1
|
Liu J, Li H, Guo W, Cai Z, Li M, Zhang LB. Electrochemical Decarboxylation Coupling Reactions. Chemistry 2024; 30:e202402621. [PMID: 39413120 DOI: 10.1002/chem.202402621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Indexed: 10/18/2024]
Abstract
Carboxylic acids are attractive synthetic feedstocks with stable, non-toxic, and inexpensive properties that can be easily obtained from natural sources or through synthesis. Carboxylic acids have long been considered environmentally friendly coupling agents in various organic transformations. In recent years, electrochemically mediated decarboxylation reactions of decarboxylic acids and their derivatives (NHPI) have emerged as effective new methods for constructing carbon-carbon or carbon-heterocarbon chemical bonds. Compared with transition metal and photochemistry-mediated catalytic reactions, which do not require the addition of oxidants and strong bases, electrochemically-mediated decarboxylative transformations are considered a sustainable strategy. In addition, various functional groups tolerate the electrochemical decarboxylation conversion strategy well. Here, we summarize the recent electrochemical decarboxylation reactions to better elucidate the advantages of electrochemical decarboxylation reactions.
Collapse
Affiliation(s)
- Jiaxiu Liu
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Haoran Li
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Weisi Guo
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Zhihua Cai
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, 832003, China
| | - Ming Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Lin-Bao Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| |
Collapse
|
2
|
Gotgi NM, Jain JS, Pal R, Ghosh D. Electrochemical and photochemical reaction of isatins: a decade update. Org Biomol Chem 2024; 22:3352-3375. [PMID: 38607323 DOI: 10.1039/d4ob00202d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
This review presents the latest progress in photochemical and electrochemical reactions involving isatins. Isatin and its functionalized scaffolds e.g., oxindoles, spirooxindoles, and quinolines are privileged heterocycles as they are largely present in several agrochemical, natural products, and pharmaceuticals. Thus, the functionalization of isatins using sustainable approaches, i.e., electro- and photochemical methods is of recent research interest worldwide. In this review, we have discussed most of the important reactions of isatins based on types of bond formation involved under electro- and photochemical conditions over the last decade. The reaction mechanism for each reaction has been discussed in detail to offer an inclusive guide to readers. Lastly, a summary of current challenges and the future outlook toward the development of effective electrochemical and photochemical methods for the reaction of isatins is also presented.
Collapse
Affiliation(s)
- Nandini M Gotgi
- Department of Chemistry, St Joseph's University, 36 Lalbagh Road, Shanthinagar, Bengaluru-560027, Karnataka, India.
| | - J Saurab Jain
- Department of Chemistry, St Joseph's University, 36 Lalbagh Road, Shanthinagar, Bengaluru-560027, Karnataka, India.
| | - Rita Pal
- Department of Chemistry, St Joseph's University, 36 Lalbagh Road, Shanthinagar, Bengaluru-560027, Karnataka, India.
| | - Debashis Ghosh
- Department of Chemistry, St Joseph's University, 36 Lalbagh Road, Shanthinagar, Bengaluru-560027, Karnataka, India.
- Department of Chemistry, St. Joseph's College (Autonomous), 36 Lalbagh Road, Shanthinagar, Bengaluru-560027, Karnataka, India
| |
Collapse
|
3
|
Wang X, Shu S, Wang X, Yu W, Zhang Y, Wang T, Zhang Z. Electrochemical Radical Retro-Allylation of Homoallylic Alcohols with Sulfonyl Hydrazides. J Org Chem 2024; 89:3563-3572. [PMID: 38335535 DOI: 10.1021/acs.joc.3c02439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
We report herein the first examples of electrochemical radical retro-allylation of homoallylic alcohols via the cleavage of the C(sp3)-C(sp3) bond. In this reaction, a variety of sulfonyl hydrazides were employed as the environmentally friendly radical sources via an electrochemical dehydrazination with the release of N2 and H2 as the byproducts, leading to sulfonyl allylic compounds in moderate to good yields. The reaction features metal- and base-free reaction conditions, broad functional group tolerance, and a broad substrate scope.
Collapse
Affiliation(s)
- Xiaoshuo Wang
- Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Shubing Shu
- Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Xiaojing Wang
- Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Wenxin Yu
- Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Yuru Zhang
- Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Tao Wang
- Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| | - Zhenming Zhang
- Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, P. R. China
| |
Collapse
|
4
|
Li J, Liu T, Singh N, Huang Z, Ding Y, Huang J, Sudarsanam P, Li H. Photocatalytic C-N bond construction toward high-value nitrogenous chemicals. Chem Commun (Camb) 2023; 59:14341-14352. [PMID: 37987689 DOI: 10.1039/d3cc04771g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The construction of carbon-nitrogen bonds is vital for producing versatile nitrogenous compounds for the chemical and pharmaceutical industries. Among developed synthetic approaches to nitrogenous chemicals, photocatalysis is particularly prominent and has become one of the emerging fields due to its unique advantages of eco-sustainable characteristics, efficient process integration, no need for high-pressure H2, and tunable synthesis methods for developing advanced photocatalytic materials. Here, the review focuses on potential photocatalytic protocols developed for the construction of robust carbon-nitrogen bonds in discrepant activation environments to produce high-value nitrogenous chemicals. The photocatalytic C-N bond construction strategies and involved reaction mechanisms are elucidated.
Collapse
Affiliation(s)
- Jie Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| | - Tengyu Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| | - Nittan Singh
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411 008, India
| | - Zhuochun Huang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| | - Yan Ding
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| | - Jinshu Huang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| | - Putla Sudarsanam
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, India.
| | - Hu Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
5
|
Chang R, Pang Y, Ye J. Divergent Photosensitizer Controlled Reactions of 4-Hydroxycoumarins and Unactivated Olefins: Hydroarylation and Subsequent [2+2] Cycloaddition. Angew Chem Int Ed Engl 2023; 62:e202309897. [PMID: 37749064 DOI: 10.1002/anie.202309897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
Herein, we report a photoinduced approach for hydroarylation of unactivated olefins using 4-hydroxycoumarins as the arylating reagent. Key to the success of this reaction is the conversion of nucleophilic 4-hydroxycoumarins into electrophilic carbon radicals via photocatalytic arene oxidation, which not only circumvents the polarity-mismatch issue encountered under ionic conditions but also accommodates a broad substrate scope and inhibits side reactions that were previously observed. Moreover, divergent reactivity was achieved by changing the photocatalyst, enabling a subsequent [2+2] cycloaddition to deliver cyclobutane-fused pentacyclic products that are otherwise challenging to access in high yields and with high diastereoselectivity. Mechanistic studies have elucidated the mechanism of the reactions and the origin of the divergent reactivity.
Collapse
Affiliation(s)
- Rui Chang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yubing Pang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Juntao Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
6
|
Peng P, Zhong Y, Zhou C, Tao Y, Li D, Lu Q. Unlocking the Nucleophilicity of Strong Alkyl C-H Bonds via Cu/Cr Catalysis. ACS CENTRAL SCIENCE 2023; 9:756-762. [PMID: 37122460 PMCID: PMC10141608 DOI: 10.1021/acscentsci.2c01389] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Indexed: 05/03/2023]
Abstract
Direct functionalization of inert C-H bonds is one of the most attractive yet challenging strategies for constructing molecules in organic chemistry. Herein, we disclose an unprecedented and Earth abundant Cu/Cr catalytic system in which unreactive alkyl C-H bonds are transformed into nucleophilic alkyl-Cr(III) species at room temperature, enabling carbonyl addition reactions with strong alkyl C-H bonds. Various aryl alkyl alcohols are furnished under mild reaction conditions even on a gram scale. Moreover, this new radical-to-polar crossover approach is further applied to the 1,1-difunctionalization of aldehydes with alkanes and different nucleophiles. Mechanistic investigations reveal that the aldehyde not only acts as a reactant but also serves as a photosensitizer to recycle the Cu and Cr catalysts.
Collapse
Affiliation(s)
- Pan Peng
- The
Institute for Advanced Studies (IAS), Wuhan
University, Wuhan 430072, P. R. China
| | - Yifan Zhong
- The
Institute for Advanced Studies (IAS), Wuhan
University, Wuhan 430072, P. R. China
| | - Cong Zhou
- The
Institute for Advanced Studies (IAS), Wuhan
University, Wuhan 430072, P. R. China
| | - Yongsheng Tao
- The
Institute for Advanced Studies (IAS), Wuhan
University, Wuhan 430072, P. R. China
| | - Dandan Li
- Key
Laboratory of Micro-Nano Materials for Energy Storage and Conversion
of Henan Province, Institute of Surface Micro and Nano Materials,
College of Chemical and Materials Engineering, Xuchang University, Henan 461000, P. R. China
| | - Qingquan Lu
- The
Institute for Advanced Studies (IAS), Wuhan
University, Wuhan 430072, P. R. China
| |
Collapse
|
7
|
Ge X, Yin Y, Sun J, Ouyang J, Na N. OH radical-initiated single-electron transfer for accelerated degradation via carbocation intermediates. Chem Sci 2023; 14:2229-2236. [PMID: 36845917 PMCID: PMC9945577 DOI: 10.1039/d2sc06915f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/26/2023] [Indexed: 01/27/2023] Open
Abstract
Single electron transfer (SET) has made great contributions to a broad range of chemical processes, whose radical cation and carbocation intermediates are important for mechanism studies. Herein, hydroxyl radical (˙OH)-initiated SET was revealed in accelerated degradations, via the online examination of radical cations and carbocations by electrosonic spray ionization mass spectrometry (ESSI-MS). In the green and efficient non-thermal plasma catalysis system (MnO2-plasma), hydroxychloroquine was efficiently degraded upon SET via carbocations. In the plasma field full of active oxygen species, ˙OH was generated on the MnO2 surface to initiate SET-based degradations. Furthermore, theoretical calculations revealed that ˙OH preferred to withdraw the electron from the N atom that was conjugated to the benzene ring. This facilitated the generation of radical cations through SET, which was followed by the sequential formation of two carbocations for accelerated degradations. Transition states and energy barriers were calculated to study the formation of radical cations and subsequent carbocation intermediates. This work demonstrates an ˙OH-initiated SET for accelerated degradation via carbocations, providing a deeper understanding and the potential for the wider application of SET in green degradations.
Collapse
Affiliation(s)
- Xiyang Ge
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Yiyan Yin
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Jianghui Sun
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Jin Ouyang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Na Na
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| |
Collapse
|
8
|
Tang Z, Hong G, Sun S, Wang L. Electrochemically Enabled Direct C3-Formylation of Imidazopyridines with Me 3 N as a Carbonyl Source. Chem Asian J 2023; 18:e202300001. [PMID: 36772840 DOI: 10.1002/asia.202300001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/12/2023]
Abstract
A metal-free and oxidant-free electrochemically enabled strategy for C-3 formylation of imidazopyridines using trimethylamine as a one-carbon source has been established. This conversion has high functional group compatibility under mild conditions and ensures late-stage functionalization of pharmaceutical molecules. Furthermore, unexpected hexafluoroisopropoxylation products have been observed in some cases. Mechanistic studies using cyclic voltammetry and control experiments reveal the key intermediate of the formylation process.
Collapse
Affiliation(s)
- Zhicong Tang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, P. R. China
| | - Gang Hong
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, P. R. China
| | - Shiyun Sun
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, P. R. China
| | - Limin Wang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, P. R. China
| |
Collapse
|
9
|
Wu X, Wang Y, Wu ZS. Design principle of electrocatalysts for the electrooxidation of organics. Chem 2022. [DOI: 10.1016/j.chempr.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Zheng Y, Qian S, Xu P, Zheng B, Huang S. Electrochemical Oxidative Thiocyanosulfonylation of Aryl Acetylenes. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202209041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|