1
|
Sbizera MCR, Barreto JVP, Pertile SFN, de Almeida Rego FC, Lisbôa JAN, da Cunha Filho LFC. Longitudinal seroepidemiological survey and risk factors for bluetongue virus infection in sheep in the state of Parana, Brazil, from 2014 to 2017. Braz J Microbiol 2024; 55:4191-4198. [PMID: 39177730 PMCID: PMC11711410 DOI: 10.1007/s42770-024-01486-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/07/2024] [Indexed: 08/24/2024] Open
Abstract
The Bluetongue disease is an infectious and non-contagious viral disease mainly transmitted through hematophagous vector of the Culicoides genus, to domestic and wild ruminants. The aim of this study was to evaluate the antibodies occurrence, persistence and potential risk factors associated with bluetongue virus infection in sheep flocks in the state of Parana, Brazil. The competitive ELISA test was applied to evaluate 690 blood serum samples from 22 farms in eight mesoregions of Parana in 2014, and 270 sheep blood serum samples from 10 of the 22 previously studied farms in 2017. A questionnaire was applied to evaluate the risk factors associated with BTV infection. In 2014 and 2017, the numbers of seroreactive sheep were found to be 28.26% (195/690) and 41.11% (111/270), respectively, representing 95.45% (21/22) and 90% (9/10) of the flocks. The significant variables considered as risk factors were Culicoides presence (P < 0.0001; OR = 8.83 and 95% CI 4.28-18.22); genealogical record (P < 0.0001; OR = 0.23 and 95% CI 0.12-0.45) and use of sheepfold (P = 0.0208; OR = 0.36 and 95% CI 0.15-0 0.86). It was determined that BTV infection is endemic in Parana and persists in the mesoregions where the climate is favorable to vector proliferation.
Collapse
Affiliation(s)
- Maria Carolina Ricciardi Sbizera
- Post Graduate Program in Animal Health and Production, Department of Agrarian Sciences, Universidade Pitágoras Unopar Anhanguera, Arapongas, Brazil
| | - José Victor Pronievicz Barreto
- Post Graduate Program in Animal Health and Production, Department of Agrarian Sciences, Universidade Pitágoras Unopar Anhanguera, Arapongas, Brazil.
- Post Graduate Program in Animal Science, Department of Veterinary Preventive Medicine, Universidade Estadual de Londrina, Londrina, Brazil.
| | - Simone Fernanda Nedel Pertile
- Post Graduate Program in Animal Health and Production, Department of Agrarian Sciences, Universidade Pitágoras Unopar Anhanguera, Arapongas, Brazil
| | - Fabíola Cristine de Almeida Rego
- Post Graduate Program in Animal Health and Production, Department of Agrarian Sciences, Universidade Pitágoras Unopar Anhanguera, Arapongas, Brazil
| | - Julio Augusto Naylor Lisbôa
- Post Graduate Program in Animal Health and Production, Department of Agrarian Sciences, Universidade Pitágoras Unopar Anhanguera, Arapongas, Brazil
| | - Luiz Fernando Coelho da Cunha Filho
- Post Graduate Program in Animal Health and Production, Department of Agrarian Sciences, Universidade Pitágoras Unopar Anhanguera, Arapongas, Brazil
| |
Collapse
|
2
|
Drolet BS, Reister-Hendricks L, Mayo C, Rodgers C, Molik DC, McVey DS. Increased Virulence of Culicoides Midge Cell-Derived Bluetongue Virus in IFNAR Mice. Viruses 2024; 16:1474. [PMID: 39339950 PMCID: PMC11437402 DOI: 10.3390/v16091474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Bluetongue (BT) is a Culicoides midge-borne hemorrhagic disease affecting cervids and ruminant livestock species, resulting in significant economic losses from animal production and trade restrictions. Experimental animal infections using the α/β interferon receptor knockout IFNAR mouse model and susceptible target species are critical for understanding viral pathogenesis, virulence, and evaluating vaccines. However, conducting experimental vector-borne transmission studies with the vector itself are logistically difficult and experimentally problematic. Therefore, experimental infections are induced by hypodermic injection with virus typically derived from baby hamster kidney (BHK) cells. Unfortunately, for many U.S. BTV serotypes, it is difficult to replicate the severity of the disease seen in natural, midge-transmitted infections by injecting BHK-derived virus into target host animals. Using the IFNAR BTV murine model, we compared the virulence of traditional BHK cell-derived BTV-17 with C. sonorensis midge (W8) cell-derived BTV-17 to determine whether using cells of the transmission vector would provide an in vitro virulence aspect of vector-transmitted virus. At both low and high doses, mice inoculated with W8-BTV-17 had an earlier onset of viremia, earlier onset and peak of clinical signs, and significantly higher mortality compared to mice inoculated with BHK-BTV-17. Our results suggest using a Culicoides W8 cell-derived inoculum may provide an in vitro vector-enhanced infection to more closely represent disease levels seen in natural midge-transmitted infections while avoiding the logistical and experimental complexity of working with live midges.
Collapse
Affiliation(s)
- Barbara S. Drolet
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (L.R.-H.); (D.C.M.)
| | - Lindsey Reister-Hendricks
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (L.R.-H.); (D.C.M.)
| | - Christie Mayo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (C.M.); (C.R.)
| | - Case Rodgers
- Department of Microbiology, Immunology, and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (C.M.); (C.R.)
| | - David C. Molik
- Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (L.R.-H.); (D.C.M.)
| | - David Scott McVey
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, P.O. Box 830905, Lincoln, NE 68583, USA;
| |
Collapse
|
3
|
Selim A, Marzok M, Alkashif K, Kandeel M, Salem M, Sayed-Ahmed MZ. Bluetongue virus infection in cattle: serosurvey and its associated risk factors. Trop Anim Health Prod 2023; 55:285. [PMID: 37540299 DOI: 10.1007/s11250-023-03701-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/27/2023] [Indexed: 08/05/2023]
Abstract
Bluetongue virus (BTV) is a vector-borne virus that primarily affects sheep. However, the disease is usually asymptomatic in cattle without obvious clinical signs related to BTV infection. Although there is evidence of BTV antibodies through serology in Egypt, it is still unknown whether Egyptian cattle have ever been exposed to the virus in the north or south of the country. The study's aims were to determine the seroprevalence of BTV and evaluate the potential risk factors for BTV infection in cattle in Egypt. We used a competitive ELISA to screen 690 healthy cattle for BTV-specific immunoglobulin G (IgG) antibodies in four governorates in Egypt. A total seroprevalence of BTV antibodies in examined cattle was 51.47%, 95%CI: 48.01-55.45. The odds of BTV seropositivity were higher in Aswan (OR=1.30, 95%CI: 0.71-2.36), females (OR=3.29, 95%CI: 1.87-5.79), and elder cattle >8 years (OR=12.91, 95%CI: 6.63-25.13). Moreover, cattle contacted with other animals (OR=1.40, 95%CI: 0.94-2.10), with history of abortion (OR=4.88, 95%CI: 3.14-7.59), and those living with presence of insects (OR=12.34, 95%CI: 8-19.30) were more likely to be infected with bluetongue (BT). To effectively predict and respond to a potential BTV outbreak in Egypt, surveillance for BTV infection should be expanded to cover other susceptible ruminants and the range of the insect vectors.
Collapse
Affiliation(s)
- Abdelfattah Selim
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt.
| | - Mohamed Marzok
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al-Asha, 31982, Saudi Arabia.
- Department of Surgery, Faculty of Veterinary Medicine, Kafr El Sheikh University, Kafr El Sheikh, Egypt.
| | - Khalid Alkashif
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan, 82722, Saudi Arabia
| | - Mahmoud Kandeel
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafr El Sheikh University, Kafr El Sheikh, Egypt
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Mohamed Salem
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, Al-Asha, 31982, Saudi Arabia
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, 12613, Cairo, Egypt
| | - Mohamed Z Sayed-Ahmed
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan, 45142, Saudi Arabia
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
4
|
Golender N, Klement E, Kovtunenko A, Even-Tov B, Zamir L, Tiomkin E, Kenigswald G, Hoffmann B. Comparative Molecular and Epidemiological Analyses of Israeli Bluetongue Viruses Serotype 1 and 9 Causing Outbreaks in 2018-2020. Microorganisms 2023; 11:microorganisms11020366. [PMID: 36838331 PMCID: PMC9966015 DOI: 10.3390/microorganisms11020366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/14/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Israel is endemic to bluetongue virus (BTV). The introduction of novel-for-the-region arboviruses have been recorded annually in recent years. In 2019, previously non-reported in-the-country BTV-1 and BTV-9 were identified. BTV-1 caused a single-season outbreak, probably linked to mild infection in ruminants. BTV-9 was retrospectively detected in the field samples collected from August 2018 until 2020. It was the dominant serotype in 2019, out of the six serotypes recorded during that calendar year. Clinical manifestation of the disease in cases diagnosed with BTV-9 were compared to those in cases determined to have BTV-1. BLAST and phylogenetic analyses of BTV-1 showed that the nucleotide (nt) sequence coding the viral outer protein 1 (VP2) determining the serotype is closely related to BTV-1 isolated in Sudan in 1987, and the coding sequence of the outer protein 2 (VP5) is related to South African BTV-1 from 2017. A probable common ancestor with Libyan BTV-9 strains isolated in 2008 was seen in an analysis of Israeli BTV-9 nt sequences. Notably, the outbreak-caused BTV-9 strains collected in 2019 exhibited a distinct level of genetic reassortment with local Israeli strains compared to BTV-9 strains registered in 2018 and 2020.
Collapse
Affiliation(s)
- Natalia Golender
- Department of Virology, Kimron Veterinary Institute, Bet Dagan 5025000, Israel
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
- Correspondence: ; Tel.: +972-3968-1668; Fax: +972-3968-1788
| | - Eyal Klement
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| | - Anita Kovtunenko
- Department of Virology, Kimron Veterinary Institute, Bet Dagan 5025000, Israel
| | - Boris Even-Tov
- Veterinary Servises in the Field, Galil-Golan 1231400, Israel
| | - Lior Zamir
- Veterinary Servises in the Field, Galil-Golan 1231400, Israel
| | - Eitan Tiomkin
- Hachaklait Veterinary Services, Caesarea 3088900, Israel
| | | | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
5
|
Identification and characterization of bluetongue virus in Culicoides spp. and clinically healthy livestock in southeastern Kazakhstan. Comp Immunol Microbiol Infect Dis 2022; 90-91:101895. [DOI: 10.1016/j.cimid.2022.101895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 11/18/2022]
|
6
|
Alkhamis MA, Fountain‐Jones NM, Aguilar‐Vega C, Sánchez‐Vizcaíno JM. Environment, vector, or host? Using machine learning to untangle the mechanisms driving arbovirus outbreaks. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02407. [PMID: 34245639 PMCID: PMC9286057 DOI: 10.1002/eap.2407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/28/2021] [Accepted: 03/03/2021] [Indexed: 06/13/2023]
Abstract
Climatic, landscape, and host features are critical components in shaping outbreaks of vector-borne diseases. However, the relationship between the outbreaks of vector-borne pathogens and their environmental drivers is typically complicated, nonlinear, and may vary by taxonomic units below the species level (e.g., strain or serotype). Here, we aim to untangle how these complex forces shape the risk of outbreaks of Bluetongue virus (BTV); a vector-borne pathogen that is continuously emerging and re-emerging across Europe, with severe economic implications. We tested if the ecological predictors of BTV outbreak risk were serotype-specific by examining the most prevalent serotypes recorded in Europe (1, 4, and 8). We used a robust machine learning (ML) pipeline and 23 relevant environmental features to fit predictive models to 24,245 outbreaks reported in 25 European countries between 2000 and 2019. Our ML models demonstrated high predictive performance for all BTV serotypes (accuracies > 0.87) and revealed strong nonlinear relationships between BTV outbreak risk and environmental and host features. Serotype-specific analysis suggests, however, that each of the major serotypes (1, 4, and 8) had a unique outbreak risk profile. For example, temperature and midge abundance were as the most important characteristics shaping serotype 1, whereas for serotype 4 goat density and temperature were more important. We were also able to identify strong interactive effects between environmental and host characteristics that were also serotype specific. Our ML pipeline was able to reveal more in-depth insights into the complex epidemiology of BTVs and can guide policymakers in intervention strategies to help reduce the economic implications and social cost of this important pathogen.
Collapse
Affiliation(s)
- Moh A. Alkhamis
- Department of Epidemiology and BiostatisticsFaculty of Public HeathHealth Sciences CentreKuwait UniversityKuwait City13110Kuwait
| | - Nicholas M. Fountain‐Jones
- School of Natural SciencesUniversity of TasmaniaHobartTasmania7001Australia
- Department of Veterinary Population MedicineCollege of Veterinary MedicineUniversity of MinnesotaSt. PaulMinnesota55108USA
| | - Cecilia Aguilar‐Vega
- VISAVET Health Surveillance Centre and Animal Health DepartmentVeterinary SchoolComplutense University of MadridMadrid28040Spain
| | - José M. Sánchez‐Vizcaíno
- VISAVET Health Surveillance Centre and Animal Health DepartmentVeterinary SchoolComplutense University of MadridMadrid28040Spain
| |
Collapse
|
7
|
Genomic Analysis Illustrated a Single Introduction and Evolution of Israeli Bluetongue Serotype 8 Virus Population 2008-2019. Microorganisms 2021; 9:microorganisms9091955. [PMID: 34576850 PMCID: PMC8470199 DOI: 10.3390/microorganisms9091955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022] Open
Abstract
Outbreaks of the European Bluetongue virus (BTV) serotype 8 (BTV-8), which are characterized by activity cycles separated by years of inactivity, may be influenced by genetic changes of the virus or by herd immunity. BTV activity in Israel is characterized by similar dynamics, but differs from European countries in its vector population, environmental conditions, and lack of cattle vaccination against this serotype. Comparison of these two geographical systems and characterization of their epidemiological connection is therefore of high interest in-order to better understand the factors influencing BTV-8 evolution. BTV-8, closely related to the European strain, was introduced to Israel in 2008. It was at the center of BT outbreaks in 2010 and 2015–2016 and thereafter was lastly isolated in Israel in 2019. We performed genetic analyses of twelve BTV-8 Israeli strains isolated between 2008 and 2019 and compared them with published sequences of BTV-8 isolated in other countries. The analysis revealed a single introduction of BTV-8 into Israel and thereafter extensive occurrence of genomic drifts and multiple reassortments with local BTV strains. Comparison of the Israeli and Cypriot BTV-8 from 2015 to 2016 suggests transmission of the virus between the two countries and a separate and parallel development from European or other Israeli BTV-8 strains. The parallel development of other BTV-8 strains was demonstrated by the identification of the Israeli BTV-8 ISR-1194/1/19 strain, which exhibited common origin with reassorted Israeli BTV-8 strains from 2010 and additional reassortment of seven segments. In order to reveal the source of BTV-8 introduction into Israel we performed BEAST analysis which showed that a probable common ancestor for both European and Israeli BTV-8 presumably existed in 2003–2004. In 2019, a possible new introduction occurred in Israel, where a novel BTV-8 strain was detected, sharing ~95% identity by segments 2 and 6 with Nigerian BTV-8NIG1982/07 and European–Middle Eastern strains. The results of the study indicate that Israel and neighboring countries consist a separate environmental and evolutionary system, distinct from European ones.
Collapse
|
8
|
Saminathan M, Singh KP, Khorajiya JH, Dinesh M, Vineetha S, Maity M, Rahman AF, Misri J, Malik YS, Gupta VK, Singh RK, Dhama K. An updated review on bluetongue virus: epidemiology, pathobiology, and advances in diagnosis and control with special reference to India. Vet Q 2021; 40:258-321. [PMID: 33003985 PMCID: PMC7655031 DOI: 10.1080/01652176.2020.1831708] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bluetongue (BT) is an economically important, non-contagious viral disease of domestic and wild ruminants. BT is caused by BT virus (BTV) and it belongs to the genus Orbivirus and family Reoviridae. BTV is transmitted by Culicoides midges and causes clinical disease in sheep, white-tailed deer, pronghorn antelope, bighorn sheep, and subclinical manifestation in cattle, goats and camelids. BT is a World Organization for Animal Health (OIE) listed multispecies disease and causes great socio-economic losses. To date, 28 serotypes of BTV have been reported worldwide and 23 serotypes have been reported from India. Transplacental transmission (TPT) and fetal abnormalities in ruminants had been reported with cell culture adopted live-attenuated vaccine strains of BTV. However, emergence of BTV-8 in Europe during 2006, confirmed TPT of wild-type/field strains of BTV. Diagnosis of BT is more important for control of disease and to ensure BTV-free trade of animals and their products. Reverse transcription polymerase chain reaction, agar gel immunodiffusion assay and competitive enzyme-linked immunosorbent assay are found to be sensitive and OIE recommended tests for diagnosis of BTV for international trade. Control measures include mass vaccination (most effective method), serological and entomological surveillance, forming restriction zones and sentinel programs. Major hindrances with control of BT in India are the presence of multiple BTV serotypes, high density of ruminant and vector populations. A pentavalent inactivated, adjuvanted vaccine is administered currently in India to control BT. Recombinant vaccines with DIVA strategies are urgently needed to combat this disease. This review is the first to summarise the seroprevalence of BTV in India for 40 years, economic impact and pathobiology.
Collapse
Affiliation(s)
- Mani Saminathan
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Karam Pal Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | | | - Murali Dinesh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Sobharani Vineetha
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Madhulina Maity
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - At Faslu Rahman
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Jyoti Misri
- Animal Science Division, Indian Council of Agricultural Research, New Delhi, India
| | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Vivek Kumar Gupta
- Centre for Animal Disease Research and Diagnosis, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Raj Kumar Singh
- Director, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
9
|
Rivera NA, Varga C, Ruder MG, Dorak SJ, Roca AL, Novakofski JE, Mateus-Pinilla NE. Bluetongue and Epizootic Hemorrhagic Disease in the United States of America at the Wildlife-Livestock Interface. Pathogens 2021; 10:915. [PMID: 34451380 PMCID: PMC8402076 DOI: 10.3390/pathogens10080915] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 11/17/2022] Open
Abstract
Bluetongue (BT) and epizootic hemorrhagic disease (EHD) cases have increased worldwide, causing significant economic loss to ruminant livestock production and detrimental effects to susceptible wildlife populations. In recent decades, hemorrhagic disease cases have been reported over expanding geographic areas in the United States. Effective BT and EHD prevention and control strategies for livestock and monitoring of these diseases in wildlife populations depend on an accurate understanding of the distribution of BT and EHD viruses in domestic and wild ruminants and their vectors, the Culicoides biting midges that transmit them. However, national maps showing the distribution of BT and EHD viruses and the presence of Culicoides vectors are incomplete or not available at all. Thus, efforts to accurately describe the potential risk of these viruses on ruminant populations are obstructed by the lack of systematic and routine surveillance of their hosts and vectors. In this review, we: (1) outline animal health impacts of BT and EHD in the USA; (2) describe current knowledge of the distribution and abundance of BT and EHD and their vectors in the USA; and (3) highlight the importance of disease (BT and EHD) and vector surveillance for ruminant populations.
Collapse
Affiliation(s)
- Nelda A. Rivera
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois Urbana-Champaign, 1816 S. Oak Street, Champaign, IL 61820, USA; (S.J.D.); (J.E.N.)
| | - Csaba Varga
- Department of Pathobiology, University of Illinois Urbana-Champaign, 2001 S Lincoln Ave, Urbana, IL 61802, USA;
| | - Mark G. Ruder
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| | - Sheena J. Dorak
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois Urbana-Champaign, 1816 S. Oak Street, Champaign, IL 61820, USA; (S.J.D.); (J.E.N.)
| | - Alfred L. Roca
- Department of Animal Sciences, University of Illinois Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL 61801, USA;
| | - Jan E. Novakofski
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois Urbana-Champaign, 1816 S. Oak Street, Champaign, IL 61820, USA; (S.J.D.); (J.E.N.)
- Department of Animal Sciences, University of Illinois Urbana-Champaign, 1503 S. Maryland Drive, Urbana, IL 61801, USA
| | - Nohra E. Mateus-Pinilla
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois Urbana-Champaign, 1816 S. Oak Street, Champaign, IL 61820, USA; (S.J.D.); (J.E.N.)
- Department of Pathobiology, University of Illinois Urbana-Champaign, 2001 S Lincoln Ave, Urbana, IL 61802, USA;
- Department of Animal Sciences, University of Illinois Urbana-Champaign, 1503 S. Maryland Drive, Urbana, IL 61801, USA
| |
Collapse
|
10
|
A Duplex Fluorescent Microsphere Immunoassay for Detection of Bluetongue and Epizootic Hemorrhagic Disease Virus Antibodies in Cattle Sera. Viruses 2021; 13:v13040682. [PMID: 33921013 PMCID: PMC8071417 DOI: 10.3390/v13040682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 01/19/2023] Open
Abstract
Bluetongue virus (BTV) causes internationally reportable hemorrhagic disease in cattle, sheep, and white-tailed deer. The closely related, and often co-circulating, epizootic hemorrhagic disease virus causes a clinically similar devastating disease in white-tailed deer, with increasing levels of disease in cattle in the past 10 years. Transmitted by Culicoides biting midges, together, they constitute constant disease threats to the livelihood of livestock owners. In cattle, serious economic impacts result from decreased animal production, but most significantly from trade regulations. For effective disease surveillance and accurate trade regulation implementation, rapid, sensitive assays that can detect exposure of cattle to BTV and/or EHDV are needed. We describe the development and validation of a duplex fluorescent microsphere immunoassay (FMIA) to simultaneously detect and differentiate antibodies to BTV and EHDV in a single bovine serum sample. Performance of the duplex FMIA for detection and differentiation of BTV and EHDV serogroup antibodies was comparable, with higher sensitivity than commercially available single-plex competitive enzyme-linked immunosorbent assays (cELISA) for detection of each virus antibody separately. The FMIA adds to the currently available diagnostic tools for hemorrhagic orbiviral diseases in cattle as a sensitive, specific assay, with the benefits of serogroup differentiation in a single serum sample, and multiplexing flexibility in a high-throughput platform.
Collapse
|
11
|
De Clercq K, Vandaele L, Vanbinst T, Riou M, Deblauwe I, Wesselingh W, Pinard A, Van Eetvelde M, Boulesteix O, Leemans B, Gélineau R, Vercauteren G, Van der Heyden S, Beckers JF, Saegerman C, Sammin D, de Kruif A, De Leeuw I. Transmission of Bluetongue Virus Serotype 8 by Artificial Insemination with Frozen-Thawed Semen from Naturally Infected Bulls. Viruses 2021; 13:v13040652. [PMID: 33918924 PMCID: PMC8069090 DOI: 10.3390/v13040652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/31/2021] [Accepted: 04/07/2021] [Indexed: 12/31/2022] Open
Abstract
Transmission of bluetongue (BT) virus serotype 8 (BTV-8) via artificial insemination of contaminated frozen semen from naturally infected bulls was investigated in two independent experiments. Healthy, BT negative heifers were hormonally synchronized and artificially inseminated at oestrus. In total, six groups of three heifers received semen from four batches derived from three bulls naturally infected with BTV-8. Each experiment included one control heifer that was not inseminated and that remained BT negative throughout. BTV viraemia and seroconversion were determined in 8 out of 18 inseminated heifers, and BTV was isolated from five of these animals. These eight heifers only displayed mild clinical signs of BT, if any at all, but six of them experienced pregnancy loss between weeks four and eight of gestation, and five of them became BT PCR and antibody positive. The other two infected heifers gave birth at term to two healthy and BT negative calves. The BT viral load varied among the semen batches used and this had a significant impact on the infection rate, the time of onset of viraemia post artificial insemination, and the gestational stage at which pregnancy loss occurred. These results, which confirm unusual features of BTV-8 infection, should not be extrapolated to infection with other BTV strains without thorough evaluation. This study also adds weight to the hypothesis that the re-emergence of BTV-8 in France in 2015 may be attributable to the use of contaminated bovine semen.
Collapse
Affiliation(s)
- Kris De Clercq
- Unit of Exotic and Particular Diseases, Scientific Directorate Infectious Diseases in Animals, Sciensano, 1180 Brussels, Belgium; (I.D.L.)
- Correspondence:
| | - Leen Vandaele
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, 9820 Merelbeke, Belgium; (L.V.); (W.W.); (M.V.E.); (B.L.); (A.d.K.)
| | - Tine Vanbinst
- Unit of Exotic and Particular Diseases, Scientific Directorate Infectious Diseases in Animals, Sciensano, 1180 Brussels, Belgium; (I.D.L.)
| | - Mickaël Riou
- UE-1277 Plateforme d’Infectiologie Expérimentale (PFIE), Centre de Recherche Val de Loire, Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 37380 Nouzilly, France; (M.R.); (A.P.); (O.B.); (R.G.)
| | - Isra Deblauwe
- The Unit of Entomology, Department of Biomedical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium;
| | - Wendy Wesselingh
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, 9820 Merelbeke, Belgium; (L.V.); (W.W.); (M.V.E.); (B.L.); (A.d.K.)
| | - Anne Pinard
- UE-1277 Plateforme d’Infectiologie Expérimentale (PFIE), Centre de Recherche Val de Loire, Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 37380 Nouzilly, France; (M.R.); (A.P.); (O.B.); (R.G.)
| | - Mieke Van Eetvelde
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, 9820 Merelbeke, Belgium; (L.V.); (W.W.); (M.V.E.); (B.L.); (A.d.K.)
| | - Olivier Boulesteix
- UE-1277 Plateforme d’Infectiologie Expérimentale (PFIE), Centre de Recherche Val de Loire, Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 37380 Nouzilly, France; (M.R.); (A.P.); (O.B.); (R.G.)
| | - Bart Leemans
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, 9820 Merelbeke, Belgium; (L.V.); (W.W.); (M.V.E.); (B.L.); (A.d.K.)
| | - Robert Gélineau
- UE-1277 Plateforme d’Infectiologie Expérimentale (PFIE), Centre de Recherche Val de Loire, Institut National de Recherche Pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), 37380 Nouzilly, France; (M.R.); (A.P.); (O.B.); (R.G.)
| | - Griet Vercauteren
- Department of Pathology, Bacteriology and Poultry Diseases, 9820 Merelbeke, Belgium; (G.V.); (S.V.d.H.)
| | - Sara Van der Heyden
- Department of Pathology, Bacteriology and Poultry Diseases, 9820 Merelbeke, Belgium; (G.V.); (S.V.d.H.)
| | - Jean-François Beckers
- Département des Sciences Fonctionnelles (DSF), Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, 4000 Liège, Belgium;
| | - Claude Saegerman
- Research Unit in Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULg), Fundamental and Applied Research for Animal and Health (FARAH) Center, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, 4130 Liege, Belgium;
| | - Donal Sammin
- Department of Agriculture Food and the Marine Laboratories, Backweston, W23 X3PH Co. Kildare, Ireland;
| | - Aart de Kruif
- Department of Reproduction, Obstetrics and Herd Health, Ghent University, 9820 Merelbeke, Belgium; (L.V.); (W.W.); (M.V.E.); (B.L.); (A.d.K.)
| | - Ilse De Leeuw
- Unit of Exotic and Particular Diseases, Scientific Directorate Infectious Diseases in Animals, Sciensano, 1180 Brussels, Belgium; (I.D.L.)
| |
Collapse
|
12
|
Gard Schnuelle J. Emerging diseases in international trade in embryos. Reprod Fertil Dev 2021; 33:55-65. [PMID: 38769671 DOI: 10.1071/rd20207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
A significant change in cattle production and germplasm exchange has occurred over the past 50 years. The growth of artificial reproductive technologies and their broad implementation has become commonplace. The production and subsequent import and export of semen and embryos throughout the world has increased significantly. The embryo transfer industry has reached a new record of growth, with approximately 1.5 million transferrable bovine embryos collected and/or produced in 2018. Over 1 million of these embryos were produced invitro . The increased production of invitro -produced embryos leads to greater opportunities involving international trade. However, further research concerning emerging pathogens is imperative to ensure the efficacy and safety of the embryo transfer industry. Appropriate biosecurity protocols, including reliable testing methodology and effective embryo processing procedures, are key in preventing disease due to emerging and re-emerging pathogens that can be transmitted via embryo transfer.
Collapse
Affiliation(s)
- Julie Gard Schnuelle
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL 36849-5522, USA
| |
Collapse
|
13
|
Global emergence and evolutionary dynamics of bluetongue virus. Sci Rep 2020; 10:21677. [PMID: 33303862 PMCID: PMC7729867 DOI: 10.1038/s41598-020-78673-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
Bluetongue virus (BTV) epidemics are responsible for worldwide economic losses of up to US$ 3 billion. Understanding the global evolutionary epidemiology of BTV is critical in designing intervention programs. Here we employed phylodynamic models to quantify the evolutionary characteristics, spatiotemporal origins, and multi-host transmission dynamics of BTV across the globe. We inferred that goats are the ancestral hosts for BTV but are less likely to be important for cross-species transmission, sheep and cattle continue to be important for the transmission and maintenance of infection between other species. Our models pointed to China and India, countries with the highest population of goats, as the likely ancestral country for BTV emergence and dispersal worldwide over 1000 years ago. However, the increased diversification and dispersal of BTV coincided with the initiation of transcontinental livestock trade after the 1850s. Our analysis uncovered important epidemiological aspects of BTV that may guide future molecular surveillance of BTV.
Collapse
|
14
|
Gahn MCB, Niakh F, Ciss M, Seck I, Lo MM, Fall AG, Biteye B, Fall M, Ndiaye M, Ba A, Seck MT, Sall B, Lo M, Faye C, Squarzoni-Diaw C, Ka A, Amevoin Y, Apolloni A. Assessing the Risk of Occurrence of Bluetongue in Senegal. Microorganisms 2020; 8:E1766. [PMID: 33187059 PMCID: PMC7697801 DOI: 10.3390/microorganisms8111766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 11/16/2022] Open
Abstract
Bluetongue is a non-contagious viral disease affecting small ruminants and cattle that can cause severe economic losses in the livestock sector. The virus is transmitted by certain species of the genus Culicoides and consequently, understanding their distribution is essential to enable the identification of high-risk transmission areas. In this work we use bioclimatic and environmental variables to predict vector abundance, and estimate spatial variations in the basic reproductive ratio R0. The resulting estimates were combined with livestock mobility and serological data to assess the risk of Bluetongue outbreaks in Senegal. The results show an increasing abundance of C. imicola, C. oxystoma, C. enderleini, and C. miombo from north to south. R0 < 1 for most areas of Senegal, whilst southern (Casamance) and southeastern (Kedougou and part of Tambacounda) agro-pastoral areas have the highest risk of outbreak (R0 = 2.7 and 2.9, respectively). The next higher risk areas are in the Senegal River Valley (R0 = 1.07), and the Atlantic coast zones. Seroprevalence rates, shown by cELISA, weren't positively correlated with outbreak probability. Future works should include follow-up studies of competent vector abundancies and serological surveys based on the results of the risk analysis conducted here to optimize the national epidemiological surveillance system.
Collapse
Affiliation(s)
- Marie Cicille Ba Gahn
- Institut Sénégalais de Recherches Agricoles, Laboratoire National de l’Elevage et de Recherches Vétérinaires (ISRA-LNERV), Dakar-Hann BP 2057, Senegal; (M.C.B.G.); (F.N.); (M.C.); (M.M.L.); (A.G.F.); (B.B.); (M.F.); (M.N.); (A.B.); (M.T.S.); (A.K.); (Y.A.)
| | - Fallou Niakh
- Institut Sénégalais de Recherches Agricoles, Laboratoire National de l’Elevage et de Recherches Vétérinaires (ISRA-LNERV), Dakar-Hann BP 2057, Senegal; (M.C.B.G.); (F.N.); (M.C.); (M.M.L.); (A.G.F.); (B.B.); (M.F.); (M.N.); (A.B.); (M.T.S.); (A.K.); (Y.A.)
- ASTRE, Univ Montpellier, CIRAD, INRAE, F-34398 Montpellier, France;
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR ASTRE, F-34398 Montpellier, France
- École Nationale de la Statistique et de l’Administration Économique, 91764 Palaiseau CEDEX, France
| | - Mamadou Ciss
- Institut Sénégalais de Recherches Agricoles, Laboratoire National de l’Elevage et de Recherches Vétérinaires (ISRA-LNERV), Dakar-Hann BP 2057, Senegal; (M.C.B.G.); (F.N.); (M.C.); (M.M.L.); (A.G.F.); (B.B.); (M.F.); (M.N.); (A.B.); (M.T.S.); (A.K.); (Y.A.)
| | - Ismaila Seck
- FAO, ECTAD Regional Office for Africa, 2 Gamel Abdul Nasser Road, P.O. Box GP 1628, Accra, Ghana;
- Direction des Services Vétérinaires, Dakar 45677, Senegal; (B.S.); (M.L.); (C.F.)
| | - Modou Moustapha Lo
- Institut Sénégalais de Recherches Agricoles, Laboratoire National de l’Elevage et de Recherches Vétérinaires (ISRA-LNERV), Dakar-Hann BP 2057, Senegal; (M.C.B.G.); (F.N.); (M.C.); (M.M.L.); (A.G.F.); (B.B.); (M.F.); (M.N.); (A.B.); (M.T.S.); (A.K.); (Y.A.)
| | - Assane Gueye Fall
- Institut Sénégalais de Recherches Agricoles, Laboratoire National de l’Elevage et de Recherches Vétérinaires (ISRA-LNERV), Dakar-Hann BP 2057, Senegal; (M.C.B.G.); (F.N.); (M.C.); (M.M.L.); (A.G.F.); (B.B.); (M.F.); (M.N.); (A.B.); (M.T.S.); (A.K.); (Y.A.)
| | - Biram Biteye
- Institut Sénégalais de Recherches Agricoles, Laboratoire National de l’Elevage et de Recherches Vétérinaires (ISRA-LNERV), Dakar-Hann BP 2057, Senegal; (M.C.B.G.); (F.N.); (M.C.); (M.M.L.); (A.G.F.); (B.B.); (M.F.); (M.N.); (A.B.); (M.T.S.); (A.K.); (Y.A.)
| | - Moussa Fall
- Institut Sénégalais de Recherches Agricoles, Laboratoire National de l’Elevage et de Recherches Vétérinaires (ISRA-LNERV), Dakar-Hann BP 2057, Senegal; (M.C.B.G.); (F.N.); (M.C.); (M.M.L.); (A.G.F.); (B.B.); (M.F.); (M.N.); (A.B.); (M.T.S.); (A.K.); (Y.A.)
| | - Mbengué Ndiaye
- Institut Sénégalais de Recherches Agricoles, Laboratoire National de l’Elevage et de Recherches Vétérinaires (ISRA-LNERV), Dakar-Hann BP 2057, Senegal; (M.C.B.G.); (F.N.); (M.C.); (M.M.L.); (A.G.F.); (B.B.); (M.F.); (M.N.); (A.B.); (M.T.S.); (A.K.); (Y.A.)
| | - Aminata Ba
- Institut Sénégalais de Recherches Agricoles, Laboratoire National de l’Elevage et de Recherches Vétérinaires (ISRA-LNERV), Dakar-Hann BP 2057, Senegal; (M.C.B.G.); (F.N.); (M.C.); (M.M.L.); (A.G.F.); (B.B.); (M.F.); (M.N.); (A.B.); (M.T.S.); (A.K.); (Y.A.)
| | - Momar Talla Seck
- Institut Sénégalais de Recherches Agricoles, Laboratoire National de l’Elevage et de Recherches Vétérinaires (ISRA-LNERV), Dakar-Hann BP 2057, Senegal; (M.C.B.G.); (F.N.); (M.C.); (M.M.L.); (A.G.F.); (B.B.); (M.F.); (M.N.); (A.B.); (M.T.S.); (A.K.); (Y.A.)
| | - Baba Sall
- Direction des Services Vétérinaires, Dakar 45677, Senegal; (B.S.); (M.L.); (C.F.)
| | - Mbargou Lo
- Direction des Services Vétérinaires, Dakar 45677, Senegal; (B.S.); (M.L.); (C.F.)
| | - Coumba Faye
- Direction des Services Vétérinaires, Dakar 45677, Senegal; (B.S.); (M.L.); (C.F.)
| | - Cécile Squarzoni-Diaw
- ASTRE, Univ Montpellier, CIRAD, INRAE, F-34398 Montpellier, France;
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR ASTRE, F-34398 Montpellier, France
- CIRAD, UMR ASTRE, F-97491 Ste-Clotilde, La Reunion, France
| | - Alioune Ka
- Institut Sénégalais de Recherches Agricoles, Laboratoire National de l’Elevage et de Recherches Vétérinaires (ISRA-LNERV), Dakar-Hann BP 2057, Senegal; (M.C.B.G.); (F.N.); (M.C.); (M.M.L.); (A.G.F.); (B.B.); (M.F.); (M.N.); (A.B.); (M.T.S.); (A.K.); (Y.A.)
- ASTRE, Univ Montpellier, CIRAD, INRAE, F-34398 Montpellier, France;
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR ASTRE, F-34398 Montpellier, France
| | - Yves Amevoin
- Institut Sénégalais de Recherches Agricoles, Laboratoire National de l’Elevage et de Recherches Vétérinaires (ISRA-LNERV), Dakar-Hann BP 2057, Senegal; (M.C.B.G.); (F.N.); (M.C.); (M.M.L.); (A.G.F.); (B.B.); (M.F.); (M.N.); (A.B.); (M.T.S.); (A.K.); (Y.A.)
- ASTRE, Univ Montpellier, CIRAD, INRAE, F-34398 Montpellier, France;
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR ASTRE, F-34398 Montpellier, France
| | - Andrea Apolloni
- Institut Sénégalais de Recherches Agricoles, Laboratoire National de l’Elevage et de Recherches Vétérinaires (ISRA-LNERV), Dakar-Hann BP 2057, Senegal; (M.C.B.G.); (F.N.); (M.C.); (M.M.L.); (A.G.F.); (B.B.); (M.F.); (M.N.); (A.B.); (M.T.S.); (A.K.); (Y.A.)
- ASTRE, Univ Montpellier, CIRAD, INRAE, F-34398 Montpellier, France;
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR ASTRE, F-34398 Montpellier, France
| |
Collapse
|
15
|
Aguilar-Vega C, Bosch J, Fernández-Carrión E, Lucientes J, Sánchez-Vizcaíno JM. Identifying Spanish Areas at More Risk of Monthly BTV Transmission with a Basic Reproduction Number Approach. Viruses 2020; 12:E1158. [PMID: 33066209 PMCID: PMC7602074 DOI: 10.3390/v12101158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 01/24/2023] Open
Abstract
Bluetongue virus (BTV) causes a disease that is endemic in Spain and its two major biological vector species, C. imicola and the Obsoletus complex species, differ greatly in their ecology and distribution. Understanding the seasonality of BTV transmission in risk areas is key to improving surveillance and control programs, as well as to better understand the pathogen transmission networks between wildlife and livestock. Here, monthly risk transmission maps were generated using risk categories based on well-known BTV R0 equations and predicted abundances of the two most relevant vectors in Spain. Previously, Culicoides spp. predicted abundances in mainland Spain and the Balearic Islands were obtained using remote sensing data and random forest machine learning algorithm. Risk transmission maps were externally assessed with the estimated date of infection of BTV-1 and BTV-4 historical outbreaks. Our results highlight the differences in risk transmission during April-October, June-August being the period with higher R0 values. Likewise, a natural barrier has been identified between northern and central-southern areas at risk that may hamper BTV spread between them. Our results can be relevant to implement risk-based interventions for the prevention, control and surveillance of BTV and other diseases shared between livestock and wildlife host populations.
Collapse
Affiliation(s)
- Cecilia Aguilar-Vega
- VISAVET Health Surveillance Centre, Animal Health Department, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (J.B.); (E.F.-C.); (J.M.S.-V.)
| | - Jaime Bosch
- VISAVET Health Surveillance Centre, Animal Health Department, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (J.B.); (E.F.-C.); (J.M.S.-V.)
| | - Eduardo Fernández-Carrión
- VISAVET Health Surveillance Centre, Animal Health Department, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (J.B.); (E.F.-C.); (J.M.S.-V.)
| | - Javier Lucientes
- Department of Animal Pathology (Animal Health), AgriFood Institute of Aragón IA2, Faculty of Veterinary Medicine, University of Zaragoza, 50013 Zaragoza, Spain;
| | - José Manuel Sánchez-Vizcaíno
- VISAVET Health Surveillance Centre, Animal Health Department, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (J.B.); (E.F.-C.); (J.M.S.-V.)
| |
Collapse
|
16
|
Mayo C, McDermott E, Kopanke J, Stenglein M, Lee J, Mathiason C, Carpenter M, Reed K, Perkins TA. Ecological Dynamics Impacting Bluetongue Virus Transmission in North America. Front Vet Sci 2020; 7:186. [PMID: 32426376 PMCID: PMC7212442 DOI: 10.3389/fvets.2020.00186] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
Bluetongue virus (BTV) is an arbovirus transmitted to domestic and wild ruminants by certain species of Culicoides midges. The disease resulting from infection with BTV is economically important and can influence international trade and movement of livestock, the economics of livestock production, and animal welfare. Recent changes in the epidemiology of Culicoides-transmitted viruses, notably the emergence of exotic BTV genotypes in Europe, have demonstrated the devastating economic consequences of BTV epizootics and the complex nature of transmission across host-vector landscapes. Incursions of novel BTV serotypes into historically enzootic countries or regions, including the southeastern United States (US), Israel, Australia, and South America, have also occurred, suggesting diverse pathways for the transmission of these viruses. The abundance of BTV strains and multiple reassortant viruses circulating in Europe and the US in recent years demonstrates considerable genetic diversity of BTV strains and implies a history of reassortment events within the respective regions. While a great deal of emphasis is rightly placed on understanding the epidemiology and emergence of BTV beyond its natural ecosystem, the ecological contexts in which BTV maintains an enzootic cycle may also be of great significance. This review focuses on describing our current knowledge of ecological factors driving BTV transmission in North America. Information presented in this review can help inform future studies that may elucidate factors that are relevant to longstanding and emerging challenges associated with prevention of this disease.
Collapse
Affiliation(s)
- Christie Mayo
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Emily McDermott
- Entomology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Jennifer Kopanke
- Office of the Campus Veterinarian, Washington State University, Spokane, WA, United States
| | - Mark Stenglein
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Justin Lee
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Candace Mathiason
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Molly Carpenter
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Kirsten Reed
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - T. Alex Perkins
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
17
|
Pascall DJ, Nomikou K, Bréard E, Zientara S, Filipe ADS, Hoffmann B, Jacquot M, Singer JB, De Clercq K, Bøtner A, Sailleau C, Viarouge C, Batten C, Puggioni G, Ligios C, Savini G, van Rijn PA, Mertens PPC, Biek R, Palmarini M. "Frozen evolution" of an RNA virus suggests accidental release as a potential cause of arbovirus re-emergence. PLoS Biol 2020; 18:e3000673. [PMID: 32343693 PMCID: PMC7188197 DOI: 10.1371/journal.pbio.3000673] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/24/2020] [Indexed: 12/12/2022] Open
Abstract
The mechanisms underlying virus emergence are rarely well understood, making the appearance of outbreaks largely unpredictable. Bluetongue virus serotype 8 (BTV-8), an arthropod-borne virus of ruminants, emerged in livestock in northern Europe in 2006, spreading to most European countries by 2009 and causing losses of billions of euros. Although the outbreak was successfully controlled through vaccination by early 2010, puzzlingly, a closely related BTV-8 strain re-emerged in France in 2015, triggering a second outbreak that is still ongoing. The origin of this virus and the mechanisms underlying its re-emergence are unknown. Here, we performed phylogenetic analyses of 164 whole BTV-8 genomes sampled throughout the two outbreaks. We demonstrate consistent clock-like virus evolution during both epizootics but found negligible evolutionary change between them. We estimate that the ancestor of the second outbreak dates from the height of the first outbreak in 2008. This implies that the virus had not been replicating for multiple years prior to its re-emergence in 2015. Given the absence of any known natural mechanism that could explain BTV-8 persistence over this long period without replication, we hypothesise that the second outbreak could have been initiated by accidental exposure of livestock to frozen material contaminated with virus from approximately 2008. Our work highlights new targets for pathogen surveillance programmes in livestock and illustrates the power of genomic epidemiology to identify pathways of infectious disease emergence.
Collapse
Affiliation(s)
- David J. Pascall
- Institute of Biodiversity, Animal Health and Comparative Medicine, Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, United Kingdom
| | - Kyriaki Nomikou
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- The School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, United Kingdom
| | - Emmanuel Bréard
- UMR Virologie, INRA, École Nationale Vétérinaire d’Alfort, Laboratoire de Santé Animale d’Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Stephan Zientara
- UMR Virologie, INRA, École Nationale Vétérinaire d’Alfort, Laboratoire de Santé Animale d’Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Ana da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Maude Jacquot
- Spatial Epidemiology Lab (SpELL), University of Brussels, Brussels, Belgium
- INRAE-VetAgro Sup, UMR Epidemiology of Animal and Zoonotic Diseases, Saint Genès-Champanelle, France
| | - Joshua B. Singer
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Kris De Clercq
- Infectious Diseases in Animals, Exotic and Particular Diseases, Sciensano, Brussels, Belgium
| | - Anette Bøtner
- Section for Veterinary Clinical Microbiology, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Copenhagen, Denmark
| | - Corinne Sailleau
- UMR Virologie, INRA, École Nationale Vétérinaire d’Alfort, Laboratoire de Santé Animale d’Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Cyril Viarouge
- UMR Virologie, INRA, École Nationale Vétérinaire d’Alfort, Laboratoire de Santé Animale d’Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France
| | - Carrie Batten
- The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| | - Giantonella Puggioni
- Istituto Zooprofilattico Sperimentale della Sardegna, Via Duca degli Abruzzi, Sassari, Italy
| | - Ciriaco Ligios
- Istituto Zooprofilattico Sperimentale della Sardegna, Via Duca degli Abruzzi, Sassari, Italy
| | - Giovanni Savini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise (IZSAM), Teramo, Italy
| | - Piet A. van Rijn
- Department of Virology, Wageningen Bioveterinary Research (WBVR), Lelystad, the Netherlands
- Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| | - Peter P. C. Mertens
- The School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, United Kingdom
- The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| | - Roman Biek
- Institute of Biodiversity, Animal Health and Comparative Medicine, Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, United Kingdom
| | - Massimo Palmarini
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|
18
|
Golender N, Bumbarov V, Eldar A, Lorusso A, Kenigswald G, Varsano JS, David D, Schainin S, Dagoni I, Gur I, Kaplan A, Gorohov A, Koren O, Oron E, Khinich Y, Sclamovich I, Meir A, Savini G. Bluetongue Serotype 3 in Israel 2013-2018: Clinical Manifestations of the Disease and Molecular Characterization of Israeli Strains. Front Vet Sci 2020; 7:112. [PMID: 32211429 PMCID: PMC7068852 DOI: 10.3389/fvets.2020.00112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 02/13/2020] [Indexed: 11/13/2022] Open
Abstract
In this paper, the results of the diagnostic activities on Bluetongue virus serotype 3 (BTV-3) conducted at Kimron Veterinary Institute (Beit Dagan, Israel) between 2013 and 2018 are reported. Bluetongue virus is the causative agent of bluetongue (BT), a disease of ruminants, mostly transmitted by competent Culicoides species. In Israel, BTV-3 circulation was first detected in 2013 from a sheep showing classical BT clinical signs. It was also evidenced in 2016, and, since then, it has been regularly detected in Israeli livestock. Between 2013 and 2017, BTV-3 outbreaks were limited in sheep flocks located in the southern area only. In 2018, BTV-3 was instead found in the Israeli coastal area being one of the dominant BTV serotypes isolated from symptomatic sheep, cattle and goats. In Israeli sheep, BTV-3 was able to cause BT classical clinical manifestations and fatalities, while in cattle and goats infection ranged from asymptomatic forms to death cases, depending on either general welfare of the herds or on the occurrence of viral and bacterial co-infections. Three different BTV-3 strains were identified in Israel between 2013 and 2018: ISR-2019/13 isolated in 2013, ISR-2153/16 and ISR-2262/2/16 isolated in 2016. Sequencing and phylogenetic analysis of these strains showed more than 99% identity by segment (Seg) 2, 5, 6, 7, and 8 sequences. In contrast, a wide range of diversity among these strains was exhibited in other viral gene segments, implying the occurrence of genome reassortment between these local circulating strains and those originating from Africa. The genome sequences of the BTV-3 isolated in 2017 and 2018 were most closely related to those of the ISR-2153/16 strain suggesting their common ancestor. Comparison of BTV-3 Israeli strains with those recently detected in the Mediterranean region uncovered high percentage identity (98.19–98.28%) only between Seg-2 of all Israeli strains and the BTV-3 Zarzis/TUN2016 strain. A 98.93% identity was also observed between Seg-4 sequences of ISR-2019/13 and the BTV-3 Zarzis/TUN2016 strain. This study demonstrated that BTV-3 has been circulating in the Mediterranean region at least since 2013, but, unlike the other Mediterranean strains, Israeli BTV-3 were able to cause clinical signs also in cattle.
Collapse
Affiliation(s)
- Natalia Golender
- Department of Virology, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Velizar Bumbarov
- Department of Virology, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Avi Eldar
- Department of Virology, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Alessio Lorusso
- OIE Reference Laboratory for Bluetongue, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise (IZSAM), Campo Boario, Teramo, Italy
| | | | | | - Dan David
- Department of Virology, Kimron Veterinary Institute, Bet Dagan, Israel
| | | | - Ilan Dagoni
- Hachaklait Veterinary Services, Caesarea, Israel
| | - Iosef Gur
- Hachaklait Veterinary Services, Caesarea, Israel
| | - Alon Kaplan
- Hachaklait Veterinary Services, Caesarea, Israel
| | - Anna Gorohov
- Department of Virology, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Ori Koren
- Hachaklait Veterinary Services, Caesarea, Israel
| | - Eldad Oron
- Hachaklait Veterinary Services, Caesarea, Israel
| | - Yevgeny Khinich
- Department of Virology, Kimron Veterinary Institute, Bet Dagan, Israel
| | | | - Abraham Meir
- Hachaklait Veterinary Services, Caesarea, Israel
| | - Giovanni Savini
- OIE Reference Laboratory for Bluetongue, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise (IZSAM), Campo Boario, Teramo, Italy
| |
Collapse
|
19
|
van Rijn PA. Prospects of Next-Generation Vaccines for Bluetongue. Front Vet Sci 2019; 6:407. [PMID: 31824966 PMCID: PMC6881303 DOI: 10.3389/fvets.2019.00407] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/01/2019] [Indexed: 01/16/2023] Open
Abstract
Bluetongue (BT) is a haemorrhagic disease of wild and domestic ruminants with a huge economic worldwide impact on livestock. The disease is caused by BT-virus transmitted by Culicoides biting midges and disease control without vaccination is hardly possible. Vaccination is the most feasible and cost-effective way to minimize economic losses. Marketed BT vaccines are successfully used in different parts of the world. Inactivated BT vaccines are efficacious and safe but relatively expensive, whereas live-attenuated vaccines are efficacious and cheap but are unsafe because of under-attenuation, onward spread, reversion to virulence, and reassortment events. Both manufactured BT vaccines do not enable differentiating infected from vaccinated animals (DIVA) and protection is limited to the respective serotype. The ideal BT vaccine is a licensed, affordable, completely safe DIVA vaccine, that induces quick, lifelong, broad protection in all susceptible ruminant species. Promising vaccine candidates show improvement for one or more of these main vaccine standards. BTV protein vaccines and viral vector vaccines have DIVA potential depending on the selected BTV antigens, but are less effective and likely more costly per protected animal than current vaccines. Several vaccine platforms based on replicating BTV are applied for many serotypes by exchange of serotype dominant outer shell proteins. These platforms based on one BTV backbone result in attenuation or abortive virus replication and prevent disease by and spread of vaccine virus as well as reversion to virulence. These replicating BT vaccines induce humoral and T-cell mediated immune responses to all viral proteins except to one, which could enable DIVA tests. Most of these replicating vaccines can be produced similarly as currently marketed BT vaccines. All replicating vaccine platforms developed by reverse genetics are classified as genetic modified organisms. This implies extensive and expensive safety trails in target ruminant species, and acceptance by the community could be hindered. Nonetheless, several experimental BT vaccines show very promising improvements and could compete with marketed vaccines regarding their vaccine profile, but none of these next generation BT vaccines have been licensed yet.
Collapse
Affiliation(s)
- Piet A van Rijn
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, Netherlands.,Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa
| |
Collapse
|
20
|
van Gennip RGP, Drolet BS, Rozo Lopez P, Roost AJC, Boonstra J, van Rijn PA. Vector competence is strongly affected by a small deletion or point mutations in bluetongue virus. Parasit Vectors 2019; 12:470. [PMID: 31604476 PMCID: PMC6790033 DOI: 10.1186/s13071-019-3722-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/16/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Transmission of vector-borne virus by insects is a complex mechanism consisting of many different processes; viremia in the host, uptake, infection and dissemination in the vector, and delivery of virus during blood-feeding leading to infection of the susceptible host. Bluetongue virus (BTV) is the prototype vector-borne orbivirus (family Reoviridae). BTV serotypes 1-24 (typical BTVs) are transmitted by competent biting Culicoides midges and replicate in mammalian (BSR) and midge (KC) cells. Previously, we showed that genome segment 10 (S10) encoding NS3/NS3a protein is required for virus propagation in midges. BTV serotypes 25-27 (atypical BTVs) do not replicate in KC cells. Several distinct BTV26 genome segments cause this so-called 'differential virus replication' in vitro. METHODS Virus strains were generated using reverse genetics and their growth was examined in vitro. The midge feeding model has been developed to study infection, replication and disseminations of virus in vivo. A laboratory colony of C. sonorensis, a known competent BTV vector, was fed or injected with BTV variants and propagation in the midge was examined using PCR testing. Crossing of the midgut infection barrier was examined by separate testing of midge heads and bodies. RESULTS A 100 nl blood meal containing ±105.3 TCID50/ml of BTV11 which corresponds to ±20 TCID50 infected 50% of fully engorged midges, and is named one Midge Alimentary Infective Dose (MAID50). BTV11 with a small in-frame deletion in S10 infected blood-fed midge midguts but virus release from the midgut into the haemolymph was blocked. BTV11 with S1[VP1] of BTV26 could be adapted to virus growth in KC cells, and contained mutations subdivided into 'corrections' of the chimeric genome constellation and mutations associated with adaptation to KC cells. In particular one amino acid mutation in outer shell protein VP2 overcomes differential virus replication in vitro and in vivo. CONCLUSION Small changes in NS3/NS3a or in the outer shell protein VP2 strongly affect virus propagation in midges and thus vector competence. Therefore, spread of disease by competent Culicoides midges can strongly differ for very closely related viruses.
Collapse
Affiliation(s)
- René G P van Gennip
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Barbara S Drolet
- Arthropod-Borne Animal Diseases Research Unit, Centre for Grain and Animal Health Research, USDA-ARS, Manhattan, KS, USA
| | - Paula Rozo Lopez
- Arthropod-Borne Animal Diseases Research Unit, Centre for Grain and Animal Health Research, USDA-ARS, Manhattan, KS, USA.,Kansas State University, Manhattan, KS, USA
| | - Ashley J C Roost
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Jan Boonstra
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Piet A van Rijn
- Department of Virology, Wageningen Bioveterinary Research, Lelystad, The Netherlands. .,Department of Biochemistry, Centre for Human Metabolomics, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
21
|
Bumbarov V, Golender N, Jenckel M, Wernike K, Beer M, Khinich E, Zalesky O, Erster O. Characterization of bluetongue virus serotype 28. Transbound Emerg Dis 2019; 67:171-182. [PMID: 31469936 DOI: 10.1111/tbed.13338] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 11/29/2022]
Abstract
Bluetongue virus (Reoviridae; Orbivirus, BTV), which is usually transmitted by biting midges, affects wild and domestic ruminants worldwide, thereby causing an economically important disease. Recently, a putative new BTV strain was isolated from contaminated vaccine batches. In this study, we investigated the genomic and clinical characteristics of this isolate, provisionally designated BTV-28. Phylogenetic analysis of BTV-28 segment 2 (Seg-2) showed that it is related to Seg-2 from BTV serotypes 4, 10, 11, 17, 20 and 24, sharing 64%-66% identity in nucleotide sequences (nt) and 59%-62% in amino acid (aa) sequences of BTV VP2. BTV-28 Seg-6 is related to the newly reported XJ1407 BTV isolate, sharing 76.70% nt and 90.87% aa sequence identity. Seg-5 was most closely related to a South African BTV-4 strain, and all other segments showed close similarity to BTV-26. Experimental infection by injection of 6-month-old ewes caused clinical signs in all injected animals, lasting from 2 to 3 days to several weeks post-infection, including high body temperature, conjunctivitis, nasal discharge and rhinitis, facial oedema, oral hyperaemia, coronitis, cough, depression and tongue cyanosis. Naïve control animals, placed together with the infected sheep, displayed clinical signs and were positive for viral RNA, but their acute disease phase was shorter than that of BTV-injected ewes. Control animals that were kept in a separated pen did not display any clinical signs and were negative for viral RNA presence throughout the experiment. Seroconversion was observed in the injected and in one of the two contact-infected animals. These findings demonstrate that BTV-28 infection of sheep can result in clinical manifestation, and the clinical signs detected in the contact animals suggest that it might be directly transmitted between the mammalian hosts.
Collapse
Affiliation(s)
- Velizar Bumbarov
- Division of Virology, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Natalia Golender
- Division of Virology, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Maria Jenckel
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Evgeny Khinich
- Division of Virology, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Olga Zalesky
- Division of Virology, Kimron Veterinary Institute, Bet Dagan, Israel
| | - Oran Erster
- Division of Virology, Kimron Veterinary Institute, Bet Dagan, Israel
| |
Collapse
|
22
|
Bluetongue Virus in France: An Illustration of the European and Mediterranean Context since the 2000s. Viruses 2019; 11:v11070672. [PMID: 31340459 PMCID: PMC6669443 DOI: 10.3390/v11070672] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/05/2019] [Accepted: 07/19/2019] [Indexed: 01/24/2023] Open
Abstract
Bluetongue (BT) is a non-contagious animal disease transmitted by midges of the Culicoides genus. The etiological agent is the BT virus (BTV) that induces a variety of clinical signs in wild or domestic ruminants. BT is included in the notifiable diseases list of the World Organization for Animal Health (OIE) due to its health impact on domestic ruminants. A total of 27 BTV serotypes have been described and additional serotypes have recently been identified. Since the 2000s, the distribution of BTV has changed in Europe and in the Mediterranean Basin, with continuous BTV incursions involving various BTV serotypes and strains. These BTV strains, depending on their origin, have emerged and spread through various routes in the Mediterranean Basin and/or in Europe. Consequently, control measures have been put in place in France to eradicate the virus or circumscribe its spread. These measures mainly consist of assessing virus movements and the vaccination of domestic ruminants. Many vaccination campaigns were first carried out in Europe using attenuated vaccines and, in a second period, using exclusively inactivated vaccines. This review focuses on the history of the various BTV strain incursions in France since the 2000s, describing strain characteristics, their origins, and the different routes of spread in Europe and/or in the Mediterranean Basin. The control measures implemented to address this disease are also discussed. Finally, we explain the circumstances leading to the change in the BTV status of France from BTV-free in 2000 to an enzootic status since 2018.
Collapse
|
23
|
Courtejoie N, Bournez L, Zanella G, Durand B. Quantifying bluetongue vertical transmission in French cattle from surveillance data. Vet Res 2019; 50:34. [PMID: 31088555 PMCID: PMC6518818 DOI: 10.1186/s13567-019-0651-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/03/2019] [Indexed: 12/02/2022] Open
Abstract
Bluetongue is a vector-borne disease of ruminants with economic consequences for the livestock industry. Bluetongue virus serotype 8 (BTV-8) caused a massive outbreak in Europe in 2006/2009 and re-emerged in France in 2015. Given the unprecedented epidemiological features of this serotype in cattle, the importance of secondary routes of transmission was reconsidered and transplacental transmission of BTV-8 was demonstrated in naturally and experimentally infected cattle. Here we used surveillance data from the on-going outbreak to quantify BTV-8 vertical transmission in French cattle. We used RT-PCR pre-export tests collected from June to December 2016 on the French territory and developed a catalytic model to disentangle vertical and vector-borne transmission. A series of in silico experiments validated the ability of our framework to quantify vertical transmission provided sufficient prevalence levels. By applying our model to an area selected accordingly, we estimated a probability of vertical transmission of 56% (55.8%, 95% credible interval 41.7–70.6) in unvaccinated heifers infected late in gestation. The influence of this high probability of vertical transmission on BTV-8 spread and persistence should be further investigated.
Collapse
Affiliation(s)
- Noémie Courtejoie
- Epidemiology Unit, Laboratory for Animal Health, ANSES (French Agency for Food, Environmental and Occupational Health and Safety), Paris-Est University, 14 Rue Pierre et Marie Curie, 94700, Maisons-Alfort, France.,Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, UMR2000, CNRS, 75015, Paris, France
| | - Laure Bournez
- Nancy Laboratory for Rabies and Wildlife, ANSES (French Agency for Food, Environmental and Occupational Health and Safety), CS 40009, 54220, Malzéville, France
| | - Gina Zanella
- Epidemiology Unit, Laboratory for Animal Health, ANSES (French Agency for Food, Environmental and Occupational Health and Safety), Paris-Est University, 14 Rue Pierre et Marie Curie, 94700, Maisons-Alfort, France
| | - Benoît Durand
- Epidemiology Unit, Laboratory for Animal Health, ANSES (French Agency for Food, Environmental and Occupational Health and Safety), Paris-Est University, 14 Rue Pierre et Marie Curie, 94700, Maisons-Alfort, France.
| |
Collapse
|
24
|
Bréard E, Schulz C, Sailleau C, Bernelin-Cottet C, Viarouge C, Vitour D, Guillaume B, Caignard G, Gorlier A, Attoui H, Gallois M, Hoffmann B, Zientara S, Beer M. Bluetongue virus serotype 27: Experimental infection of goats, sheep and cattle with three BTV-27 variants reveal atypical characteristics and likely direct contact transmission BTV-27 between goats. Transbound Emerg Dis 2017; 65:e251-e263. [PMID: 29243405 DOI: 10.1111/tbed.12780] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Indexed: 11/30/2022]
Abstract
Bluetongue virus (BTV) hitherto consisted of 26 recognized serotypes, of which all except BTV-26 are primarily transmitted by certain species of Culicoides biting midges. Three variants of an additional 27th bluetongue virus serotype (BTV-27v01-v03) were recently detected in asymptomatic goats in Corsica, France, 2014-2015. Molecular characterization revealed genetic differences between the three variants. Therefore, in vivo characteristics were investigated by experimental infection of a total of 15 goats, 11 sheep and 4 cattle with any one of the three variants in separated animal trials. In goat trials, BTV-naïve animals of the same species were kept in a facility where direct contact was unhindered. Of the 15 inoculated goats, 13 and 14 animals were found positive for BTV-RNA and antibodies (Ab), respectively, until the end of the experiments. Surprisingly, BTV-Ab levels as measured with ELISA and neutralization test (SNT) were remarkably low in all seropositive goats. Virus isolation from whole-blood was possible at the peak of viremia until 49 dpi. Moreover, detection of BTV-27v02-RNA and Ab in one contact goat indicated that-similar to BTV-26-at least one of three BTV-27 variants may be transmitted by contact between goats. In the field, BTV-27 RNA can be detected up to 6 months in the whole-blood of BTV-27-infected Corsican goats. In contrast, BTV RNA was not detected in the blood of cattle or sheep. In addition, BTV-27 Abs were not detected in cattle and only a transient increase in Ab levels was observed in some sheep. None of the 30 animals showed obvious BT-like clinical signs. In summary, the phenotypes observed for BTV-27v01-v03 phenotypes correspond to a mixture of characteristics known for BTV-25 and 26.
Collapse
Affiliation(s)
- E Bréard
- Laboratoire de Santé Animale d'Alfort, Université Paris Est, ANSES, ENVA, INRA, UMR 1161 VIROLOGIE, Maisons-Alfort, France
| | - C Schulz
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - C Sailleau
- Laboratoire de Santé Animale d'Alfort, Université Paris Est, ANSES, ENVA, INRA, UMR 1161 VIROLOGIE, Maisons-Alfort, France
| | - C Bernelin-Cottet
- Virologie et Immunologie Moléculaires, UR892 INRA, Domaine de Vilvert, Jouy-en-Josas, France
| | - C Viarouge
- Laboratoire de Santé Animale d'Alfort, Université Paris Est, ANSES, ENVA, INRA, UMR 1161 VIROLOGIE, Maisons-Alfort, France
| | - D Vitour
- Laboratoire de Santé Animale d'Alfort, Université Paris Est, ANSES, ENVA, INRA, UMR 1161 VIROLOGIE, Maisons-Alfort, France
| | - B Guillaume
- Ecole Nationale Veterinaire d'Alfort, Unite de Pathologie du Betail, Universite Paris-Est, Maisons-Alfort, France
| | - G Caignard
- Laboratoire de Santé Animale d'Alfort, Université Paris Est, ANSES, ENVA, INRA, UMR 1161 VIROLOGIE, Maisons-Alfort, France
| | - A Gorlier
- Laboratoire de Santé Animale d'Alfort, Université Paris Est, ANSES, ENVA, INRA, UMR 1161 VIROLOGIE, Maisons-Alfort, France
| | - H Attoui
- Laboratoire de Santé Animale d'Alfort, Université Paris Est, ANSES, ENVA, INRA, UMR 1161 VIROLOGIE, Maisons-Alfort, France
| | - M Gallois
- Regional Federation of Corsican Animal Health Groups, FRGDSB20, Ajaccio, France
| | - B Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - S Zientara
- Laboratoire de Santé Animale d'Alfort, Université Paris Est, ANSES, ENVA, INRA, UMR 1161 VIROLOGIE, Maisons-Alfort, France
| | - M Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
25
|
More S, Bicout D, Bøtner A, Butterworth A, Depner K, Edwards S, Garin-Bastuji B, Good M, Gortázar Schmidt C, Michel V, Miranda MA, Nielsen SS, Raj M, Sihvonen L, Spoolder H, Stegeman JA, Thulke HH, Velarde A, Willeberg P, Winckler C, Mertens P, Savini G, Zientara S, Broglia A, Baldinelli F, Gogin A, Kohnle L, Calistri P. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): bluetongue. EFSA J 2017; 15:e04957. [PMID: 32625623 PMCID: PMC7010010 DOI: 10.2903/j.efsa.2017.4957] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
A specific concept of strain was developed in order to classify the BTV serotypes ever reported in Europe based on their properties of animal health impact: the genotype, morbidity, mortality, speed of spread, period and geographical area of occurrence were considered as classification parameters. According to this methodology the strain groups identified were (i) the BTV strains belonging to serotypes BTV-1-24, (ii) some strains of serotypes BTV-16 and (iii) small ruminant-adapted strains belonging to serotypes BTV-25, -27, -30. Those strain groups were assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of Article 7, Article 5 on the eligibility of bluetongue to be listed, Article 9 for the categorisation according to disease prevention and control rules as in Annex IV and Article 8 on the list of animal species related to bluetongue. The assessment has been performed following a methodology composed of information collection, expert judgement at individual and collective level. The output is composed of the categorical answer, and for the questions where no consensus was reached, the different supporting views are reported. The strain group BTV (1-24) can be considered eligible to be listed for Union intervention as laid down in Article 5(3) of the AHL, while the strain group BTV-25-30 and BTV-16 cannot. The strain group BTV-1-24 meets the criteria as in Sections 2 and 5 of Annex IV of the AHL, for the application of the disease prevention and control rules referred to in points (b) and (e) of Article 9(1) of the AHL. The animal species that can be considered to be listed for BTV-1-24 according to Article 8(3) are several species of Bovidae, Cervidae and Camelidae as susceptible species; domestic cattle, sheep and red deer as reservoir hosts, midges insect of genus Culicoides spp. as vector species.
Collapse
|
26
|
Abstract
The performance of different bluetongue control measures related to both vaccination and protection from bluetongue virus (BTV) vectors was assessed. By means of a mathematical model, it was concluded that when vaccination is applied on 95% of animals even for 3 years, bluetongue cannot be eradicated and is able to re‐emerge. Only after 5 years of vaccination, the infection may be close to the eradication levels. In the absence of vaccination, the disease can persist for several years, reaching an endemic condition with low level of prevalence of infection. Among the mechanisms for bluetongue persistence, the persistence in the wildlife, the transplacental transmission in the host, the duration of viraemia and the possible vertical transmission in vectors were assessed. The criteria of the current surveillance scheme in place in the EU for demonstration of the virus absence need revision, because it was highlighted that under the current surveillance policy bluetongue circulation might occur undetected. For the safe movement of animals, newborn ruminants from vaccinated mothers with neutralising antibodies can be considered protected against infection, although a protective titre threshold cannot be identified. The presence of colostral antibodies interferes with the vaccine immunisation in the newborn for more than 3 months after birth, whereas the minimum time after vaccination of animal to be considered immune can be up to 48 days. The knowledge about vectors ecology, mechanisms of over‐wintering and criteria for the seasonally vector‐free period was updated. Some Culicoides species are active throughout the year and an absolute vector‐free period may not exist at least in some areas in Europe. To date, there is no evidence that the use of insecticides and repellents reduce the transmission of BTV in the field, although this may reduce host/vector contact. By only using pour‐on insecticides, protection of animals is lower than the one provided by vector‐proof establishments. This publication is linked to the following EFSA Supporting Publications article: http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2017.EN-1182/full, http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2017.EN-1171/full
Collapse
|
27
|
Abstract
Bluetongue virus (BTV) is the type species of genus Orbivirus within family Reoviridae. Bluetongue virus is transmitted between its ruminant hosts by the bite of Culicoides spp. midges. Severe BT cases are characterized by symptoms including hemorrhagic fever, particularly in sheep, loss of productivity, and death. To date, 27 BTV serotypes have been documented. These include novel isolates of atypical BTV, which have been almost fully characterized using deep sequencing technologies and do not rely on Culicoides vectors for their transmission among hosts. Due to its high economic impact, BT is an Office International des Epizooties (OIE) listed disease that is strictly controlled in international commercial exchanges. During the 20th century, BTV has been endemic in subtropical regions. In the last 15 years, novel strains of nine "typical" BTV serotypes (1, 2, 4, 6, 8, 9, 11, 14, and 16) invaded Europe, some of which caused disease in naive sheep and unexpectedly in bovine herds (particularly serotype 8). Over the past few years, three novel "atypical" serotypes (25-27) were characterized during sequencing studies of animal samples from Switzerland, Kuwait, and France, respectively. Classical serotype-specific inactivated vaccines, although expensive, were very successful in controlling outbreaks as shown with the northern European BTV-8 outbreak which started in the summer of 2006. Technological jumps in deep sequencing methodologies made rapid full characterizations of BTV genome from isolates/tissues feasible. Next-generation sequencing (NGS) approaches are powerful tools to study the variability of BTV genomes on a fine scale. This paper provides information on how NGS impacted our knowledge of the BTV genome.
Collapse
|
28
|
Drolet BS, van Rijn P, Howerth EW, Beer M, Mertens PP. A Review of Knowledge Gaps and Tools for Orbivirus Research. Vector Borne Zoonotic Dis 2016; 15:339-47. [PMID: 26086555 DOI: 10.1089/vbz.2014.1701] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Although recognized as causing emerging and re-emerging disease outbreaks worldwide since the late 1800 s, there has been growing interest in the United States and Europe in recent years in orbiviruses, their insect vectors, and the diseases they cause in domestic livestock and wildlife. This is due, in part, to the emergence of bluetongue (BT) in northern Europe in 2006-2007 resulting in a devastating outbreak, as well as severe BT outbreaks in sheep and epizootic hemorrhagic disease (EHD) outbreaks in deer and cattle in the United States. Of notable concern is the isolation of as many as 10 new BT virus (BTV) serotypes in the United States since 1999 and their associated unknowns, such as route of introduction, virulence to mammals, and indigenous competent vectors. This review, based on a gap analysis workshop composed of international experts on orbiviruses conducted in 2013, gives a global perspective of current basic virological understanding of orbiviruses, with particular attention to BTV and the closely related epizootic hemorrhagic disease virus (EHDV), and identifies a multitude of basic virology research gaps, critical for predicting and preventing outbreaks.
Collapse
Affiliation(s)
- Barbara S Drolet
- 1 US Department of Agriculture, Agricultural Research Service, Arthropod-Borne Animal Diseases Research Unit , Manhattan, Kansas
| | - Piet van Rijn
- 2 Department of Virology, Central Veterinary Institute of Wageningen University (CVI), The Netherlands; Department of Biochemistry, Centre for Human Metabonomics, North-West University , South Africa
| | - Elizabeth W Howerth
- 3 Department of Pathology, College of Veterinary Medicine, University of Georgia , Athens, Georgia
| | - Martin Beer
- 4 Institute of Diagnostic Virology, Friedrich-Loeffler-Institut , Insel Riems, Germany
| | - Peter P Mertens
- 5 Vector-Borne Diseases Programme, The Pirbright Institute , Pirbright, Woking, United Kingdom
| |
Collapse
|
29
|
Ruder MG, Lysyk TJ, Stallknecht DE, Foil LD, Johnson DJ, Chase CC, Dargatz DA, Gibbs EPJ. Transmission and Epidemiology of Bluetongue and Epizootic Hemorrhagic Disease in North America: Current Perspectives, Research Gaps, and Future Directions. Vector Borne Zoonotic Dis 2016; 15:348-63. [PMID: 26086556 DOI: 10.1089/vbz.2014.1703] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) are arthropod-transmitted viruses in the genus Orbivirus of the family Reoviridae. These viruses infect a variety of domestic and wild ruminant hosts, although the susceptibility to clinical disease associated with BTV or EHDV infection varies greatly among host species, as well as between individuals of the same species. Since their initial detection in North America during the 1950s, these viruses have circulated in endemic and epidemic patterns, with occasional incursions to more northern latitudes. In recent years, changes in the pattern of BTV and EHDV infection and disease have forced the scientific community to revisit some fundamental areas related to the epidemiology of these diseases, specifically in relation to virus-vector-host interactions and environmental factors that have potentially enabled the observed changes. The aim of this review is to identify research and surveillance gaps that obscure our understanding of BT and EHD in North America.
Collapse
Affiliation(s)
- Mark G Ruder
- 1 Arthropod-Borne Animal Diseases Research Unit, Agricultural Research Service , United States Department of Agriculture, Manhattan, Kansas
| | - Timothy J Lysyk
- 2 Research Centre , Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada
| | - David E Stallknecht
- 3 Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia , Athens, Georgia
| | - Lane D Foil
- 4 Bob Jones Wildlife Research Institute, Louisiana State University Agcenter , Idlewild, Louisiana
| | - Donna J Johnson
- 5 National Veterinary Services Laboratories, Science, Technologies and Analysis Services (STAS), Veterinary Services, Animal and Plant Health Inspection Service , United States Department of Agriculture, Ames, Iowa
| | - Christopher C Chase
- 6 Department of Veterinary and Biomedical Sciences, South Dakota State University , Brookings, South Dakota
| | - David A Dargatz
- 7 Center for Epidemiology and Animal Health , STAS, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado
| | - E Paul J Gibbs
- 8 Department of Infectious Diseases and Pathology, College of Veterinary Medicine, University of Florida , Gainesville, Florida
| |
Collapse
|
30
|
Maan S, Maan NS, Batra K, Kumar A, Gupta A, Rao PP, Hemadri D, Reddy YN, Guimera M, Belaganahalli MN, Mertens PPC. Reverse transcription loop-mediated isothermal amplification assays for rapid identification of eastern and western strains of bluetongue virus in India. J Virol Methods 2016; 234:65-74. [PMID: 27054888 DOI: 10.1016/j.jviromet.2016.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 03/18/2016] [Accepted: 04/01/2016] [Indexed: 12/30/2022]
Abstract
Bluetongue virus (BTV) infects all ruminants, including cattle, goats and camelids, causing bluetongue disease (BT) that is often severe in naïve deer and sheep. Reverse-transcription-loop-mediated-isothermal-amplification (RT-LAMP) assays were developed to detect eastern or western topotype of BTV strains circulating in India. Each assay uses four primers recognizing six distinct sequences of BTV genome-segment 1 (Seg-1). The eastern (e)RT-LAMP and western (w)RT-LAMP assay detected BTV RNA in all positive isolates that were tested (n=52, including Indian BTV-1, -2, -3, -5, -9, -10, -16, -21 -23, and -24 strains) with high specificity and efficiency. The analytical sensitivity of the RT-LAMP assays is comparable to real-time RT-PCR, but higher than conventional RT-PCR. The accelerated eRT-LAMP and wRT-LAMP assays generated detectable levels of amplified DNA, down to 0.216 fg of BTV RNA template or 108 fg of BTV RNA template within 60-90min respectively. The assays gave negative results with RNA from foot-and-mouth-disease virus (FMDV), peste des petits ruminants virus (PPRV), or DNA from Capripox viruses and Orf virus (n=10), all of which can cause clinical signs similar to BT. Both RT-LAMP assays did not show any cross-reaction among themselves. The assays are rapid, easy to perform, could be adapted as a 'penside' test making them suitable for 'front-line' diagnosis, helping to identify and contain field outbreaks of BTV.
Collapse
Affiliation(s)
- S Maan
- Department of Animal Biotechnology, College of Veterinary Sciences, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, India.
| | - N S Maan
- Department of Animal Biotechnology, College of Veterinary Sciences, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, India; Resource Faculty, Department of Animal Biotechnology, College of Veterinary Sciences, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - K Batra
- Department of Animal Biotechnology, College of Veterinary Sciences, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - A Kumar
- Department of Animal Biotechnology, College of Veterinary Sciences, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | - A Gupta
- Department of Animal Biotechnology, College of Veterinary Sciences, LLR University of Veterinary and Animal Sciences, Hisar, Haryana, India
| | | | - Divakar Hemadri
- National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Hebbal, Bengaluru 560024 K.A, India
| | - Yella Narasimha Reddy
- College of Veterinary Science, Acharya N.G. Ranga Agricultural University, Rajendra Nagar, Hyderabad 500 030, T.S, India
| | - M Guimera
- The Vector-Borne Viral Diseases Programme, The Pirbright Institute, Pirbright, Woking GU24 0NF Surrey, United Kingdom
| | - M N Belaganahalli
- The Vector-Borne Viral Diseases Programme, The Pirbright Institute, Pirbright, Woking GU24 0NF Surrey, United Kingdom
| | - P P C Mertens
- The Vector-Borne Viral Diseases Programme, The Pirbright Institute, Pirbright, Woking GU24 0NF Surrey, United Kingdom
| |
Collapse
|
31
|
Innocuity of a commercial live attenuated vaccine for epizootic hemorrhagic disease virus serotype 2 in late-term pregnant cows. Vaccine 2016; 34:1430-5. [PMID: 26876438 DOI: 10.1016/j.vaccine.2016.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 11/21/2022]
Abstract
Epizootic hemorrhagic disease (EHD) is an arthropod-borne infectious viral disease sustained by the epizootic hemorrhagic disease virus (EHDV). The only commercially available and currently used vaccines are manufactured for EHDV-2 in Japan, either live or inactivated vaccines. In this study we tested the innocuity for fetuses of the live attenuated EHDV-2 vaccine in five late-term pregnant cows. Whole blood and serum samples were collected from dams and screened for the presence of EHDV-2 RNA, infectious virus and antibodies. After calving, whole blood and serum samples collected from calves, before and after colostrum intake, were also tested for antibodies and for virus detection. In dams, neither fever nor clinical signs were observed. All of them seroconverted and a strong humoral response was detected throughout the sampling period. All blood samples tested negative for EHDV-2 except for one sample collected from a dam 11 days post-vaccination which tested positive at virus isolation at the third cell passage following two rounds of blind passages. Although they had free access to colostrum, calves tested serologically negative for EHDV-2 during the entire course of the experiment. Overall, the tested live attenuated vaccine can be safely administered to late-term pregnant cows as it was not demonstrated to cross the placental barrier. The safety of the live-attenuated vaccine is further confirmed by the emergence of Ibaraki virus in 2013 in Japan which is apparently not related to the spread of the vaccine strain currently used in Japan.
Collapse
|
32
|
Zientara S, Ponsart C. Viral emergence and consequences for reproductive performance in ruminants: two recent examples (bluetongue and Schmallenberg viruses). Reprod Fertil Dev 2015; 27:63-71. [PMID: 25472045 DOI: 10.1071/rd14367] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Viruses can emerge unexpectedly in different regions of the world and may have negative effects on reproductive performance. This paper describes the consequences for reproductive performance that have been reported after the introduction to Europe of two emerging viruses, namely the bluetongue (BTV) and Schmallenberg (SBV) viruses. Following the extensive spread of BTV in northern Europe, large numbers of pregnant cows were infected with BTV serotype 8 (BTV-8) during the breeding season of 2007. Initial reports of some cases of abortion and hydranencephaly in cattle in late 2007 were followed by quite exhaustive investigations in the field that showed that 10%-35% of healthy calves were infected with BTV-8 before birth. Transplacental transmission and fetal abnormalities in cattle and sheep had been previously observed only with strains of the virus that were propagated in embryonated eggs and/or cell culture, such as vaccine strains or vaccine candidate strains. After the unexpected emergence of BTV-8 in northern Europe in 2006, another arbovirus, namely SBV, emerged in Europe in 2011, causing a new economically important disease in ruminants. This new virus, belonging to the Orthobunyavirus genus in the Bunyaviridae family, was first detected in Germany, in The Netherlands and in Belgium in 2011 and soon after in the UK, France, Italy, Luxembourg, Spain, Denmark and Switzerland. Adult animals show no or only mild clinical symptoms, whereas infection during a critical period of gestation can lead to abortion, stillbirth or the birth of severely malformed offspring. The impact of the disease is usually greater in sheep than in cattle. The consequences of SBV infection in domestic ruminants and more precisely the secondary effects on off-springs will be described.
Collapse
Affiliation(s)
- Stéphan Zientara
- UPE, ANSES, INRA, ENVA, UMR 1161 ANSES/INRA/ENVA, Laboratoire de santé animale d'Alfort, 23 Avenue du Général de gaulle, 94703 Maisons-Alfort, France
| | - Claire Ponsart
- ANSES, Unité des zoonoses bactériennes, Laboratoire de santé animale d'Alfort, 23 Avenue du Général de gaulle, 94703 Maisons-Alfort, France
| |
Collapse
|
33
|
Ribeiro R, Wilson AJ, Nunes T, Ramilo DW, Amador R, Madeira S, Baptista FM, Harrup LE, Lucientes J, Boinas F. Spatial and temporal distribution of Culicoides species in mainland Portugal (2005-2010). Results of the Portuguese Entomological Surveillance Programme. PLoS One 2015; 10:e0124019. [PMID: 25906151 PMCID: PMC4407895 DOI: 10.1371/journal.pone.0124019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 03/09/2015] [Indexed: 11/18/2022] Open
Abstract
Bluetongue virus (BTV) is transmitted by Culicoides biting midges and causes an infectious, non-contagious disease of ruminants. It has been rapidly emerging in southern Europe since 1998. In mainland Portugal, strains of BTV belonging to three serotypes have been detected: BTV-10 (1956-1960), BTV-4 (2004-2006 and 2013) and BTV-1 (2007-2012). This paper describes the design, implementation and results of the Entomological Surveillance Programme covering mainland Portugal, between 2005 and 2010, including 5,650 caches. Culicoides imicola Kieffer was mostly found in central and southern regions of Portugal, although it was sporadically detected in northern latitudes. Its peak activity occurred in the autumn and it was active during the winter months in limited areas of the country. Obsoletus group was present at the highest densities in the north although they were found throughout the country in substantial numbers. Culicoides activity occurred all year round but peaked in the spring. A generalized linear mixed model was developed for the analysis of the environmental factors associated with activity of the species of Culicoides suspected vectors of BTV in the country. For C. imicola Kieffer, the most important variables were month, diurnal temperature range (DTR), the number of frost days (FRS) and median monthly temperature (TMP). For the Obsoletus group, the most important factors were month, diurnal temperature range (DTR), and linear and quadratic terms for median monthly temperature (TMP). The results reported can improve our understanding of climatic factors in Culicoides activity influencing their distribution and seasonal pattern.
Collapse
Affiliation(s)
- Rita Ribeiro
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Anthony J. Wilson
- Integrative Entomology Group, The Pirbright Institute, Pirbright, Woking, Surrey, United Kingdom
| | - Telmo Nunes
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - David W. Ramilo
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Rita Amador
- Direção-Geral de Alimentação e Veterinária, Food and Veterinary Central Services, Campo Grande, Lisbon, Portugal
| | - Sara Madeira
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Filipa M. Baptista
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Lara E. Harrup
- Entomology Group, Vector-borne Viral Diseases Programme, The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey, United Kingdom
| | - Javier Lucientes
- Parasitology and Parasitic Diseases, Department of Animal Pathology (Animal Health), Veterinary Faculty, University of Zaragoza, Zaragoza, Spain
| | - Fernando Boinas
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
- * E-mail:
| |
Collapse
|
34
|
Breard E, Belbis G, Viarouge C, Nomikou K, Haegeman A, De Clercq K, Hudelet P, Hamers C, Moreau F, Lilin T, Durand B, Mertens P, Vitour D, Sailleau C, Zientara S. Evaluation of adaptive immune responses and heterologous protection induced by inactivated bluetongue virus vaccines. Vaccine 2014; 33:512-8. [PMID: 25500308 DOI: 10.1016/j.vaccine.2014.11.053] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 11/20/2014] [Accepted: 11/28/2014] [Indexed: 11/18/2022]
Abstract
Eradication of bluetongue virus is possible, as has been shown in several European countries. New serotypes have emerged, however, for which there are no specific commercial vaccines. This study addressed whether heterologous vaccines would help protect against 2 serotypes. Thirty-seven sheep were randomly allocated to 7 groups of 5 or 6 animals. Four groups were vaccinated with commercial vaccines against BTV strains 2, 4, and 9. A fifth positive control group was given a vaccine against BTV-8. The other 2 groups were unvaccinated controls. Sheep were then challenged by subcutaneous injection of either BTV-16 (2 groups) or BTV-8 (5 groups). Taken together, 24/25 sheep from the 4 experimental groups developed detectable antibodies against the vaccinated viruses. Furthermore, sheep that received heterologous vaccines showed significantly reduced viraemia and clinical scores for BTV-16 when compared to unvaccinated controls. Reductions in clinical signs and viraemia among heterologously vaccinated sheep were not as common after challenge with BTV-8. This study shows that heterologous protection can occur, but that it is difficult to predict if partial or complete protection will be achieved following inactivated-BTV vaccination.
Collapse
Affiliation(s)
- Emmanuel Breard
- ANSES, UMR 1161 Virologie ANSES-INRA-ENVA, 23 avenue du Général de Gaulle, 94704 Maisons-Alfort, France.
| | - Guillaume Belbis
- Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, Unité de Pathologie du Bétail, 7 avenue du Général de Gaulle, 94704 Maisons-Alfort, France
| | - Cyril Viarouge
- ANSES, UMR 1161 Virologie ANSES-INRA-ENVA, 23 avenue du Général de Gaulle, 94704 Maisons-Alfort, France
| | - Kyriaki Nomikou
- Vector-Borne Diseases Programme, The Pirbright Institute, Pirbright, Woking, Surrey GU24 0NF, United Kingdom
| | | | | | - Pascal Hudelet
- MERIAL S.A.S., 254 Rue Marcel Mérieux, 69007 Lyon, France
| | - Claude Hamers
- MERIAL S.A.S., P.I. Plaine de l'Ain, Allée des Cyprès, 01150 Saint-Vulbas, France
| | - Francis Moreau
- Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, Centre de recherche biomédicale, 7 avenue du Général de Gaulle, 94704 Maisons-Alfort, France
| | - Thomas Lilin
- Université Paris-Est, Ecole Nationale Vétérinaire d'Alfort, Centre de recherche biomédicale, 7 avenue du Général de Gaulle, 94704 Maisons-Alfort, France
| | - Benoit Durand
- ANSES, unité Epidémiologie, 23 avenue du Général de Gaulle, 94704 Maisons-Alfort, France
| | - Peter Mertens
- Vector-Borne Diseases Programme, The Pirbright Institute, Pirbright, Woking, Surrey GU24 0NF, United Kingdom
| | - Damien Vitour
- ANSES, UMR 1161 Virologie ANSES-INRA-ENVA, 23 avenue du Général de Gaulle, 94704 Maisons-Alfort, France
| | - Corinne Sailleau
- ANSES, UMR 1161 Virologie ANSES-INRA-ENVA, 23 avenue du Général de Gaulle, 94704 Maisons-Alfort, France
| | - Stéphan Zientara
- ANSES, UMR 1161 Virologie ANSES-INRA-ENVA, 23 avenue du Général de Gaulle, 94704 Maisons-Alfort, France
| |
Collapse
|
35
|
Batten C, Darpel K, Henstock M, Fay P, Veronesi E, Gubbins S, Graves S, Frost L, Oura C. Evidence for transmission of bluetongue virus serotype 26 through direct contact. PLoS One 2014; 9:e96049. [PMID: 24797910 PMCID: PMC4010411 DOI: 10.1371/journal.pone.0096049] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 04/03/2014] [Indexed: 01/02/2023] Open
Abstract
The aim of this study was to assess the mechanisms of transmission of bluetongue virus serotype 26 (BTV-26) in goats. A previous study, which investigated the pathogenicity and infection kinetics of BTV-26 in goats, unexpectedly revealed that one control goat may have been infected through a direct contact transmission route. To investigate the transmission mechanisms of BTV-26 in more detail an experimental infection study was carried out in which three goats were infected with BTV-26, three goats were kept uninfected, but were housed in direct contact with the infected goats, and an additional four goats were kept in indirect contact separated from infected goats by metal gates. This barrier allowed the goats to have occasional face-to-face contact in the same airspace, but feeding, watering, sampling and environmental cleaning was carried out separately. The three experimentally infected goats did not show clinical signs of BTV, however high levels of viral RNA were detected and virus was isolated from their blood. At 21 dpi viral RNA was detected in, and virus was isolated from the blood of the three direct contact goats, which also seroconverted. The four indirect barrier contact goats remained uninfected throughout the duration of the experiment. In order to assess replication in a laboratory model species of Culicoides biting midge, more than 300 Culicoides sonorensis were fed a BTV-26 spiked blood meal and incubated for 7 days. The dissemination of BTV-26 in individual C. sonorensis was inferred from the quantity of virus RNA and indicated that none of the insects processed at day 7 possessed transmissible infections. This study shows that BTV-26 is easily transmitted through direct contact transmission between goats, and the strain does not seem to replicate in C. sonorensis midges using standard incubation conditions.
Collapse
Affiliation(s)
- Carrie Batten
- Non Vesicular Reference Laboratory, The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Karin Darpel
- Vaccinology, The Pirbright Institute, Woking, Surrey, United Kingdom
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Mark Henstock
- Non Vesicular Reference Laboratory, The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Petra Fay
- Non Vesicular Reference Laboratory, The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Eva Veronesi
- Entomology, The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Simon Gubbins
- Centre for Integrative Biology, The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Samantha Graves
- Non Vesicular Reference Laboratory, The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Lorraine Frost
- Non Vesicular Reference Laboratory, The Pirbright Institute, Woking, Surrey, United Kingdom
| | - Christopher Oura
- Non Vesicular Reference Laboratory, The Pirbright Institute, Woking, Surrey, United Kingdom
- School of Veterinary Medicine, University of the West Indies, St. Augustine, Trinidad and Tobago
| |
Collapse
|
36
|
|
37
|
van der Sluijs MTW, de Smit AJ, Moormann RJM. Vector independent transmission of the vector-borne bluetongue virus. Crit Rev Microbiol 2014; 42:57-64. [PMID: 24645633 DOI: 10.3109/1040841x.2013.879850] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Bluetongue is an economically important disease of ruminants. The causative agent, Bluetongue virus (BTV), is mainly transmitted by insect vectors. This review focuses on vector-free BTV transmission, and its epizootic and economic consequences. Vector-free transmission can either be vertical, from dam to fetus, or horizontal via direct contract. For several BTV-serotypes, vertical (transplacental) transmission has been described, resulting in severe congenital malformations. Transplacental transmission had been mainly associated with live vaccine strains. Yet, the European BTV-8 strain demonstrated a high incidence of transplacental transmission in natural circumstances. The relevance of transplacental transmission for the epizootiology is considered limited, especially in enzootic areas. However, transplacental transmission can have a substantial economic impact due to the loss of progeny. Inactivated vaccines have demonstrated to prevent transplacental transmission. Vector-free horizontal transmission has also been demonstrated. Since direct horizontal transmission requires close contact of animals, it is considered only relevant for within-farm spreading of BTV. The genetic determinants which enable vector-free transmission are present in virus strains circulating in the field. More research into the genetic changes which enable vector-free transmission is essential to better evaluate the risks associated with outbreaks of new BTV serotypes and to design more appropriate control measures.
Collapse
Affiliation(s)
| | | | - Rob J M Moormann
- c Central Veterinary Institute , Lelystad , The Netherlands , and.,d Department of Infectious Diseases and Immunology, Virology Division , Utrecht University , Yalelaan , The Netherlands
| |
Collapse
|
38
|
Coetzee P, van Vuuren M, Venter EH, Stokstad M. A review of experimental infections with bluetongue virus in the mammalian host. Virus Res 2014; 182:21-34. [PMID: 24462840 PMCID: PMC7132480 DOI: 10.1016/j.virusres.2013.12.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 12/27/2013] [Accepted: 12/31/2013] [Indexed: 11/23/2022]
Abstract
Experimental infection studies with bluetongue virus (BTV) in the mammalian host have a history that stretches back to the late 18th century. Studies in a wide range of ruminant and camelid species as well as mice have been instrumental in understanding BTV transmission, bluetongue (BT) pathogenicity/pathogenesis, viral virulence, the induced immune response, as well as reproductive failures associated with BTV infection. These studies have in many cases been complemented by in vitro studies with BTV in different cell types in tissue culture. Together these studies have formed the basis for the understanding of BTV-host interaction and have contributed to the design of successful control strategies, including the development of effective vaccines. This review describes some of the fundamental and contemporary infection studies that have been conducted with BTV in the mammalian host and provides an overview of the principal animal welfare issues that should be considered when designing experimental infection studies with BTV in in vivo infection models. Examples are provided from the authors' own laboratory where the three Rs (replacement, reduction and refinement) have been implemented in the design of experimental infection studies with BTV in mice and goats. The use of the ARRIVE guidelines for the reporting of data from animal infection studies is emphasized.
Collapse
Affiliation(s)
- Peter Coetzee
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria 0110, South Africa; Department of Production Animal Clinical Sciences, Norwegian School of Veterinary Science, P. O. Box 8146 Dep., N-0033 Oslo, Norway.
| | - Moritz van Vuuren
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria 0110, South Africa.
| | - Estelle H Venter
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria 0110, South Africa.
| | - Maria Stokstad
- Department of Production Animal Clinical Sciences, Norwegian School of Veterinary Science, P. O. Box 8146 Dep., N-0033 Oslo, Norway.
| |
Collapse
|
39
|
Gard JA, Stringfellow DA. Shaping the norms that regulate international commerce of embryos. Theriogenology 2014; 81:56-66. [PMID: 24274410 DOI: 10.1016/j.theriogenology.2013.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/12/2013] [Accepted: 08/14/2013] [Indexed: 10/26/2022]
Abstract
As various embryo technologies in livestock were developed and evolved to a state of usefulness over the past 40 years, scientists with a specific interest in infectious diseases sought to determine the epidemiologic consequences of movement, especially international movement, of increasing numbers of embryos. Many of the foundational studies in this area were reported in Theriogenology, beginning in the 1970s and especially throughout the 1980s and 1990s. Unquestionably, Theriogenology has been a widely used venue for dissemination of basic information on this subject, which ultimately led to the development of the now universally accepted techniques for certification of embryo health. Today it is well-recognized that movement in commerce of embryos, especially in vivo-derived embryos, is a very low-risk method for exchange of animal germ plasm. This paper chronicles the evolution of strategies for health certification of embryos. An overview is provided of the calculated efforts of practitioners, scientists, and regulators to organize, forge necessary partnerships, stimulate needed research, provide purposeful analysis of the results, and, through these processes, guarantee the universal acceptance of efficient protocols for certifying the health of embryos intended for movement in international commerce.
Collapse
Affiliation(s)
- Julie A Gard
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA.
| | | |
Collapse
|
40
|
van der Sluijs MTW, Schroer-Joosten DPH, Fid-Fourkour A, Vrijenhoek MP, Debyser I, Moulin V, Moormann RJM, de Smit AJ. Transplacental transmission of Bluetongue virus serotype 1 and serotype 8 in sheep: virological and pathological findings. PLoS One 2013; 8:e81429. [PMID: 24358112 PMCID: PMC3864790 DOI: 10.1371/journal.pone.0081429] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/13/2013] [Indexed: 11/24/2022] Open
Abstract
The Bluetongue virus serotype 8 (BTV-8) strain, which emerged in Europe in 2006, had an unusually high ability to cause foetal infection in pregnant ruminants. Other serotypes of BTV had already been present in Europe for more than a decade, but transplacental transmission of these strains had never been demonstrated. To determine whether transplacental transmission is a unique feature of BTV-8 we compared the incidence and pathological consequences of transplacental transmission of BTV-8 to that of BTV-1. Nine pregnant ewes were infected with either BTV-8 or BTV-1. The BTV strains used for the infection were field strains isolated on embryonated chicken eggs and passaged twice on mammalian cells. Blood samples were taken to monitor the viraemia in the ewes. Four weeks after the infection, the foetuses were examined for pathological changes and for the presence of BTV. BTV-8 could be demonstrated in 12 foetuses (43%) from 5 ewes (56%). %). BTV-1 was detected in 14 foetuses (82%) from 6 ewes (67%). Pathological changes were mainly found in the central nervous system. In the BTV-8 group, lympho-histiocytic infiltrates, gliosis and slight vacuolation of the neuropil were found. BTV-1infection induced a severe necrotizing encephalopathy and severe meningitis, with macroscopic hydranencephaly or porencephaly in 8 foetuses. In our experimental setting, using low passaged virus strains, BTV-1 was able to induce transplacental transmission to a higher incidence compared to BTV-8, causing more severe pathology.
Collapse
Affiliation(s)
| | | | | | - Mieke P Vrijenhoek
- Animal Services and Pathology, MSD Animal Health, Boxmeer, The Netherlands
| | - Isolde Debyser
- CoVeToP, Consultancy in Veterinary and Toxicological Pathology, Enghien, Belgium
| | - Véronique Moulin
- Research and Development, MSD Animal Health, Boxmeer, The Netherlands
| | - Rob J M Moormann
- Central Veterinary Institute, Animal Sciences Group, Wageningen University and Research centre, Lelystad, The Netherlands ; Department of Infectious Diseases and Immunology, Virology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Abraham J de Smit
- Research and Development, MSD Animal Health, Boxmeer, The Netherlands
| |
Collapse
|
41
|
Oryan A, Amrabadi O, Mohagheghzadeh M. Seroprevalence of bluetongue in sheep and goats in southern Iran with an overview of four decades of its epidemiological status in Iran. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s00580-013-1815-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Rasmussen LD, Savini G, Lorusso A, Bellacicco A, Palmarini M, Caporale M, Rasmussen TB, Belsham GJ, Bøtner A. Transplacental transmission of field and rescued strains of BTV-2 and BTV-8 in experimentally infected sheep. Vet Res 2013; 44:75. [PMID: 24007601 PMCID: PMC3848766 DOI: 10.1186/1297-9716-44-75] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 08/27/2013] [Indexed: 11/10/2022] Open
Abstract
Transplacental transmission of bluetongue virus has been shown previously for the North European strain of serotype 8 (BTV-8) and for tissue culture or chicken egg-adapted vaccine strains but not for field strains of other serotypes. In this study, pregnant ewes (6 per group) were inoculated with either field or rescued strains of BTV-2 and BTV-8 in order to determine the ability of these viruses to cross the placental barrier. The field BTV-2 and BTV-8 strains was passaged once in Culicoides KC cells and once in mammalian cells. All virus inoculated sheep became infected and seroconverted against the different BTV strains used in this study. BTV RNA was detectable in the blood of all but two ewes for over 28 days but infectious virus could only be detected in the blood for a much shorter period. Interestingly, transplacental transmission of BTV-2 (both field and rescued strains) was demonstrated at high efficiency (6 out of 13 lambs born to BTV-2 infected ewes) while only 1 lamb of 12 born to BTV-8 infected ewes showed evidence of in utero infection. In addition, evidence for horizontal transmission of BTV-2 between ewes was observed. As expected, the parental BTV-2 and BTV-8 viruses and the viruses rescued by reverse genetics showed very similar properties to each other. This study showed, for the first time, that transplacental transmission of BTV-2, which had been minimally passaged in cell culture, can occur; hence such transmission might be more frequent than previously thought.
Collapse
Affiliation(s)
- Lasse Dam Rasmussen
- National Veterinary Institute, Technical University of Denmark, 4771 Kalvehave, Lindholm, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Martinelle L, Dal Pozzo F, Sarradin P, De Leeuw I, De Clercq K, Thys C, Thiry E, Saegerman C. Pulmonary artery haemorrhage in newborn calves following bluetongue virus serotype 8 experimental infections of pregnant heifers. Vet Microbiol 2013; 167:250-9. [PMID: 24035481 DOI: 10.1016/j.vetmic.2013.08.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 08/13/2013] [Accepted: 08/19/2013] [Indexed: 11/18/2022]
Abstract
The emergence of bluetongue disease (BT) among livestock in Europe in 2006 raised many questions including the occurrence and epidemiological significance of foetal infections in cattle. To clarify these aspects, vaccinated and unvaccinated pregnant heifers were sequentially infected twice in an isolation facility (biosafety level 3) with a northern European outbreak strain of Bluetongue virus serotype 8 (BTV-8). The study was terminated 2 months after calving with necropsy of the dams and their offspring. The cattle were monitored throughout the study by clinical scoring and for the presence of circulating neutralising antibodies, and after calving for the presence of infectious virus and viral RNA in blood and milk. Four calves, one born from a vaccinated dam and three from non-vaccinated ones, that were infected at 120 days of gestation had obvious haemorrhage of the pulmonary artery at necropsy. Although haemorrhage of the pulmonary artery is highly characteristic of BT, viral RNA was not detected in any of these calves. Furthermore, although none of the calves born from heifers infected prior to mid-gestation had teratogenic BTV typical brain lesions, some had lesions at birth suggestive of in utero BTV infection. Despite the lack of viral RNA detection, the presence of haemorrhage of the pulmonary artery deserves to be reported as a new observation in the context of the multiple investigations having as main subject the BTV placental crossing in cattle.
Collapse
Affiliation(s)
- Ludovic Martinelle
- Research Unit of Epidemiology and Risk Analysis Applied to the Veterinary Sciences (UREAR-ULg), Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, Boulevard de Colonster 20, B-4000 Liège, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Evidence of transplacental transmission of bluetongue virus serotype 8 in goats. Vet Microbiol 2013; 166:394-404. [PMID: 23890676 DOI: 10.1016/j.vetmic.2013.06.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 06/16/2013] [Accepted: 06/24/2013] [Indexed: 11/22/2022]
Abstract
During the incursion of bluetongue virus (BTV) serotype 8 in Europe, an increase in the number of abortions in ruminants was observed. Transplacental transmission of BTV-8 in cattle and sheep, with subsequent foetal infection, is a feature of this specific bluetongue serotype. In this study, BTV-8 ability to cross the placental barrier at the beginning of the second third of pregnancy and at the end of pregnancy was investigated in goats in two separate experiments. In the first experiment, nine goats were experimentally infected with BTV-8 at 61 days of pregnancy. Foetuses were collected 21 dpi. BTV-8 was evidenced by real time RT-PCR and by viral isolation using blood from the umbilical cord and the spleens of 3 out of the 13 foetuses. All dams were viraemic (viral isolation) at the moment of sampling of the foetuses. Significant macroscopic or histological lesions could not be observed in foetuses or in their infected dams (notably at the placenta level). In the second experiment, 10 goats were infected with BTV-8 at 135 days of pregnancy. Kids were born by caesarean section at the programmed day of birth (15 dpi). BTV-8 could not be detected by rt-RT-PCR in blood or spleen samples from the kids. This study showed for the first time that BTV-8 transplacental transmission can occur in goats that have been infected at 61 days of pregnancy, with infectious virus recovered from the caprine foetuses. The observed transmission rate was quite high (33%) at this stage of pregnancy. However, it was not possible to demonstrate the existence of BTV-8 transplacental transmission when infection occurred at the end of the goat pregnancy.
Collapse
|
45
|
Mackenzie JS, Jeggo M. Reservoirs and vectors of emerging viruses. Curr Opin Virol 2013; 3:170-9. [PMID: 23491947 PMCID: PMC7102734 DOI: 10.1016/j.coviro.2013.02.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 02/12/2013] [Accepted: 02/13/2013] [Indexed: 11/20/2022]
Abstract
Wildlife, especially mammals and birds, are hosts to an enormous number of viruses, most of which we have absolutely no knowledge about even though we know these viruses circulate readily in their specific niches. More often than not, these viruses are silent or asymptomatic in their natural hosts. In some instances, they can infect other species, and in rare cases, this cross-species transmission might lead to human infection. There are also instances where we know the reservoir hosts of zoonotic viruses that can and do infect humans. Studies of these animal hosts, the reservoirs of the viruses, provide us with the knowledge of the types of virus circulating in wildlife species, their incidence, pathogenicity for their host, and in some instances, the potential for transmission to other hosts. This paper describes examples of some of the viruses that have been detected in wildlife, and the reservoir hosts from which they have been detected. It also briefly explores the spread of arthropod-borne viruses and their diseases through the movement and establishment of vectors in new habitats.
Collapse
Affiliation(s)
- John S Mackenzie
- Faculty of Health Sciences, Curtin University, Perth, Western Australia, Australia.
| | | |
Collapse
|
46
|
Coetzee P, Stokstad M, Myrmel M, Mutowembwa P, Loken T, Venter EH, Van Vuuren M. Transplacental infection in goats experimentally infected with a European strain of bluetongue virus serotype 8. Vet J 2013; 197:335-41. [PMID: 23422882 DOI: 10.1016/j.tvjl.2013.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 11/23/2012] [Accepted: 01/07/2013] [Indexed: 11/30/2022]
Abstract
The capability of the recently emerged European strain of bluetongue virus serotype 8 (BTV-8) to cross the ruminant placenta has been established in experimental and field studies in both sheep and cattle. Seroprevalence rates in goats in North-Western Europe were high during the recent outbreak of BTV-8; however the capability of the virus to infect goats through the transplacental route has not been established. In the present study, four Saanen goats were inoculated with the European strain of BTV-8 at 62 days of gestation; this resulted in mild clinical signs, however gross lesions observed post mortem were more severe. Viral RNA was detected by real-time RT-PCR in blood and tissue samples from three fetuses harvested from two goats at 43 days post infection. Conventional RT-PCR and genome sequencing targeting viral segment 2 confirmed infection of brain tissue with BTV-8 in two of these fetuses. In total, five of six fetuses demonstrated lesions that may have been associated with transplacental infection with BTV. Infected fetuses did not demonstrate neurological lesions. Low viral RNA concentrations in fetal blood and tissue further suggest that the infected fetuses would probably not have been born viraemic. The implications of these findings with regards to the epidemiology and overwintering of BTV-8 in Europe remains unclear.
Collapse
Affiliation(s)
- Peter Coetzee
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Medicine, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria 0110, South Africa.
| | | | | | | | | | | | | |
Collapse
|
47
|
van Rijn PA, Heutink RG, Boonstra J, Kramps HA, van Gennip RGP. Sustained high-throughput polymerase chain reaction diagnostics during the European epidemic of Bluetongue virus serotype 8. J Vet Diagn Invest 2012; 24:469-78. [PMID: 22529113 DOI: 10.1177/1040638712440986] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A real-time reverse transcription polymerase chain reaction assay (PCR test) based on genome segment 10 of Bluetongue virus (BTV) was developed. The PCR test consists of robotized viral RNA isolation from blood samples and an all-in-one method including initial denaturation of genomic double-stranded RNA, reverse transcription polymerase chain reaction (RT-PCR), and real-time detection and analysis. Reference strains of the 24 recognized BTV serotypes, isolates from different years, and geographic origins were detected. Other orbiviruses such as African horse sickness virus, Epizootic hemorrhagic disease virus, and Equine encephalosis virus were not detected. Experimentally infected animals were PCR positive from 2 days postinoculation, which was earlier than fever, other clinical signs, or seroconversion. The diagnostic sensitivity and specificity were very close to or even 100%. The PCR test played a key role in the detection of BTV serotype 8 in August 2006 in The Netherlands. The outbreak in a completely naive ruminant population allowed for further evaluation of the PCR test with field samples. In 2006, the correlation between enzyme-linked immunosorbent assay and PCR results was estimated to be 95%. In the following years, the PCR test was used for diagnosis of diseased animals, for testing of healthy animals for trade purposes, and for detection of BTV RNA in different species of the insect vector, Culicoides. In the autumn of 2008, BTV serotype 6 unexpectedly emerged in northwest Europe and was also detected with the PCR test developed in the current study. The performance in routine use over 5 years has been recorded and evaluated.
Collapse
Affiliation(s)
- Piet A van Rijn
- Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands.
| | | | | | | | | |
Collapse
|
48
|
Bluetongue viruses based on modified-live vaccine serotype 6 with exchanged outer shell proteins confer full protection in sheep against virulent BTV8. PLoS One 2012; 7:e44619. [PMID: 23049753 PMCID: PMC3458051 DOI: 10.1371/journal.pone.0044619] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/06/2012] [Indexed: 11/19/2022] Open
Abstract
Since 1998, Bluetongue virus (BTV)-serotypes 1, 2, 4, 9, and 16 have invaded European countries around the Mediterranean Basin. In 2006, a huge BT outbreak started after incursion of BTV serotype 8 (BTV8) in North-Western Europe. IN 2008, BTV6 and BTV11 were reported in the Netherlands and Germany, and in Belgium, respectively. In addition, Toggenburg orbivirus (TOV) was detected in 2008 in Swiss goats, which was recognized as a new serotype of BTV (BTV25). The (re-)emergency of BTV serotypes needs a rapid response to supply effective vaccines. Reverse genetics has been developed for BTV1 and more recently also for BTV6. This latter strain, BTV6/net08, is closely related to live-attenuated vaccine for serotype 6 as determined by full genome sequencing. Here, we used this strain as backbone and exchanged segment 2 and 6, respectively Seg-2 (VP2) and Seg-6 (VP5), for those of BTV serotype 1 and 8 using reverse genetics. These so-called 'serotyped' vaccine viruses, as mono-serotype and multi-serotype vaccine, were compared for their protective capacity in sheep. In general, all vaccinated animals developed a neutralizing antibody response against their respective serotype. After challenge at three weeks post vaccination with cell-passaged, virulent BTV8/net07 (BTV8/net07/e1/bhkp3) the vaccinated animals showed nearly no clinical reaction. Even more, challenge virus could not be detected, and seroconversion or boostering after challenge was negligible. These data demonstrate that all sheep were protected from a challenge with BTV8/net07, since sheep of the control group showed viremia, seroconversion and clinical signs that are specific for Bluetongue. The high level of cross-protection is discussed.
Collapse
|
49
|
Coetzee P, Van Vuuren M, Stokstad M, Myrmel M, Venter EH. Bluetongue virus genetic and phenotypic diversity: towards identifying the molecular determinants that influence virulence and transmission potential. Vet Microbiol 2012; 161:1-12. [PMID: 22835527 DOI: 10.1016/j.vetmic.2012.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 06/22/2012] [Accepted: 07/02/2012] [Indexed: 12/23/2022]
Abstract
Bluetongue virus (BTV) is the prototype member of the Orbivirus genus in the family Reoviridae and is the aetiological agent of the arthropod transmitted disease bluetongue (BT) that affects both ruminant and camelid species. The disease is of significant global importance due to its economic impact and effect on animal welfare. Bluetongue virus, a dsRNA virus, evolves through a process of quasispecies evolution that is driven by genetic drift and shift as well as intragenic recombination. Quasispecies evolution coupled with founder effect and evolutionary selective pressures has over time led to the establishment of genetically distinct strains of the virus in different epidemiological systems throughout the world. Bluetongue virus field strains may differ substantially from each other with regards to their phenotypic properties (i.e. virulence and/or transmission potential). The intrinsic molecular determinants that influence the phenotype of BTV have not clearly been characterized. It is currently unclear what contribution each of the viral genome segments have in determining the phenotypic properties of the virus and it is also unknown how genetic variability in the individual viral genes and their functional domains relate to differences in phenotype. In order to understand how genetic variation in particular viral genes could potentially influence the phenotypic properties of the virus; a closer understanding of the BTV virion, its encoded proteins and the evolutionary mechanisms that shape the diversity of the virus is required. This review provides a synopsis of these issues and highlights some of the studies that have been conducted on BTV and the closely related African horse sickness virus (AHSV) that have contributed to ongoing attempts to identify the molecular determinants that influence the virus' phenotype. Different strategies that can be used to generate BTV mutants in vitro and methods through which the causality between particular genetic modifications and changes in phenotype may be determined are also described. Finally examples are highlighted where a clear understanding of the molecular determinants that influence the phenotype of the virus may have contributed to risk assessment and mitigation strategies during recent outbreaks of BT in Europe.
Collapse
Affiliation(s)
- Peter Coetzee
- Department of Veterinary Tropical Diseases, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110, South Africa.
| | | | | | | | | |
Collapse
|
50
|
Moulin V, Noordegraaf CV, Makoschey B, van der Sluijs M, Veronesi E, Darpel K, Mertens PP, de Smit H. Clinical disease in sheep caused by bluetongue virus serotype 8, and prevention by an inactivated vaccine. Vaccine 2012; 30:2228-35. [DOI: 10.1016/j.vaccine.2011.11.100] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 11/22/2011] [Accepted: 11/25/2011] [Indexed: 10/14/2022]
|