1
|
Rizarullah, Aditama R, Giri-Rachman EA, Hertadi R. Designing a Novel Multiepitope Vaccine from the Human Papilloma Virus E1 and E2 Proteins for Indonesia with Immunoinformatics and Molecular Dynamics Approaches. ACS OMEGA 2024; 9:16547-16562. [PMID: 38617694 PMCID: PMC11007845 DOI: 10.1021/acsomega.4c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 04/16/2024]
Abstract
One of the deadliest malignant cancer in women globally is cervical cancer. Specifically, cervical cancer is the second most common type of cancer in Indonesia. The main infectious agent of cervical cancer is the human papilloma virus (HPV). Although licensed prophylactic vaccines are available, cervical cancer cases are on the rise. Therapy using multiepitope-based vaccines is a very promising therapy for cervical cancer. This study aimed to develop a multiepitope vaccine based on the E1 and E2 proteins of HPV 16, 18, 45, and 52 using in silico. In this study, we develop a novel multiepitope vaccine candidate using an immunoinformatic approach. We predicted the epitopes of the cytotoxic T lymphocyte (CTL) and helper T lymphocyte (HTL) and evaluated their immunogenic properties. Population coverage analysis of qualified epitopes was conducted to determine the successful use of the vaccine worldwide. The epitopes were constructed into a multiepitope vaccine by using AAY linkers between the CTL epitopes and GPGPG linkers between the HTL epitopes. The tertiary structure of the multiepitope vaccine was modeled with AlphaFold and was evaluated by Prosa-web. The results of vaccine construction were analyzed for B-cell epitope prediction, molecular docking with Toll like receptor-4 (TLR4), and molecular dynamics simulation. The results of epitope prediction obtained 4 CTL epitopes and 7 HTL epitopes that are eligible for construction of multiepitope vaccines. Prediction of the physicochemical properties of multiepitope vaccines obtained good results for recombinant protein production. The interaction showed that the interaction of the multiepitope vaccine-TLR4 complex is stable based on the binding free energy value -106.5 kcal/mol. The results of the immune response simulation show that multiepitope vaccine candidates could activate the adaptive and humoral immune systems and generate long-term B-cell memory. According to these results, the development of a multiepitope vaccine with a reverse vaccinology approach is a breakthrough to develop potential cervical cancer therapeutic vaccines.
Collapse
Affiliation(s)
- Rizarullah
- Biochemistry
and Biomolecular Engineering Research Division, Faculty of Mathematics
and Natural Sciences, Bandung Institute
of Technology, Jl. Ganesa No. 10, Bandung 40132, Indonesia
- Department
of Biochemistry, Faculty of Medicine, Abulyatama
University, Jl. Blangbintang Lama, Aceh Besar 23372, Indonesia
| | - Reza Aditama
- Biochemistry
and Biomolecular Engineering Research Division, Faculty of Mathematics
and Natural Sciences, Bandung Institute
of Technology, Jl. Ganesa No. 10, Bandung 40132, Indonesia
| | - Ernawati Arifin Giri-Rachman
- Genetics
and Molecular Biotechnology Research Division, School of Life Sciences
and Technology, Bandung Institute of Technology, Jl. Ganesa No. 10, Bandung 40132, Indonesia
| | - Rukman Hertadi
- Biochemistry
and Biomolecular Engineering Research Division, Faculty of Mathematics
and Natural Sciences, Bandung Institute
of Technology, Jl. Ganesa No. 10, Bandung 40132, Indonesia
| |
Collapse
|
2
|
Jin X, Yang GY. Pathophysiological roles and applications of glycosphingolipids in the diagnosis and treatment of cancer diseases. Prog Lipid Res 2023; 91:101241. [PMID: 37524133 DOI: 10.1016/j.plipres.2023.101241] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Glycosphingolipids (GSLs) are major amphiphilic glycolipids present on the surface of living cell membranes. They have important biological functions, including maintaining plasma membrane stability, regulating signal transduction, and mediating cell recognition and adhesion. Specific GSLs and related enzymes are abnormally expressed in many cancer diseases and affect the malignant characteristics of tumors. The regulatory roles of GSLs in signaling pathways suggest that they are involved in tumor pathogenesis. GSLs have therefore been widely studied as diagnostic markers of cancer diseases and important targets of immunotherapy. This review describes the tumor-related biological functions of GSLs and systematically introduces recent progress in using diverse GSLs and related enzymes to diagnose and treat tumor diseases. Development of drugs and biomarkers for personalized cancer therapy based on GSL structure is also discussed. These advances, combined with recent progress in the preparation of GSLs derivatives through synthetic biology technologies, suggest a strong future for the use of customized GSL libraries in treating human diseases.
Collapse
Affiliation(s)
- Xuefeng Jin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Clinical Pharmaceutics, Guangxi Academy of Medical Sciences and the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, China
| | - Guang-Yu Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
3
|
Abbasi S, Ayyoubzadeh SM. The role of hand fingerprints on predisposition of cancer development. Heliyon 2023; 9:e14074. [PMID: 36915473 PMCID: PMC10006491 DOI: 10.1016/j.heliyon.2023.e14074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 02/06/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023] Open
Abstract
Fingerprints or dermatoglyphics contain patterns that were formed by parallel ridges on the bare skin of fingertips. This property on the skin, especially on the finger, makes it possible to hold objects with our fingers, and this feature can also be used to determine identity. After cardiovascular diseases, cancer is the second cause of death worldwide. In this paper, we reviewed the associations reported between fingerprint patterns (dermatoglyphics) and cancer types. In this review, we focused on six types of cancer, including gynecological cancers, oral cancer, prostate cancer, gastric cancer, leukemia, and pituitary tumors, and their connection with fingerprints. The dermatoglyphic could be a potentially useful tool for early diagnosis of predisposition in developing some diseases. As some patterns inform us about leading to deadly diseases, such as cancer, which could be prevented, or at least by early diagnosis and taking proper care, the mortality rate could decline. Thus, the fingerprints that have been primarily observed in particular cancers require more research.
Collapse
Affiliation(s)
- Sakineh Abbasi
- Department of Laboratory Science, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ayyoubzadeh
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Wang Z, Guan S, Cai B, Rong S, Li Q. Human Papillomavirus E1 Protein Regulates Gene Expression in Cells Involved in Immune Response. Appl Biochem Biotechnol 2022; 195:2786-2802. [PMID: 36418714 PMCID: PMC9684793 DOI: 10.1007/s12010-022-04249-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 11/25/2022]
Abstract
Human papillomavirus belongs to papovaviridae family papillomavirus A, a spherical deoxyribonucleic acid (DNA) virus, which can cause the proliferation of squamous epithelial cells of human skin or mucous membranes. With the rapid increase in the incidence of condyloma acuminatum among STDs and the increase in diseases caused by HPV infection, HPV infection has seriously endangered human health. In this paper, the in vitro detection of HPV E1 protein was realized using AgNCs-dsDNA. And through the test of this detection method, we calculated that the detection limit of this method is 0.886 nM. Compared with other methods for detecting E1 protein in vitro, this method has high sensitivity and simple operation. In addition, the detection method also has good anti-interference and selectivity, and can realize the detection of E1 in serum samples. The transfection efficiency of BLV-miR-B4-3p mimics at different time points was determined by quantitative real-time PCR (qPCR); the transcriptome sequencing of lymphocytes transfected with different concentrations of BLV-miR-B4-3p mimics was performed, and differential gene clustering was performed on the sequencing results. And the BLV-miR-B4-3p target gene prediction and transcriptome analysis results were verified by qPCR. The effects of BLV-miR-B4-3p on the transcriptional levels of immune-related cytokines in human lymphocytes were analyzed. Transcriptome sequencing analysis showed that after BLV-miR-B4-3p entered lymphocytes, a total of 556 differentially expressed genes were obtained. GO enrichment and KEGG analysis results showed that BLV-miR-B4-3p could independently activate influenza. The signaling pathway ultimately affects the body's immune system process, stress response, defense response, immune response, and other biological processes. After BLV-miR-B4-3p enters lymphocytes, it will lead to abnormal lymphocyte immune function, including the mRNA expression of TNF-α in Th1 cytokines which was significantly increased (P < 0.05), and the expression of IL-10 in Th2 cytokines was significantly increased (P < 0.05). The mRNA expression was significantly decreased (P < 0.05), and the mRNA expression of IL-27 was significantly increased (P < 0.001), which did not affect the mRNA expression of lymphocyte proliferation and activation-related regulators. The tumor suppressor breast cancer 1 (BRCA1) and antimicrobial peptide CAMP were significantly increased, and decreased (P < 0.001), and the expression of pro-apoptotic factor Caspase9 showed a significant downward trend (P < 0.05).
Collapse
Affiliation(s)
- Zifeng Wang
- Department of Bioengineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Shimin Guan
- Department of Bioengineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Baoguo Cai
- Department of Bioengineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Shaofeng Rong
- Department of Bioengineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Qianqian Li
- Department of Bioengineering, Shanghai Institute of Technology, Shanghai, 201418, China.
| |
Collapse
|
5
|
Haghighi D, Yazdani S, Farzanehpour M, Esmaeili Gouvarchinghaleh H. Combined extract of heated TC1, a heat-killed preparation of Lactobacillus casei and alpha-galactosyl ceramide in a mouse model of cervical cancer. Infect Agent Cancer 2022; 17:51. [PMID: 36127698 PMCID: PMC9487028 DOI: 10.1186/s13027-022-00464-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022] Open
Abstract
Background Nowadays, cancer is the leading cause of death among threats to humanity, necessitating prompt action and preparation. Cervical cancer is one of the most common cancers in women and is currently treated with surgery, radiation, chemotherapy, and immunotherapy, among other treatments. Current oncology approaches focused on the simultaneous development of safe and effective cancer multi-agent therapies. The present study aimed to evaluate the effects of a combined extracts of heated TC1, a heat-killed preparation of Lactobacilluscasei, and alpha-galactosyl ceramide (α-GalCer) in a mouse model of cervical cancer. Material and methods Cervical cancer in the mouse model was prepared by TC1 cells subcutaneous injection into the left flank of female C57BL/6 mouse aged 6–8 weeks (n = 80). After the appearance of the palpable tumor, the mice with cervical cancer were randomly devoted to 8 (ten-member) groups. The mice in some groups were treated with PBS, TC1 cell extract, L. casei extract, α-GalCer, and a combination of the mentioned treatments. Then, they were evaluated the splenocytes proliferation, lactate dehydrogenase production and nitric oxide. Moreover, IL-4, IFN-γ, and TGF-β cytokine levels of splenocytes supernatant the mice were measured. In all evaluations, a statistical difference of less than 0.05 (P ˂ 0.05) was considered as a significant level. Result The findings revealed that the combination therapy group (heated TC1 cell and L. casei extracts with α-GalCer) significantly increases the splenocytes proliferation (MTT) (0.358 ± 0.04 OD), LDH production (45.9 ± 2.3 U/L), NO rate (38.4 ± 2.8 µM), and IFN-γ cytokine level (46.6 ± 3.7 pg/ml) (P < 0.05). Also, observes a significantly reduces the production of IL-4 (11.6 ± 2.5 pg/ml) and TGF-β cytokines levels (7.8 ± 2.5 pg/ml) (P < 0.05) in comparison to the control group. Conclusion The study showed that combination therapy of L. casei and α-GalCer is an efficient treatment for cervical cancer in the mouse model.
Collapse
Affiliation(s)
- Dorsa Haghighi
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shaghayegh Yazdani
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Department of Microbiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahdieh Farzanehpour
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
6
|
iNKT cell agonists as vaccine adjuvants to combat infectious diseases. Carbohydr Res 2022; 513:108527. [DOI: 10.1016/j.carres.2022.108527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 01/07/2023]
|
7
|
Ceramide and Related Molecules in Viral Infections. Int J Mol Sci 2021; 22:ijms22115676. [PMID: 34073578 PMCID: PMC8197834 DOI: 10.3390/ijms22115676] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 02/08/2023] Open
Abstract
Ceramide is a lipid messenger at the heart of sphingolipid metabolism. In concert with its metabolizing enzymes, particularly sphingomyelinases, it has key roles in regulating the physical properties of biological membranes, including the formation of membrane microdomains. Thus, ceramide and its related molecules have been attributed significant roles in nearly all steps of the viral life cycle: they may serve directly as receptors or co-receptors for viral entry, form microdomains that cluster entry receptors and/or enable them to adopt the required conformation or regulate their cell surface expression. Sphingolipids can regulate all forms of viral uptake, often through sphingomyelinase activation, and mediate endosomal escape and intracellular trafficking. Ceramide can be key for the formation of viral replication sites. Sphingomyelinases often mediate the release of new virions from infected cells. Moreover, sphingolipids can contribute to viral-induced apoptosis and morbidity in viral diseases, as well as virus immune evasion. Alpha-galactosylceramide, in particular, also plays a significant role in immune modulation in response to viral infections. This review will discuss the roles of ceramide and its related molecules in the different steps of the viral life cycle. We will also discuss how novel strategies could exploit these for therapeutic benefit.
Collapse
|
8
|
Huang J, Zhou J, Ghinnagow R, Seki T, Iketani S, Soulard D, Paczkowski P, Tsuji Y, MacKay S, Cruz LJ, Trottein F, Tsuji M. Targeted Co-delivery of Tumor Antigen and α-Galactosylceramide to CD141 + Dendritic Cells Induces a Potent Tumor Antigen-Specific Human CD8 + T Cell Response in Human Immune System Mice. Front Immunol 2020; 11:2043. [PMID: 32973811 PMCID: PMC7461784 DOI: 10.3389/fimmu.2020.02043] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/27/2020] [Indexed: 02/01/2023] Open
Abstract
Active co-delivery of tumor antigens (Ag) and α-galactosylceramide (α-GalCer), a potent agonist for invariant Natural Killer T (iNKT) cells, to cross-priming CD8α+ dendritic cells (DCs) was previously shown to promote strong anti-tumor responses in mice. Here, we designed a nanoparticle-based vaccine able to target human CD141+ (BDCA3+) DCs - the equivalent of murine CD8α+ DCs – and deliver both tumor Ag (Melan A) and α-GalCer. This nanovaccine was inoculated into humanized mice that mimic the human immune system (HIS) and possess functional iNKT cells and CD8+ T cells, called HIS-CD8/NKT mice. We found that multiple immunizations of HIS-CD8/NKT mice with the nanovaccine resulted in the activation and/or expansion of human CD141+ DCs and iNKT cells and ultimately elicited a potent Melan-A-specific CD8+ T cell response, as determined by tetramer staining and ELISpot assay. Single-cell proteomics further detailed the highly polyfunctional CD8+ T cells induced by the nanovaccine and revealed their predictive potential for vaccine potency. This finding demonstrates for the first time the unique ability of human iNKT cells to license cross-priming DCs in vivo and adds a new dimension to the current strategy of cancer vaccine development.
Collapse
Affiliation(s)
- Jing Huang
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY, United States.,Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Jing Zhou
- IsoPlexis, Branford, CT, United States
| | - Reem Ghinnagow
- Centre d'Infection et d'Immunité de Lille, Inserm U1019, CNRS UMR 8204, CHU Lille, Institut Pasteur de Lille, University of Lille, Lille, France
| | - Toshiyuki Seki
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY, United States.,Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Sho Iketani
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY, United States.,Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, United States
| | - Daphnée Soulard
- Centre d'Infection et d'Immunité de Lille, Inserm U1019, CNRS UMR 8204, CHU Lille, Institut Pasteur de Lille, University of Lille, Lille, France
| | | | - Yukiko Tsuji
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY, United States
| | | | - Luis Javier Cruz
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - François Trottein
- Centre d'Infection et d'Immunité de Lille, Inserm U1019, CNRS UMR 8204, CHU Lille, Institut Pasteur de Lille, University of Lille, Lille, France
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY, United States.,Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
9
|
Castro-Muñoz LJ, Manzo-Merino J, Muñoz-Bello JO, Olmedo-Nieva L, Cedro-Tanda A, Alfaro-Ruiz LA, Hidalgo-Miranda A, Madrid-Marina V, Lizano M. The Human Papillomavirus (HPV) E1 protein regulates the expression of cellular genes involved in immune response. Sci Rep 2019; 9:13620. [PMID: 31541186 PMCID: PMC6754496 DOI: 10.1038/s41598-019-49886-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023] Open
Abstract
The Human Papillomavirus (HPV) E1 protein is the only viral protein with enzymatic activity. The main known function of this protein is the regulation of the viral DNA replication. Nevertheless, it has been demonstrated that the ablation of HPV18 E1 mRNA in HeLa cells promotes a deregulation of several genes, particularly those involved in host defense mechanisms against viral infections; however, the specific contribution of E1 protein in HPV-independent context has not been studied. The aim of this work was to determine the effect of the HPV E1 protein in the regulation of cellular gene expression profiles evaluated through RNA-seq. We found that E1 proteins from HPV16 and 18 induced an overexpression of different set of genes associated with proliferation and differentiation processes, as well as downregulation of immune response genes, including IFNβ1 and IFNλ1 and Interferon-stimulated gene (ISG), which are important components involved in the antiviral immune response. Together, our results indicate that HR-(High-Risk) and LR-(Low-Risk) HPV E1 proteins play an important role in inhibiting the anti-viral immune response.
Collapse
Affiliation(s)
- Leonardo Josué Castro-Muñoz
- Programa de Doctorado en Ciencias Biomédicas, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar S/N, Ciudad Universitaria, Delegación Coyoacán, 04500, Mexico City, Mexico
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, México/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. San Fernando No. 22, Col. Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - Joaquín Manzo-Merino
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, México/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. San Fernando No. 22, Col. Sección XVI, Tlalpan, 14080, Mexico City, Mexico
- Cátedras CONACyT-Instituto Nacional de Cancerología, San Fernando No. 22, Col. Sección XVI, Tlalpan, México City, Mexico
| | - J Omar Muñoz-Bello
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, México/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. San Fernando No. 22, Col. Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - Leslie Olmedo-Nieva
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, México/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. San Fernando No. 22, Col. Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - Alberto Cedro-Tanda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, México City, Mexico
| | - Luis Alberto Alfaro-Ruiz
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, México City, Mexico
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, México City, Mexico
| | - Vicente Madrid-Marina
- Dirección de Infecciones Crónicas y Cáncer. Centro de Investigación sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública, Av. Universidad 655, Santa María Ahuacatitlán, Cuernavaca, Morelos, 62100, Mexico
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, México/Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Av. San Fernando No. 22, Col. Sección XVI, Tlalpan, 14080, Mexico City, Mexico.
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| |
Collapse
|
10
|
Amador-Molina A, Amador-Molina JC, Arciniega JL, Lizano M. HPV18 E1 Protein Plus α-Galactosylceramide Elicit in Mice CD8 + T Cell Cross-Reactivity Against Cells Expressing E1 from Diverse Human Papillomavirus Types. Viral Immunol 2019; 32:269-275. [PMID: 31199716 DOI: 10.1089/vim.2019.0020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CD8+ T cell immune response plays a critical role in the clearance of human papillomavirus (HPV)-infected cells. During the natural history of HPV infection, the E1 protein, an early-expressed helicase highly conserved among papillomaviruses, is involved in the replication of HPV genomes. We have previously shown, in a murine model, that immunization with HPV18 E1 protein combined with α-galactosylceramide elicits a specific CD8+ T cell response. We further proved those findings by analyzing whether CD8+ T cells from mice immunized with α-galactosylceramide plus HPV18 E1 protein could have a cytotoxic effect on cells expressing the carboxyl-terminal domain from the E1 proteins of other HPV types. Interestingly, CD8+ T cells raised against HPV18 E1 antigen presented cross-reactivity against the E1 protein from HPV53, 33, 16, and 31. Poor cross-reactivity was observed for HPV11, and none for HPV6. This outcome may be relevant for the design of broad-spectrum immune-protective agents against HPV infections.
Collapse
Affiliation(s)
- Alfredo Amador-Molina
- 1Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Tlalpan, México
| | - Juan C Amador-Molina
- 2Tecnológico de Monterrey, Departamento de Bioingeniería, Campus Estado de México, Estado de México, México
| | - Juan L Arciniega
- 3Biologics Consulting (Affiliate), Department of Pharmaceuticals and Biologics, Alexandria, Virginia
| | - Marcela Lizano
- 1Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología, Tlalpan, México.,4Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México
| |
Collapse
|