detector connected to a micro-controller board acquires the ABCD-signal coming from the avalanche photodiode. Numerical simulations of the whole setup yield temporal and spectral profiles of the terahertz electric field in both source and detection area. The latter ones are in excellent agreement with our measurements, confirming THz electric fields with peak amplitude in the MV/cm range. We further illustrate the capabilities of the platform by performing THz spectroscopy of water vapor and a polystyrene reference sample.
Collapse
Affiliation(s)
- E Prost
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - V Loriot
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - E Constant
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - I Compagnon
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - L Bergé
- CEA, DAM, DIF, F-91297 Arpajon, France
| | - F Lépine
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - S Skupin
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| |
Collapse
|
24
|
Nakanishi A, Akiyama K, Hayashi S, Satozono H, Fujita K. Spectral imaging of pharmaceutical materials with a compact terahertz difference-frequency generation semiconductor source. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5549-5554. [PMID: 34780588 DOI: 10.1039/d1ay01670a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Spectral imaging of pharmaceutical material using a compact ultra-broadband (1-4 THz) terahertz semiconductor source was demonstrated. False-color RGB images could be obtained using a simple procedure (calibration free). The ability to distinguish the polymorphism of carbamazepine (CBZ), the hydrate forms of D-(+)-glucose and caffeine, and the crystallinity of nifedipine was demonstrated using the THz DFG source. Crystal forms of pharmaceutical materials can be distinguished using this method.
Collapse
Affiliation(s)
- Atsushi Nakanishi
- Central Research Laboratory, Hamamatsu Photonics K. K., Hamamatsu, Shizuoka, Japan.
| | - Koichiro Akiyama
- Central Research Laboratory, Hamamatsu Photonics K. K., Hamamatsu, Shizuoka, Japan.
| | - Shohei Hayashi
- Central Research Laboratory, Hamamatsu Photonics K. K., Hamamatsu, Shizuoka, Japan.
| | - Hiroshi Satozono
- Central Research Laboratory, Hamamatsu Photonics K. K., Hamamatsu, Shizuoka, Japan.
| | - Kazuue Fujita
- Central Research Laboratory, Hamamatsu Photonics K. K., Hamamatsu, Shizuoka, Japan.
| |
Collapse
|
25
|
Baldassari S, Cirrincione P, Ailuno G, Drava G, Arpicco S, Caviglioli G. Towards a better understanding of thermally treated polycarbophil matrix tablets for controlled release. INTERNATIONAL JOURNAL OF PHARMACEUTICS-X 2021; 3:100098. [PMID: 34661093 PMCID: PMC8503905 DOI: 10.1016/j.ijpx.2021.100098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/17/2021] [Accepted: 10/02/2021] [Indexed: 11/07/2022]
Abstract
Polycarbophil (POL), a polyacrylic acid cross-linked with divinyl glycol, is widely used in semisolid and solid dosage forms. When undergoing a thermal treatment in the range 120–160 °C, POL shows interesting morphological modifications, related to changes in physical properties, such as swelling of the powder granules, or hardening and matrix formation if included in the composition of a tablet. Thermal analysis conducted on POL highlighted a thermal event (Z) that can be correlated both to the shrinking of the powder granules and to the matrix formation in compacted POL powder. Modulated differential scanning calorimetry (MDSC) allowed to distinguish, inside event Z, an irreversible process overlapping with a reversible glass transition, attributable to the volatilization of residual solvents identified, through a complex TGA-FTIR-GC–MS interface, as acetate esters used for the polymer production as very fine powder. A specific interaction between acetates and POL, capable of stabilizing the polymer chains in a given conformation, was highlighted. The molecular rearrangement of the POL chains, following the volatilization of the solvent-stabilizers, is therefore ascribable to a loss of energetic stability of this material, which justifies the shrinking phenomena in the granules of the powder and the matrix formation when POL is compacted.
Collapse
Affiliation(s)
- Sara Baldassari
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Paola Cirrincione
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Giorgia Ailuno
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Giuliana Drava
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| | - Silvia Arpicco
- Department of Drug Science and Technology, University of Torino, Via Giuria 9, 10125 Torino, Italy
| | - Gabriele Caviglioli
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy
| |
Collapse
|
26
|
Brown B, Ward A, Fazili Z, Østergaard J, Asare-Addo K. Application of UV dissolution imaging to pharmaceutical systems. Adv Drug Deliv Rev 2021; 177:113949. [PMID: 34461199 DOI: 10.1016/j.addr.2021.113949] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/11/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022]
Abstract
UV-vis spectrometry is widely used in the pharmaceutical sciences for compound quantification, alone or in conjunction with separation techniques, due to most drug entities possessing a chromophore absorbing light in the range 190-800 nm. UV dissolution imaging, the scope of this review, generates spatially and temporally resolved absorbance maps by exploiting the UV absorbance of the analyte. This review aims to give an introduction to UV dissolution imaging and its use in the determination of intrinsic dissolution rates and drug release from whole dosage forms. Applications of UV imaging to non-oral formulations have started to emerge and are reviewed together with the possibility of utilizing UV imaging for physical chemical characterisation of drug substances. The benefits of imaging drug diffusion and transport processes are also discussed.
Collapse
|
27
|
Bo Y, Fang J, Zhang Z, Xue J, Liu J, Hong Z, Du Y. Terahertz and Raman Spectroscopic Investigation of Monohydrate Cocrystal of Antitubercular Isoniazid with Protocatechuic Acid. Pharmaceutics 2021; 13:pharmaceutics13081303. [PMID: 34452267 PMCID: PMC8400006 DOI: 10.3390/pharmaceutics13081303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/15/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
Pharmaceutical cocrystal provides an alternative modification strategy for the formulation development of drugs owning to their potential ability to improve the physicochemical properties of active pharmaceutical ingredients (APIs) efficiently by changing inter-molecular interactions between raw materials. Isoniazid (INH) is an indispensable main drug for the treatment of tuberculosis, but its tablet formulation is unstable and prone to degradation. In the present study, the monohydrate cocrystal of INH and protocatechuic acid (PA) was prepared by solvent evaporation using PA as cocrystal former to optimize the properties of INH. The parent materials and corresponding 1:1 molar ratio INH-PA monohydrate cocrystal have been characterized by the terahertz time-domain (THz-TDS) and Raman spectroscopy. The THz absorption spectra displayed that there were obvious differences between the peaks of experimental cocrystal and the parent materials, and the same situation was found in Raman vibrational spectra. In addition, density functional theory (DFT) was applied to simulating and optimizing the structure of INH-PA monohydrate cocrystal and supplied corresponding vibrational modes. Our results provided a unique method to characterize the formation of INH-PA monohydrate cocrystal at the molecular-level and a lot of information about cocrystal structure and intra-molecular and/or inter-molecular hydrogen bond interactions in the emerging pharmaceutical cocrystal fields.
Collapse
Affiliation(s)
- Yanhua Bo
- Centre for THz Research, China Jiliang University, Hangzhou 310018, China; (Y.B.); (J.F.); (Z.Z.); (J.L.); (Z.H.)
| | - Jiyuan Fang
- Centre for THz Research, China Jiliang University, Hangzhou 310018, China; (Y.B.); (J.F.); (Z.Z.); (J.L.); (Z.H.)
| | - Ziming Zhang
- Centre for THz Research, China Jiliang University, Hangzhou 310018, China; (Y.B.); (J.F.); (Z.Z.); (J.L.); (Z.H.)
| | - Jiadan Xue
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| | - Jianjun Liu
- Centre for THz Research, China Jiliang University, Hangzhou 310018, China; (Y.B.); (J.F.); (Z.Z.); (J.L.); (Z.H.)
| | - Zhi Hong
- Centre for THz Research, China Jiliang University, Hangzhou 310018, China; (Y.B.); (J.F.); (Z.Z.); (J.L.); (Z.H.)
| | - Yong Du
- Centre for THz Research, China Jiliang University, Hangzhou 310018, China; (Y.B.); (J.F.); (Z.Z.); (J.L.); (Z.H.)
- Correspondence: ; Tel.: +86-571-86875618
| |
Collapse
|