1
|
Dong M, Zheng K, Shen Z, Liu C. Light-dependent Br-org production in terrestrial plants under acetaminophen stress and the bromination mechanisms mediated by photosystem. J Environ Sci (China) 2025; 153:275-288. [PMID: 39855799 DOI: 10.1016/j.jes.2024.10.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/22/2024] [Accepted: 10/29/2024] [Indexed: 01/27/2025]
Abstract
Due to the endocrine toxicity, neurotoxic, and reproductive toxicity to organisms, the sources and risks of brominated organic pollutants have attracted widespread attention. However, knowledge gaps remain in the bromination processes of emerging phenolic pollutants in plants, which may increase the potential health risk associated with food exposure. Our study discovered that light induced generation and accumulation of more toxic brominated organic compounds (Br-org) in lettuce leaves under the stress of acetaminophen (ACE) than that without light, as evidenced by an increase in C-Br bond intensity in FTIR analysis. This result can be explained by the oxidation of bromide ions (Br-) by reactive species (ROS and 3Chl*) of chloroplast into reactive bromine species (RBS). The main mechanism is that the redox of Br- reduced the oxidative damage of ACE to the structure and function of chloroplasts, providing good conditions for light energy uptake and utilization and promoting the increase of pigments and active species. Compared with the dark group exposed to 5 mg/L Br-, the pigment content, H2O2 and 1O2 level of the light group increased by 56%, 84% and 69%, respectively. On the other hand, RBS attacks certain electrophilic organic compounds in leaves to generate Br-org. Triple excited state of chlorophyll (3Chl*) was the dominant species for the transformation of ACE, while RBS is a key factor in the generation of Br-org in the Br-/light/chlorophyll system. A total of six transformation products were identified by HPLC-MS/MS, which were involved in three transformation pathways: methylation, hydroxyl oxidation and hydroxylation followed by bromination. This is the first report that Br- could enter the chloroplast and improved chloroplast structure under ACE stress, and elucidated the bromination mechanism of organics in terrestrial plant involving of biophotochemical bromination in chloroplast besides enzyme-catalyzed bromination. This study is beneficial for risk assessment and prevention of emerging phenolic pollutants.
Collapse
Affiliation(s)
- Min Dong
- School of Environmental Science and Engineering, Shandong Key Laboratory of Environmental Processes and Health, Shandong University, Qingdao 266237, China
| | - Kai Zheng
- School of Environmental Science and Engineering, Shandong Key Laboratory of Environmental Processes and Health, Shandong University, Qingdao 266237, China
| | - Zhonglan Shen
- Shandong Institute for Food and Drug Control, Jinan 250101, China
| | - Chunguang Liu
- School of Environmental Science and Engineering, Shandong Key Laboratory of Environmental Processes and Health, Shandong University, Qingdao 266237, China; Laboratory of Marine Ecological Environment in Universities of Shandong, Shandong University, Qingdao 266237, China; Qingdao Key Laboratory of Marine Pollutant Prevention, Shandong University, Qingdao 266237, China; Shandong Kenli Petrochemical Group Co., Ltd., Dongying 257500, China.
| |
Collapse
|
2
|
Lv J, Long G, Xie T, Li Z, Huang D, Tan X, Goodman BA, Qiang Z, Liu S, Dong H. Bromide accelerates oxidation of selenite by unactivated peroxymonosulfate: PH-dependent kinetics, mechanism and pathways. WATER RESEARCH 2025; 275:123123. [PMID: 39951909 DOI: 10.1016/j.watres.2025.123123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/12/2024] [Accepted: 01/08/2025] [Indexed: 02/17/2025]
Abstract
Selenium (Se) is an essential trace element that is toxic to humans in a relatively small excess. In natural waters it occurs mainly in inorganic form as Se(IV) and Se(VI) oxyanions with the former being more toxic at high levels. With the increasing use of advanced oxidation processes in drinking water treatment, the oxidation of Se(IV) with unactivated peroxymonosulfate (PMS) has been investigated, but the role of bromide (Br-) on the oxidation of Se(IV) during reaction with unactivated PMS remains unknown. In the present work, several influencing factors on this reaction are reported, including PMS and Se(IV) concentrations, pH, Br-, and natural organic matter (NOM), on the oxidation of Se(IV), as well as the influence of different water matrices. Results show that the second-order rate constant for reaction of Se(IV) with PMS increases with increasing pH (5.0-10.0) from 0.02 to 0.33 M-1s-1, and that Se(IV) oxidation occurs mainly via a direct oxidation pathway. This increases with increasing initial concentrations of PMS and Se(IV), but is inhibited by the presence of NOM. However, the presence of Br- significantly enhances Se(IV) oxidation at circumneutral pH, but has negligible effect in alkaline conditions. It is proposed that Se(IV) oxidation by PMS involves formation of a hypobromous acid/hypobromite (HOBr/OBr-) intermediate in the presence of Br-, and its formation is supported by DFT calculations. Based on these results, a kinetics model for Se(VI) formation in bromide-containing water has been developed. Also, compared to the Br-/NOM/PMS system, the presence of Se(IV) inhibited the formation of brominated disinfection by-products (i.e., bromform and tribromoacetic acid). Overall, these results help improve our understanding of the behavior of selenium in water containing Br- during a common oxidative treatment process.
Collapse
Affiliation(s)
- Jinrong Lv
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Colleges and Universities Key Laboratory of Food Safety and Pharmaceutical Analytical Chemistry, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530008, Guangxi, PR China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, PR China
| | - GuiFa Long
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Colleges and Universities Key Laboratory of Food Safety and Pharmaceutical Analytical Chemistry, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530008, Guangxi, PR China
| | - Ting Xie
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Colleges and Universities Key Laboratory of Food Safety and Pharmaceutical Analytical Chemistry, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530008, Guangxi, PR China
| | - Zhangyan Li
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Colleges and Universities Key Laboratory of Food Safety and Pharmaceutical Analytical Chemistry, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530008, Guangxi, PR China
| | - Diangui Huang
- Guangxi Zhuang Autonomous Region Center of Analysis and Testing, Nanning Guangxi, 530022, PR China
| | - Xuecai Tan
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Colleges and Universities Key Laboratory of Food Safety and Pharmaceutical Analytical Chemistry, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530008, Guangxi, PR China
| | - Bernard A Goodman
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Colleges and Universities Key Laboratory of Food Safety and Pharmaceutical Analytical Chemistry, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530008, Guangxi, PR China
| | - Zhimin Qiang
- School of Environmental Science & Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Shaogang Liu
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Colleges and Universities Key Laboratory of Food Safety and Pharmaceutical Analytical Chemistry, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530008, Guangxi, PR China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, PR China.
| | - Huiyu Dong
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Colleges and Universities Key Laboratory of Food Safety and Pharmaceutical Analytical Chemistry, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530008, Guangxi, PR China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, PR China.
| |
Collapse
|
3
|
Lim S, Wu Y, Mitch WA. Transformation of cyclic amides and uracil-derived nitrogen heterocycles during chlorination. WATER RESEARCH 2025; 282:123639. [PMID: 40252404 DOI: 10.1016/j.watres.2025.123639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/25/2025] [Accepted: 04/11/2025] [Indexed: 04/21/2025]
Abstract
Nitrogen heterocycles are important structural components in biomolecules and anthropogenic chemicals, yet their transformation during chlorine disinfection remains poorly understood. This study investigated chlorination kinetics and product formation for six nitrogen heterocycles of increasing structural complexity, including cyclic amides (2-piperidone, glutarimide, 5,6-dihydrouracil) and uracil derivatives (uracil, uridine, and 1,3-dimethyluracil) to determine how structural variations influence reaction pathways. Apparent second-order rate constants varied widely from 9.2 × 10-3 M-1 s-1 (2-piperidone) to >103 M-1 s-1 (uracil, uridine), largely influenced by the nitrogen pKa values. Chlorination proceeded through initial N-chlorination, forming organic chloramides. While most organic chloramides were transient, that derived from 2-piperidone persisted for days under excess chlorine conditions. For saturated heterocyclic imides (glutarimide, 5,6-dihydrouracil), hydrolysis of the organic chloramides between the imide nitrogen and an adjacent acyl group rapidly formed ring-opened organic acids. Among uracil derivatives, chlorine added across the double bond. For uracil, the resulting 5-chlorouracil rapidly fragmented between the C-4 and C-5 position to release trichloroacetaldehyde at ∼100 % yield. Substitution at heterocyclic nitrogens in uridine and 1,3-dimethyluracil limited such fragmentation, forming more stable C-chlorinated heterocyclic or ring-opened products. The reaction patterns observed for these six nitrogen heterocycles were further validated using phthalimide and thymine, demonstrating the broader applicability of the identified reaction trends. These findings enhance our understanding of nitrogen heterocycle chlorination mechanisms and their implications for drinking water disinfection, offering insights into minimizing the formation of potentially harmful DBPs during chlorination.
Collapse
Affiliation(s)
- Sungeun Lim
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States
| | - Yufei Wu
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States
| | - William A Mitch
- Department of Civil and Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, CA 94305, United States.
| |
Collapse
|
4
|
Murata Y, Sakai H. Abating a micropollutant epinastine by UV-based advanced oxidation processes: Comparison for UV/hydrogen peroxide, UV/persulfate, and UV/chlorine, impacts of bromide contents, and formation of DBPs during post-chlorination. CHEMOSPHERE 2025; 374:144206. [PMID: 39946939 DOI: 10.1016/j.chemosphere.2025.144206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/13/2025] [Accepted: 02/07/2025] [Indexed: 03/03/2025]
Abstract
Anthropogenic organic compounds, such as pharmaceuticals and personal care products, contaminate water, posing toxicological risks caused by either their parent compounds or transformation products. This study compares ultraviolet (UV)-based advanced oxidation processes (UV/hydrogen peroxide, UV/persulfate, and UV/chlorine) for the abatement of an antihistamine drug epinastine. UV light at 254 nm was irradiated upon solutions containing 10 μM epinastine and 100 μM oxidant. UV/chlorine degraded epinastine most effectively at pH 6.0-8.0; considerable contributions by reactive chlorine species and hydroxyl radicals were quantified using probe compounds. Furthermore, the degradation efficiency of the UV/chlorine treatment persisted with a halved chlorine dosage. Additionally, the types and concentrations of disinfection byproducts (DBPs) produced during UV/chlorine treatment with or without post-chlorination varied depending on the concentrations of chlorine or bromide. By comparing estimated DBP formations at a constant degradation rate of epinastine, UV/chlorine formed smaller concentrations of DBPs. Consequently, this study experimentally revealed that UV/chlorine is superior to UV/hydrogen peroxide and UV/persulfate for degrading epinastine at the possible pH and bromide content in the environment and controlling toxicological risks caused by disinfection DBPs formation by optimising chlorine dosage and UV fluence.
Collapse
Affiliation(s)
- Yuichiro Murata
- Department of Civil and Environmental Engineering, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji-city, Tokyo, 1920397, Japan.
| | - Hiroshi Sakai
- Department of Civil and Environmental Engineering, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji-city, Tokyo, 1920397, Japan.
| |
Collapse
|
5
|
Tian C, von Gunten U, Liu C. Enhanced abatement of phenolic compounds by chlorine in the presence of CuO: Absence of electrophilic aromatic substitution. WATER RESEARCH 2025; 272:122943. [PMID: 39709680 DOI: 10.1016/j.watres.2024.122943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/23/2024] [Accepted: 12/08/2024] [Indexed: 12/24/2024]
Abstract
It has been demonstrated that chlorine predominately reacts with phenolic compounds through an electrophilic aromatic substitution, yielding chlorinated phenols. Previous studies showed that copper oxide (CuO), a water pipe corrosion product, can catalytically enhance the reactivity of chlorine and its disproportionation. In this study, kinetics and mechanisms for the reactions of chlorine with phenolic compounds in the presence of CuO were investigated. CuO at 100 mg/L increases the apparent second-order rate constants (kapp) for reactions of chlorine with phenol, chlorophenols, bromophenols, iodophenols, 2,6-dimethylphenol, acetaminophen, and 4-hydroxybenzoic acid at pH 7.6 and 21 °C by up to 50 times. For the same reaction conditions, increasing CuO concentrations from 0 to 200 mg/L increase the kapp of phenol chlorination from ∼42 to 608 M-1 s-1. In general, a stronger enhancement of the chlorine reactions with phenols was observed in the pH range of 6.6-7.6 than 7.6-9.0, indicating that CuO more readily activates hypochlorous acid. Moreover, CuO significantly changes the pathway for phenol chlorination. Yields of chlorophenols decreased from 98 % to < 5 % as the CuO concentration increased from 0 to 100 mg/L. Non-chlorinated compounds (e.g., catechol, 2,3-dihydroxymuconic acid, maleic acid, and oxalic acid) are major transformation products. Model simulations suggest a pre-equilibrium step with the formation of a CuO-HOCl complex as the rate-limiting step for the overall reactions. Heterogeneous chlorination processes with limited formation of chlorinated phenols tend to be predominant for CuO concentrations > ∼ 5 - 36 mg/L for various phenols. These findings have implications for the transformation of phenolic compounds during chlorination in copper-containing water distribution systems.
Collapse
Affiliation(s)
- Chenhao Tian
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf CH-8600, Switzerland; School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Chao Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Yang L, Cai P, Jin X, Wang Z, Zhou HC, Huang N. Phenolic Resin-type Microporous Organic Polymers for High-Performance Carbon Dioxide Adsorption. Chem Asian J 2025; 20:e202401288. [PMID: 39829112 DOI: 10.1002/asia.202401288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/29/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Three new types of Si-centered porous organic polymer (Si-POPs) were successfully prepared using phenolic resin-type chemistry to form C-C bonds. This new family of microporous Si-POPs manifests as uniform, microporous, spherical particles with a high specific surface area. Notably, Si-POPs were engineered to possess varying numbers of hydroxyl (-OH) groups by altering the monomer in the synthetic process. Among these materials, the variant with the highest number of hydroxyl groups exhibited ultra-high CO2 adsorption capacity, reaching up to 4.3 mmol g-1 at 273 K and 1.0 bar, which surpasses the performance of most porous polymers. Furthermore, Si-POPs also demonstrated remarkable selectivity adsorption for carbon dioxide over nitrogen (17-50, IAST at 273 K and 1.0 bar). This study not only highlighted the superior CO2 adsorption properties of Si-POPs but also explored their potential application in selective gas adsorption.
Collapse
Affiliation(s)
- Liting Yang
- Department of Polymer Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, 310058, Hangzhou, China
| | - Peiyu Cai
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, United States
| | - Xuance Jin
- Department of Polymer Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, 310058, Hangzhou, China
| | - Zhengjie Wang
- Department of Polymer Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, 310058, Hangzhou, China
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, United States
| | - Ning Huang
- Department of Polymer Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, 310058, Hangzhou, China
| |
Collapse
|
7
|
Kong M, Passa EA, Sanan T, Mohammed AN, Forster ALB, Justen PT, de la Cruz A, Westrick JA, O'Shea K, Ren B, Nadagouda MN, Yadav JS, Duan X, Richardson SD, Dionysiou DD. Guarding Drinking Water Safety against Harmful Algal Blooms: Could UV/Cl 2 Treatment Be the Answer? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1421-1433. [PMID: 39764602 PMCID: PMC11908621 DOI: 10.1021/acs.est.4c04255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Frequent and severe occurrences of harmful algal blooms increasingly threaten human health by the release of microcystins (MCs). Urgent attention is directed toward managing MCs, as evidenced by rising HAB-related do not drink/do not boil advisories due to unsafe MC levels in drinking water. UV/chlorine treatment, in which UV light is applied simultaneously with chlorine, showed early promise for effectively degrading MC-LR to values below the World Health Organization's guideline limits. Still, much is unknown regarding potential disinfection byproduct formation and associated toxicity, which can occur from the reaction of chlorine and other reactive species with MCs and algal and natural organic matter. To ensure UV/chlorine guarding drinking water for human consumption, the degradation and detoxification of four of the most problematic MC variants, namely, MC-LR, -RR, -YR, and -LA, which differ in amino acid substituents, were evaluated using UV/chlorine and compared to results from chlorination. Overall, UV/chlorine effectively enhanced MC degradation kinetics and generated less halogenated disinfection byproducts in the target analysis of 11 types of DBPs_C1-3 from 7 classes, total organic chlorine, and nontarget analysis revealing 35 higher molecular weight DBPs_C46-52, which maintained the MC structures. Reactivity and cytotoxicity changes varied based on the individual amino acid moieties within the cyclic heptapeptide structure common to all MCs. Analogous trends in MC reactivity were observed in degradation kinetics and mixed MC competition reactions, aligning with individual amino acid structure-reactivity. Cytotoxicity results indicated no significant unintended toxic consequences from MC_DBPs. Our results suggest that UV/chlorine treatment offers an efficient strategy for treating MCs in drinking water.
Collapse
Affiliation(s)
- Minghao Kong
- Environmental Engineering and Science, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Evangelia Anna Passa
- Environmental Engineering and Science, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Toby Sanan
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - Afzaal Nadeem Mohammed
- Molecular Toxicology Division, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
| | - Alexandria L B Forster
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Patrick T Justen
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Armah de la Cruz
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - Judy A Westrick
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Kevin O'Shea
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Bangxing Ren
- Environmental Engineering and Science, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Mallikarjuna N Nadagouda
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - Jagjit S Yadav
- Molecular Toxicology Division, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
| | - Xiaodi Duan
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Dionysios D Dionysiou
- Environmental Engineering and Science, Department of Chemical and Environmental Engineering (ChEE), University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
8
|
Wang Z, Jia X, Wang J, Li C, Song H, Zhao Q, Li Y, Tian S. Phenolic acid-containing compounds enhanced Fe 3+/peroxides processes for efficient removal of sulfamethoxazole in surface waters. ENVIRONMENTAL RESEARCH 2025; 265:120407. [PMID: 39577721 DOI: 10.1016/j.envres.2024.120407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/17/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Sulfamethoxazole (SMX) in surface waters has raised widespread concerns due to its potential environmental and biological hazards. In this study, the performance, mechanism, and environmental application of phenolic acid-containing compounds (PACCs) enhanced Fe3+/peroxides processes for SMX degradation were investigated. PACCs with two Ar-OH groups exhibited the lowest toxicity and the best enhancement performance (65%-66% of PDS, 47%-58% of PMS and 61%-63% of H2O2), which were attributed to the excellent chelating and reducing ability towards Fe3+. Free radicals played the predominant role in PDS (37% of SO4-·, 34% of ·OH), PMS (37% of SO4-·, 35% of ·OH) and H2O2 (61% of ·OH) oxidation processes. FeIVO2+ play a non-negligible role in PDS and PMS processes (ŋ[PMSO2] = 52%-80% and ŋ[PMSO2] = 59%-72%). PDS and PMS processes were suitable for a pH range of 3.0-9.0, while the H2O2 process was 3.0-10.0. PDS and PMS processes exhibited stronger resistance to the common anions in surface waters. PMS process exhibited higher adaptability to surface waters quality (92%-98%). This study provides a novel approach for enhancing the degradation of SMX in natural surface waters.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, 650500, China
| | - Xiaolei Jia
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, 650500, China
| | - Jianfei Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, 650500, China
| | - Chen Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, 650500, China.
| | - Haoran Song
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, 650500, China.
| | - Qun Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, 650500, China
| | - Yingjie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, 650500, China
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, 650500, China
| |
Collapse
|
9
|
Fang Y, Zhang X, Liu C, Wang K, Rong X, Zhu B. A highly specific colorimetric fluorescent probe for rapid detection of hypobromous acid and its application in the environment. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124822. [PMID: 39084019 DOI: 10.1016/j.saa.2024.124822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/04/2024] [Accepted: 07/13/2024] [Indexed: 08/02/2024]
Abstract
The highly reactive hypobromous acid (HOBr), which is generated after chlorination process of tap water, acts as a precursor of toxic brominated disinfection by-products (Br-DBPs) and further reacts with organic matter. In addition, HOBr produced from the oxidation of Br- during the degradation of pollutants by peroxymonosulfate (PMS, HSO5-) can be considered as the cause of the expedited degradation of pollutants. Therefore, it is particularly important to detect HOBr level in the water environment. Resazurin was selected as a fluorescent probe for selective recognition of HOBr in the water environment. The probe exhibited excellent spectral performance and showed high sensitivity to HOBr (LOD = 515 nM). This method has a relatively ideal recovery rate for HOBr detection in environmental water samples. Furthermore, the HOBr production during the chlorination disinfection process was simulated and the HOBr generated from this process was detected by the probe. Importantly, the process of HOBr recognition by the probe is accompanied by the change of color. Based on this, the relationship between the change of color B/G value and HOBr concentration was successfully constructed. The probe was loaded on the filter paper to make a test strip, which was utilized to the detection of HOBr. Collectively, this work provided a promising and powerful method for HOBr detection in the environment.
Collapse
Affiliation(s)
- Yikun Fang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xiaohui Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Caiyun Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| | - Kun Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xiaodi Rong
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China.
| |
Collapse
|
10
|
Liu C, Liu H, Hu C, Chow AT, Karanfil T. Molecular Alterations of Algal Organic Matter in Oxidation Processes: Implications to the Formation of Disinfection Products. ACS ES&T WATER 2024; 4:5890-5901. [PMID: 39698554 PMCID: PMC11650642 DOI: 10.1021/acsestwater.4c00855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 12/20/2024]
Abstract
Seasonal algal blooms in surface waters can adversely impact drinking water quality. Oxidative treatment has been demonstrated as an effective measure for the removal of algal cells. However, this, in turn, leads to the release of algal organic matter (AOM). Effects of oxidative treatment using chlorine, bromine, chloramine, ozone, and permanganate on the molecular alterations of the AOM were studied using Fourier transform ion cyclotron resonance mass spectrometry. Increased chemodiversity, decreased aromaticity, and elevated average oxidation state of carbon () were observed after oxidation. Of the oxidants, ozone caused the most pronounced changes. There was a positive correlation between the increases in and reduction potentials of oxidants (i.e., ozone > chlorine ≈ bromine > permanganate > chloramine). Oxygen transfer and oxidative dehydrogenation were major pathways (42.3-52.8%) for AOM oxidation, while other pathways (e.g., deamination, dealkylation, decarboxylation, and halogen substitution/addition) existed. Moreover, the halogen substitution/addition pathway only accounted for 1.3-10.3%, even for chlorine or bromine treatment. Oxidative treatment could decrease the reactivity of AOM in postchlorination, thereby decreasing the trichloromethane formation. However, the formation of oxygen-rich disinfection byproducts (DBPs, e.g., trichloronitromethane) could be favored, especially for ozonation. This study provides molecular-level insights into the effects of oxidative treatment on AOM and derived DBP formation in water treatment.
Collapse
Affiliation(s)
- Chao Liu
- Key
Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
- Department
of Environmental Engineering and Earth Sciences, Clemson University, Anderson, South Carolina 29625, United States
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Hang Liu
- Key
Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
| | - Chengzhi Hu
- Key
Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Alex T. Chow
- Department
of Earth and Environmental Sciences, Faculty
of Science, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Tanju Karanfil
- Department
of Environmental Engineering and Earth Sciences, Clemson University, Anderson, South Carolina 29625, United States
| |
Collapse
|
11
|
Valenti-Quiroga M, Cabrera-Codony A, Emiliano P, Valero F, Monclús H, Martin MJ. In-depth analysis of natural organic matter fractions in drinking water treatment performance: Fate and role of humic substances in trihalomethanes formation potential. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176600. [PMID: 39349194 DOI: 10.1016/j.scitotenv.2024.176600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
In this study we investigate the compositional changes in dissolved organic matter (DOM) fractions across diverse water sources and treatment processes in three Drinking Water Treatment Plants (DWTPs). High-Performance Size Exclusion Chromatography coupled with Diode Array Detection and Organic Carbon Detection (HPSEC-DAD-OCD) was employed to characterize DOM fractions, offering insights into treatment optimization. We examine bulk water parameters, DOM distributions, and the efficiency of treatment trains in reducing DOM fractions. Results reveal distinct DOM composition profiles in river-sourced versus reservoir-sourced waters, with implications for treatment processes. Coagulation, Granular Activated Carbon (GAC) adsorption, Electrodialysis Reversal (EDR), and Ion Exchange (IEX) were evaluated for their efficacy in removing DOM fractions. The analysis highlights the effectiveness of coagulation in reducing high molecular weight (MW) fractions, while GAC filtration targets lower MW fractions. EDR shows significant removal of anions and aromatics, while IEX demonstrates high removal efficiencies for removing humic substances (HS) fractions. Spectroscopic analysis further elucidates changes HS sub-fractions and their role in disinfection by-products (DBP) formation. To quantitatively assess the relationship between HS sub-fractions and trihalomethane formation potentials (THMFP), Pearson correlation analysis were conducted, unveiling robust associations between HS sub-fractions and THM-FP that can be predicted by surrogate parameters such as A254.
Collapse
Affiliation(s)
- Meritxell Valenti-Quiroga
- LEQUIA, Institute of the Environment, Universitat de Girona, Carrer Maria Aurèlia Capmany, 69, E-17003 Girona, Spain
| | - Alba Cabrera-Codony
- LEQUIA, Institute of the Environment, Universitat de Girona, Carrer Maria Aurèlia Capmany, 69, E-17003 Girona, Spain
| | - Pere Emiliano
- Ens d'Abastament d'Aigua Ter-Llobregat (ATL), Sant Martí de l'Erm 2, E-08970 Sant Joan Despí, Barcelona, Spain
| | - Fernando Valero
- Ens d'Abastament d'Aigua Ter-Llobregat (ATL), Sant Martí de l'Erm 2, E-08970 Sant Joan Despí, Barcelona, Spain
| | - Hèctor Monclús
- LEQUIA, Institute of the Environment, Universitat de Girona, Carrer Maria Aurèlia Capmany, 69, E-17003 Girona, Spain
| | - Maria J Martin
- LEQUIA, Institute of the Environment, Universitat de Girona, Carrer Maria Aurèlia Capmany, 69, E-17003 Girona, Spain.
| |
Collapse
|
12
|
Ouyang J, Lin M, Wei F, Ling C, Lu T, Liu Y, Qi B, Hu J, He J, Zhuang G. Estimation of suspected estrogenic transformation products generated during preservative butylparaben chlorination using a simplified effect-based analysis approach. WATER RESEARCH 2024; 267:122414. [PMID: 39303581 DOI: 10.1016/j.watres.2024.122414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 08/18/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
Estrogenic transformation products (TPs) generated after water chlorination can be considered as an environmental and health concern, since they can retain and even increase the estrogenicity of the parent compound, thus posing possible risks to drinking water safety. Identification of the estrogenic TPs generated from estrogenic precursor during water chlorination is important. Herein, butylparaben (BuP), which was widely used as preservative in food, pharmaceuticals and personal care products (PPCPs), was selected for research. A simplified effect-based analysis (EDA) approach was applied for the identification of estrogenic TPs generated during BuP chlorination. Despite the removal of BuP corresponds to the decrease of estrogenicity in chlorinated samples, an significant increase of estrogenicity was observed (at T = 30 min, presented an estrogenicity equivalent to 17β-estradiol). Chemical analysis of the estrogenic chlorinated samples that have been previously subjected to biological analysis (in vitro assays), in combination with the principal component analysis (PCA) evaluation, followed by validating the estrogenic potency of most relevant estrogenic TPs through an in silico approach (molecular dynamics simulations), identified that the halogenated TP3 (3,5-Dichloro-butylparaben) increased by 62.5 % and 61.8 % of the estrogenic activity of the parent compound in samples chlorinated with 30 min and 1 h, respectively being classified as a potentially estrogenic activity driver after BuP chlorination. This study provides a scientific basis for the more comprehensive assessment of the environmental and health risk associated with BuP chlorination, highlighting the necessity of identifying the unknown estrogenic TPs generateded from estrogenic precursors chlorination.
Collapse
Affiliation(s)
- Jie Ouyang
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, PR China.
| | - Min Lin
- Hangzhou Jasu Environmental Monitoring Co., Ltd, Hangzhou, Zhejiang 310018, PR China
| | - Fang Wei
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, PR China
| | - Chen Ling
- Zhejiang Hangzhou Ecological Environment Monitoring Center, Hangzhou, Zhejiang 310018, PR China
| | - Tingyu Lu
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, PR China
| | - Yao Liu
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, PR China
| | - Beimeng Qi
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, PR China
| | - Jun Hu
- Eco-In-dustrial Innovation Institute ZJUT, Quzhou 324400, PR China
| | - Jian He
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Guoqiang Zhuang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| |
Collapse
|
13
|
Chuang YH, Chou CS, Chu YL. Unveiling the Critical Pathways of Hydroxyl Radical Formation in Breakpoint Chlorination: The Role of Trichloramine and Dichloramine Interactions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21086-21096. [PMID: 39528320 PMCID: PMC11603780 DOI: 10.1021/acs.est.4c08403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Chlorination of ammonia or chloramine-containing waters induces breakpoint chlorination reactions, producing a hydroxyl radical (•OH), but enhances the formation of undesirable N-nitrosamines. The prevailing view attributes •OH formation to a nitrosyl intermediate derived from the hydrolysis of dichloramine, but this pathway is unlikely at neutral or acidic pH. This study reveals a novel mechanism where •OH is generated via interactions between trichloramine (NCl3) and dichloramine (NHCl2), which also form nitrosation agents. Our experiments demonstrated that the NCl3-NHCl2 interaction degrades micropollutants with kinetics 2-3 times faster than breakpoint chlorination. Using electron paramagnetic resonance, we detected •OH in the NCl3-NHCl2 reaction. Micropollutant removal was unimpaired under low dissolved oxygen (O2(aq)) conditions, aligning with negligible O2(aq) changes during the NCl3-NHCl2 reaction and suggesting O2(aq) does not participate in •OH formation. Using benzene as a probe in 18O-labeled H2O, we confirmed water contributes to the oxygen source of •OH in NCl3-NHCl2 interactions, through which parallel reactions occur, leading to the formation of one mole of •OH alongside 1.92 mol of N2. A kinetic model developed in this study accurately predicted •OH and N2 and demonstrated the NCl3-NHCl2 interaction as the primary pathway for •OH formation in breakpoint chlorination, providing new insights into breakpoint chemistry.
Collapse
Affiliation(s)
- Yi-Hsueh Chuang
- Institute of Environmental
Engineering, National Yang Ming Chiao Tung
University, Hsinchu city 30010, Taiwan
| | - Chia-Shun Chou
- Institute of Environmental
Engineering, National Yang Ming Chiao Tung
University, Hsinchu city 30010, Taiwan
| | - Yi-Lin Chu
- Institute of Environmental
Engineering, National Yang Ming Chiao Tung
University, Hsinchu city 30010, Taiwan
| |
Collapse
|
14
|
Moore N, Zollbrecht N, Chen T, Taylor-Edmonds L, Vanyo K, Mackey E, Andrews S, Hofmann R. Concerning Toxic Byproducts and Full-Scale UV/Chlorine Advanced Oxidation Water Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20710-20718. [PMID: 39499662 DOI: 10.1021/acs.est.4c06904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
This work investigated byproduct formation and in vitro genotoxicity and cytotoxicity at four facilities using UV/chlorine advanced oxidation for potable reuse or drinking water treatment. In arguably the most common application of UV/chlorine, treating reverse osmosis permeate for potable reuse, organic byproduct formation was always either not detected or well-below typical drinking water levels. At a groundwater-source drinking water treatment plant, the trihalomethanes and haloacetic acids each increased by up to 12 μg/L through the UV reactor and 40 μg/L during secondary disinfection, but the final concentrations remained low relative to regulatory limits. Overall, and aside from the known pathways of chlorate formation, the UV/chlorine byproduct and in vitro toxicity formation observed in this study was lower than what is generally found in many chlor(am)inated drinking waters, although there was some observed shift to more brominated species, which might be deserving of future research, given their higher in vitro toxicity compared to typical chlorinated species.
Collapse
Affiliation(s)
- Nathan Moore
- University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada
| | - Nicole Zollbrecht
- University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada
| | - Tianyi Chen
- University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada
| | | | - Katie Vanyo
- Hazen & Sawyer, 1400 E Southern Ave Suite 340, Tempe, Arizona 85282, United States
| | - Erin Mackey
- Brown and Caldwell, 201N Civic Dr. #300, Walnut Creek, California 94596, United States
| | - Susan Andrews
- University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada
| | - Ronald Hofmann
- University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada
| |
Collapse
|
15
|
Wang P, Ye B, Nomura Y, Fujiwara T. Revisiting the chloramination of phenolic compounds: Formation of novel high-molecular-weight nitrogenous disinfection byproducts. WATER RESEARCH 2024; 266:122335. [PMID: 39213683 DOI: 10.1016/j.watres.2024.122335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Disinfection is critical for ensuring water safety; however, the potential risks posed by disinfection byproducts (DBPs) have raised public concern. Previous studies have largely focused on low-molecular-weight DBPs with one or two carbon atoms, leaving the formation of high-molecular-weight DBPs (HMW DBPs, with more than two carbon atoms) less understood. This study explores the formation of HMW DBPs during the chloramination of phenolic compounds using a novel approach that combines high-resolution mass spectrometry with density functional theory (DFT) calculations. For the first time, we identified nearly 100 previously unreported HMW nitrogenous DBPs (N-DBPs), with nearly half of those being halogenated N-DBPs. These N-DBPs were tentatively identified as heterocyclic (e.g., pyrrole and pyridine analogs) and coupling heterocyclic N-DBPs. Through detailed structure analysis and DFT calculations, the key formation steps of heterocyclic N-DBPs (monochloramine-mediated ring-opening reactions of halobenzoquinones) and new bonding mechanisms (C-N, C-O, and C-C bonding) of the coupling heterocyclic N-DBPs were elucidated. The selective formation of these novel N-DBPs was significantly influenced by factors such as contact time, monochloramine dosage, pH, and bromide concentration. Our findings emphasize the occurrence of diverse HMW heterocyclic N-DBPs, which are likely toxicologically significant, underscoring the need for further research to evaluate and mitigate their potential health risks in water disinfection.
Collapse
Affiliation(s)
- Pin Wang
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Bei Ye
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan; Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Youhei Nomura
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan; Department of Global Ecology, Graduate School of Global Environmental Studies, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Taku Fujiwara
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan; Department of Global Ecology, Graduate School of Global Environmental Studies, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan.
| |
Collapse
|
16
|
Wu Y, Wang Q, Yang K, Xie Q, Wang G, Ma X, Pan J, Xia Q, Wagner WD, Zhang Y, Liu X, Wang C, Wang Z. Ultrasonication-Boosted Resorcinol-Formaldehyde Resin Nanoparticle Bromine Fixation and Corresponding Upgraded Aquatic Applications. Chemistry 2024; 30:e202402403. [PMID: 39198977 DOI: 10.1002/chem.202402403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Bromine (Br2) and related species removal from water systems are rather complicated due to the complicated chemistry instability, and materials with high Br2 removal rate and efficiency, along with stimuli/apparatus suitable for highly corrosive environments, are necessary. Ultrasonication as a non-destructive process is especially suitable in scenarios where conventional stir apparatus is not applicable, such as highly corrosive environments. Considering the validity nature of Br2 and combining the advantages of ultrasonic with a highly stable Br2 fixation method through aromatic polymer nanoparticles, we demonstrate highly efficient acoustic-aided Br2 removal in aqueous solutions with two times capacity compared to the non-treated sample. Related aquatic applications are also proposed for the materials to be cost-effective, including silver (Ag) recovery, recyclable MnO2-mediated Br2 deep removal, and aqueous zinc anode modification. The coupled novel-material-based processes motivate the strategic design of water purification with high-safety and sustainable industrial procedures and post-value-added utilizations.
Collapse
Affiliation(s)
- Yutong Wu
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qianhui Wang
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Keke Yang
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qihong Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Guotao Wang
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xinxi Ma
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Jiahao Pan
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Qiancheng Xia
- School of Environment, Nanjing University, Nanjing, 210023, China
| | - Wayko D Wagner
- Tippie College of Business, University of Iowa, Iowa City, Iowa, 52245, USA
| | - Yi Zhang
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xiang Liu
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Chao Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Zhoulu Wang
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
17
|
Han M, Huang S, Zhang X, Zhang K. A convenient reduction method for the detection of low concentration free available chlorine--utilizing sodium sulfite as a quencher. CHEMOSPHERE 2024; 367:143631. [PMID: 39461435 DOI: 10.1016/j.chemosphere.2024.143631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 10/29/2024]
Abstract
Chlorine, serving as the mainstream disinfectant, can react with dissolved organic matter (DOM) to form undeserved disinfection by-products (DBPs). Free available chlorine (FAC) concentration is crucial to ensure effective disinfection while minimizing the formation of toxic DBPs. In this study, we propose a convenient method using sodium sulfite (Na2SO3) to reduce oxidized chlorine in FAC. The molar concentration of reduced chloride ion (Cl-) was quantified directly by ion chromatography to reflect FAC concentration. Compared with common FAC detection techniques including DPD colorimetry, iodometry, and UV methods, this novel reduction method exhibits a lower detection limit and is more resistant to interference. Common water matrices, such as DOM and anions did not affect the method accuracy (< 3.6%). Furthermore, carbonaceous DBPs (C-DBPs) like regulated trihalomethanes and halogenacetic acids, unregulated aromatic chlorophenols, did not interfere with the determination of FAC by using this reduction method. This lack of interference can be attributed to the low redox potential of Na2SO3, which does not readily react with these C-DBPs. However, nitrogenated DBPs (N-DBPs) like dichloroacetonitrile displayed slight interference (the effect of common dichloroacetonitrile concentration in water on FAC was less than 0.0007 μM). This suggests that this method is well-suited for determining FAC in chlorination processes where the C-DBPs predominated. Overall, the reduction method enables precise determination of FAC and proves valuable in assessing residual chlorine levels in both laboratory and real disinfected water samples dominated by C-DBPs.
Collapse
Affiliation(s)
- Meiyao Han
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan, 611830, China
| | - Shiyue Huang
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan, 611830, China
| | - Xiaoxiao Zhang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 100872, China.
| | - Ke Zhang
- College of Civil Engineering, Sichuan Agricultural University, Dujiangyan, 611830, China.
| |
Collapse
|
18
|
Fan Y, Yang J, Lin K. Probing the role of BrCl in benzotriazole transformation during seawater chlorination. WATER RESEARCH 2024; 268:122609. [PMID: 39413710 DOI: 10.1016/j.watres.2024.122609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
A common understanding attributes the formation of brominated disinfection by-products (Br-DBPs) in seawater chlorination to the conversion of hypochlorous acid to hypobromous acid (HOBr) by bromide. In this study, we reveal that bromine chloride (BrCl), mediated by both chloride and bromide in seawater, plays a dominant role in the transformation of 1H-benzotriazole (BTA) and 5-methyl-1H-benzotriazole (MBTA) and in the formation of brominated DBPs. Using anisole as a reference compound, the second-order rate constant for the reaction of BrCl with BTA was determined to be (2.65 ± 0.13) × 105 L mol-1 s-1, which is over 30,000 times higher than that for the reaction between HOBr and BTA. Ten brominated products were identified and showed a successive bromination pattern. The bromination reaction mechanism was elucidated through theoretical calculations, and the pathways were proposed. The concentrations of brominated BTA and MBTA in seawater were 5.7 and 7.9 times higher than in bromide-only solutions, respectively. BrCl significantly promoted brominated product generation and increased the toxicity of blended DBPs. These results suggest that focusing solely on bromide's effect on brominated product generation may significantly underestimate the potential for DBP formation during seawater chlorination.
Collapse
Affiliation(s)
- Yongjie Fan
- Fujian Provincial Key Laboratory for Coast Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Jing Yang
- Fujian Provincial Key Laboratory for Coast Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Kunde Lin
- Fujian Provincial Key Laboratory for Coast Ecology and Environmental Studies, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
19
|
Wu Y, Wang H, Du J, Hu Y, Wu Q, Guo W, Choi W. Simultaneous Oxidation of Bromide and Dissolution of Manganese Oxide Induced by Freezing. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17948-17958. [PMID: 39316547 DOI: 10.1021/acs.est.4c07493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
This study demonstrates that the oxidation of bromide by birnessite (δ-MnO2) results in the concurrent production of soluble manganese (Mn(II)) and reactive bromine (RBr) species in frozen solutions, a process not observed in aqueous solutions. This enhanced oxidation in ice is attributed to the concentration of protons, birnessite, or bromide in the ice grain boundary region. Furthermore, different types of commercial manganese oxides can also oxidize bromide to RBr and release Mn(II) in ice. The presence of fulvic acid (FA) further increases the simultaneous production of RBr and Mn(II) in ice, accompanying the formation of organobromine compounds (OBCs). In frozen δ-MnO2/Br-/FA system, a significant increase in OBCs, mainly highly unsaturated and phenolic compounds, was detected using Fourier transform ion cyclotron resonance mass spectrometry. A marked contrast was observed in the number of OBCs formed in frozen solutions (853 and 415 OBCs at initial pH 3.0 and 5.8, respectively) compared to their aqueous counterparts (11 and 23 OBCs). These findings introduce a new pathway for the formation of RBr, Mn(II), and OBCs in ice, highlighting the need for further research on the environmental fate of bromide and manganese.
Collapse
Affiliation(s)
- Yaohua Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huazhe Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Juanshan Du
- Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju 58330, Korea
| | - Yi Hu
- Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju 58330, Korea
| | - Qinglian Wu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wanqian Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wonyong Choi
- Department of Energy Engineering, Korea Institute of Energy Technology (KENTECH), Naju 58330, Korea
| |
Collapse
|
20
|
Kralles ZT, Deherikar PK, Werner CA, Hu X, Kolodziej EP, Dai N. Halogenation of Anilines: Formation of Haloacetonitriles and Large-Molecule Disinfection Byproducts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17497-17509. [PMID: 39297711 DOI: 10.1021/acs.est.4c05434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Aniline-related structures are common in anthropogenic chemicals, such as pharmaceuticals and pesticides. Compared with the widely studied phenolic compounds, anilines have received far less assessment of their disinfection byproduct (DBP) formation potential, even though anilines and phenols likely exhibit similar reactivities on their respective aromatic rings. In this study, a suite of 19 aniline compounds with varying N- and ring-substitutions were evaluated for their formation potentials of haloacetonitriles and trihalomethanes under free chlorination and free bromination conditions. Eight of the aniline compounds formed dichloroacetonitrile at yields above 0.50%; the highest yields were observed for 4-nitroaniline, 3-chloroaniline, and 4-(methylsulfonyl)aniline (1.6-2.3%). Free bromination generally resulted in greater haloacetonitrile yields with the highest yield observed for 2-ethylaniline (6.5%). The trihalomethane yields of anilines correlated with their haloacetonitrile yields. Product analysis of aniline chlorination by liquid chromatography-high-resolution mass spectrometry revealed several large-molecule DBPs, including chloroanilines, (chloro)hydroxyanilines, (chloro)benzoquinone imines, and ring-cleavage products. The product time profiles suggested that the reaction pathways include initial ring chlorination and hydroxylation, followed by the formation of benzoquinone imines that eventually led to ring cleavage. This work revealed the potential of aniline-related moieties in micropollutants as potent precursors to haloacetonitriles and other emerging large-molecule DBPs with the expected toxicity.
Collapse
Affiliation(s)
- Zachary T Kralles
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, 231 Jarvis Hall, Buffalo, New York 14260, United States
| | - Prashant K Deherikar
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, 231 Jarvis Hall, Buffalo, New York 14260, United States
| | - Christian A Werner
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, 231 Jarvis Hall, Buffalo, New York 14260, United States
| | - Ximin Hu
- Center for Urban Waters, University of Washington-Tacoma, Tacoma, Washington 98421, United States
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Edward P Kolodziej
- Center for Urban Waters, University of Washington-Tacoma, Tacoma, Washington 98421, United States
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Ning Dai
- Department of Civil, Structural and Environmental Engineering, University at Buffalo, The State University of New York, 231 Jarvis Hall, Buffalo, New York 14260, United States
| |
Collapse
|
21
|
Lee S, Choi Y, Lee Y. Effect of bromide on the degradation kinetics of antibiotic resistance genes during water chlorination. CHEMOSPHERE 2024; 366:143483. [PMID: 39369750 DOI: 10.1016/j.chemosphere.2024.143483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
Degradation of antibiotic resistance genes (ARGs) in water chlorination can be influenced by bromide (Br-), a common component in water matrices; however, detailed kinetic information on this process is limited. This study investigated the degradation kinetics tetA and blaTEM-1 genes, contained within the plasmid pWH1266, when exposed to bromine, chlorine, and chlorine with varying concentrations of Br- across a pH range of 7.0-8.5. The degradation of four ARG amplicons, measured using quantitative polymerase chain reaction, was observed to pursue second-order kinetics with bromine, exhibiting k of 4.0 × 102 - 1.6 × 103 M-1 s-1 at pH 7.0 and 2.6 × 102 - 9.6 × 102 M-1 s-1 at pH 8.5. These k values increased linearly with the length of the ARG sequences (209-1136 bps), yielding sequence-independent k of 1.2 and 7.4 × 10-1 (M AT + GC)-1 s-1 at pH 7.0 and 8.5, respectively. The degradation rate of ARGs during chlorination increased with rising Br- concentration due to the bromine formation through the reaction between chlorine with Br-, which subsequently degrades ARGs more rapidly than chlorine. This behavior was successfully simulated using a kinetic model derived from the reaction kinetics of bromine and chlorine reactions with ARGs. The existence of dissolved organic matter extracts only marginally decreased the enhanced degradation of ARGs with Br-, while ammonia significantly inhibited this process during chlorination, both with and without Br-, due to the low reactivity of NH2Cl and NH2Br toward ARGs. These findings highlight the importance of Br- in ARG degradation during water chlorination and the need for further studies in diverse water matrices.
Collapse
Affiliation(s)
- Seunggi Lee
- School of Environment and Energy Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Yegyun Choi
- School of Environment and Energy Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Yunho Lee
- School of Environment and Energy Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
22
|
Guo X, Ji X, Liu Z, Feng Z, Zhang Z, Du S, Li X, Ma J, Sun Z. Complex impact of metals on the fate of disinfection by-products in drinking water pipelines: A systematic review. WATER RESEARCH 2024; 261:121991. [PMID: 38941679 DOI: 10.1016/j.watres.2024.121991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
Metals in the drinking water distribution system (DWDS) play an important role on the fate of disinfection by-products (DBPs). They can increase the formation of DBPs through several mechanisms, such as enhancing the proportion of reactive halogen species (RHS), catalysing the reaction between natural organic matter (NOM) and RHS through complexation, or by increasing the conversion of NOM into DBP precursors. This review comprehensively summarizes these complex processes, focusing on the most important metals (copper, iron, manganese) in DWDS and their impact on various DBPs. It organizes the dispersed 'metals-DBPs' experimental results into an easily accessible content structure and presents their underlying common or unique mechanisms. Furthermore, the practically valuable application directions of these research findings were analysed, including the toxicity changes of DBPs in DWDS under the influence of metals and the potential enhancement of generalization in DBP model research by the introduction of metals. Overall, this review revealed that the metal environment within DWDS is a crucial factor influencing DBP levels in tap water.
Collapse
Affiliation(s)
- Xinming Guo
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150096, China
| | - Xiaoyue Ji
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150096, China
| | - Zihan Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150096, China
| | - Zhuoran Feng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150096, China
| | - ZiFeng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shuang Du
- Institute of NBC Defense. PLA Army, P.O.Box1048, Beijing 102205 China
| | - Xueyan Li
- Suzhou University Science & Technology, School of Environmental Science & Engineering, Suzhou 215009, China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150096, China
| | - Zhiqiang Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150096, China.
| |
Collapse
|
23
|
Xie Y, Liu Q, Xu X, Lin L, Wang D. Formation of the emerging disinfection byproducts halocyclopentadienes from phenolic compounds after chlorination. CHEMOSPHERE 2024; 364:143092. [PMID: 39146986 DOI: 10.1016/j.chemosphere.2024.143092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/17/2024]
Abstract
Halocyclopentadienes (HCPDs) are an emerging class of alicyclic disinfection by-products (DBPs) with high toxicity in disinfected drinking water. However, their potential precursors remain unclear, which hinders the understanding of their formation and further development of control strategies. In this study, two HCPDs, 1,2,3,4-tetrachloro-1,3-cyclopentadiene (TCC) and 1,2,3,4,5,5-hexachloro-1,3-cyclopentadiene (HCC), were identified in chlorinated lignin and tannic acid samples for the first time. The chlorination of four lignin-like and two tannic-like phenolic model compounds confirmed that guaiacol and digallic acid can produce HCPDs. According to their structures, ortho-substituents of phenolic compounds were speculated to be crucial for HCPDs formation. The simulated disinfection of catechol, 2-ethoxyphenol (2-EOP), 2-propoxyphenol (2-POP) and 3,4-dihydroxy-5-methoxybenzoic acid (DH-5-MBA) with different ortho-substituents demonstrated that three of these compounds can generate HCPDs, except catechol, which further indicates that ortho-substituents, such as the methoxy, ethoxy and propoxy groups, contribute to HCPDs generation. Guaiacol was the simplest compound for generating HCPDs, and possible formation pathways during chlorination were proposed. Seven hydroxy-chlorocyclopentadienes were tentatively identified and are likely important intermediates of HCPDs formation. Additionally, TCC and HCC were confirmed in tap water and chlorinated SRNOM samples with total concentrations up to 11.07 ng/L and 65.66 ng/L, respectively, further demonstrating the wide existence of HCPDs and their precursors. This study reports the clear precursors of HCPDs and provides a theoretical foundation for controlling HCPDs formation in disinfected drinking water.
Collapse
Affiliation(s)
- Yongchang Xie
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Quanzhen Liu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiong Xu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Lihua Lin
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Donghong Wang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
24
|
Yang W, Fang C, Hong Y, Zhang ZF, Xu Z, Chu W. Widespread Antioxidants during Storm Events Could Serve as Precursors of Regulated, Priority, and New Disinfection Byproducts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14864-14874. [PMID: 39047190 DOI: 10.1021/acs.est.4c05815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Widely used antioxidants can enter the environment via urban stormwater systems and form disinfection byproducts (DBPs) during chlorination in downstream drinking water processes. Herein, we comprehensively investigated the occurrence of 39 antioxidants from stormwater runoff to surface water. After a storm event, the concentrations of the antioxidants in surface water increased by 1.4-fold from 102-110 ng/L to 128-139 ng/L. Widespread antioxidants during the stormwater event could transform into toxic DBPs during disinfection. Moreover, the yields of trihalomethanes, haloacetaldehydes, haloacetonitriles (HANs), and halonitromethanes during the chlorination of widely used antioxidants considerably increased with an increasing chlorine dose and contact time. Specifically, the yields of dichloroacetonitrile during the chlorination of diphenylamine (DPA) and N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) were higher than those of most reported amino acid precursors, indicating that DPA and 6PPD might be important precursors of HANs. Exploring the intermediates using GC × GC-time-of-flight high-resolution mass spectrometry helped reveal potential pathways from DPA to HANs, whose formation could be attributed to the intermediate carbazole and indole moieties detected in this study. This study provides insights into the transport and transformation of commonly used antioxidants in a water environment and during water treatment processes, highlighting the potential risks of anthropogenic pollutants from a DBP perspective.
Collapse
Affiliation(s)
- Wenyuan Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Chao Fang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yuntao Hong
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
25
|
Hu Q, Lou M, Wang R, Bai S, Guo H, Zhou J, Ma Q, Wang T, Zhu L, Zhang X. Complexation with Metal Ions Affects Chlorination Reactivity of Dissolved Organic Matter: Structural Reactomics of Emerging Disinfection Byproducts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13890-13903. [PMID: 39042037 DOI: 10.1021/acs.est.4c03022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Metal ions are liable to form metal-dissolved organic matter [dissolved organic matter (DOM)] complexes, changing the chemistry and chlorine reactivity of DOM. Herein, the impacts of iron and zinc ions (Fe3+ and Zn2+) on the formation of unknown chlorinated disinfection byproducts (Cl-DBPs) were investigated in a chlorination system. Fe3+ preferentially complexed with hydroxyl and carboxyl functional groups, while Zn2+ favored the amine functional groups in DOM. As a consequence, electron-rich reaction centers were created by the C-O-metal bonding bridge, which facilitated the electrophilic attack of α-C in metal-DOM complexes. Size-reactivity continuum networks were constructed in the chlorination system, revealing that highly aromatic small molecules were generated during the oxidation and decarbonization of metal-DOM complexes. Molecular transformation related to C-R (R represents complex sites) loss was promoted via metal complexation, including decarboxylation and deamination. Consequently, complexation with Fe3+ and Zn2+ promoted hydroxylation by the C-O-metal bonding bridge, thereby increasing the abundances of unknown polychlorinated Cl-DBPs by 9.6 and 14.2%, respectively. The study provides new insights into the regulation of DOM chemistry and chlorine reactivity by metal ions in chlorination systems, emphasizing that metals increase the potential health risks of drinking water and more scientific control standards for metals are needed.
Collapse
Affiliation(s)
- Qian Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Mingxuan Lou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Ruigang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Sai Bai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - He Guo
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Qiuling Ma
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Lingyan Zhu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300385, China
| | - Xiangru Zhang
- Department of Civil & Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong 00000, PR China
| |
Collapse
|
26
|
Jokumsen KV, Huhle VH, Hägglund PM, Davies MJ, Gamon LF. Elevated levels of iodide promote peroxidase-mediated protein iodination and inhibit protein chlorination. Free Radic Biol Med 2024; 220:207-221. [PMID: 38663830 DOI: 10.1016/j.freeradbiomed.2024.04.230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/18/2024] [Indexed: 05/15/2024]
Abstract
At inflammatory sites, immune cells generate oxidants including H₂O₂. Myeloperoxidase (MPO), released by activated leukocytes employs H₂O₂ and halide/pseudohalides to form hypohalous acids that mediate pathogen killing. Hypochlorous acid (HOCl) is a major species formed. Excessive or misplaced HOCl formation damages host tissues with this linked to multiple inflammatory diseases. Previously (Redox Biology, 2020, 28, 101331) we reported that iodide (I⁻) modulates MPO-mediated protein damage by decreasing HOCl generation with concomitant hypoiodous acid (HOI) formation. HOI may however impact on protein structure, so in this study we examined whether and how HOI, from peroxidase/H₂O₂/I⁻ systems ± Cl⁻, modifies proteins. Experiments employed MPO and lactoperoxidase (LPO) and multiple proteins (serum albumins, anastellin), with both chemical (intact protein and peptide mass mapping, LC-MS) and structural (SDS-PAGE) changes assessed. LC-MS analyses revealed dose-dependent iodination of anastellin and albumins by LPO/H2O2 with increasing I⁻. Incubation of BSA with MPO/H2O2/Cl⁻ revealed modest chlorination (Tyr286, Tyr475, ∼4 %) and Met modification. Lower levels of these species, and extensive iodination at specific Tyr and His residues (>20 % modification with ≥10 μM I⁻) were detected with increasing I⁻. Anastellin dimerization was inhibited by increasing I⁻, but less marked changes were observed with albumins. These data confirm that I⁻ competes with Cl⁻ for MPO and is an efficient HOCl scavenger. These processes decrease protein chlorination and oxidation, but result in extensive iodination. This is consistent with published data on the presence of iodinated Tyr on neutrophil proteins. The biological implications of protein iodination relative to chlorination require further clarification.
Collapse
Affiliation(s)
| | - Valerie H Huhle
- Dept. of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Per M Hägglund
- Dept. of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael J Davies
- Dept. of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Luke F Gamon
- Dept. of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
27
|
Wang T, Deng L, Tan C, Hu J, Prasad Singh R. Formation of halonitromethanes from different nitrophenol compounds during UV/post-chlorination: Impact factors, DFT calculation, reaction mechanisms, and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174718. [PMID: 38997025 DOI: 10.1016/j.scitotenv.2024.174718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
As ubiquitous chemical substances in water bodies, nitrophenol compounds (NCs) can form chlorinated halonitromethanes (Cl-HNMs) in the chlorination process. This work chose six typical NCs to explore Cl-HNMs produced during the UV/post-chlorination process, and Cl-HNMs yields from these NCs followed the increasing order of 4-, 2-, 2-amino-3-, 2-methyl-3-, 3-, and 2-chloro-3-nitrophenol. The Cl-HNMs yields increased continually or increased firstly and declined with post-chlorination time. Increasing chlorine dosage favored Cl-HNMs formation, while excessive chlorine dosage decreased Cl-HNMs produced from 2- and 4-nitrophenol. Besides, appropriate UV radiation, acidic pH, and higher precursor concentrations facilitated Cl-HNMs formation. Then, the reaction mechanisms of Cl-HNMs generated from these different NCs were explored according to density functional theory calculation and identified transformation products (TPs), and the main reactions included chlorine substitution, benzoquinone compound formation, ring opening, and bond cleavage. Moreover, the Cl-HNMs generated from 2-chloro-3-nitrophenol were of the highest toxicity, and the six NCs and their TPs also presented ecotoxicity. Finally, two kinds of real waters were used to explore Cl-HNMs formation and toxicity, and they were significantly distinguishable compared to the phenomena observed in simulated waters. This work will give new insights into Cl-HNMs formation from different NCs in water disinfection processes and help better apply the UV/post-chlorination process to water treatments.
Collapse
Affiliation(s)
- Tao Wang
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | - Lin Deng
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China.
| | - Chaoqun Tan
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China
| | - Jun Hu
- Department of Municipal Engineering, Southeast University, Nanjing 211189, China; College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | | |
Collapse
|
28
|
Pedregal-Montes A, Jennings E, Kothawala D, Jones K, Sjöstedt J, Langenheder S, Marcé R, Farré MJ. Disinfection by-product formation potential in response to variability in dissolved organic matter and nutrient inputs: Insights from a mesocosm study. WATER RESEARCH 2024; 258:121791. [PMID: 38830291 DOI: 10.1016/j.watres.2024.121791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024]
Abstract
Changes in rainfall patterns driven by climate change affect the transport of dissolved organic matter (DOM) and nutrients through runoff to freshwater systems. This presents challenges for drinking water providers. DOM, which is a heterogeneous mix of organic molecules, serves as a critical precursor for disinfection by-products (DBPs) which are associated with adverse health effects. Predicting DBP formation is complex due to changes in DOM concentration and composition in source waters, intensified by altered rainfall frequency and intensity. We employed a novel mesocosm approach to investigate the response of DBP precursors to variability in DOM composition and inorganic nutrients, such as nitrogen and phosphorus, export to lakes. Three distinct pulse event scenarios, mimicking extreme, intermittent, and continuous runoff were studied. Simultaneous experiments were conducted at two boreal lakes with distinct DOM composition, as reflected in their color (brown and clear lakes), and bromide content, using standardized methods. Results showed primarily site-specific changes in DBP precursors, some heavily influenced by runoff variability. Intermittent and daily pulse events in the clear-water mesocosms exhibited higher haloacetonitriles (HANs) formation potential linked to freshly produced protein-like DOM enhanced by light availability. In contrast, trihalomethanes (THMs), associated with humic-like DOM, showed no significant differences between pulse events in the brown-water mesocosms. Elevated bromide concentration in the clear mesocosms critically influenced THMs speciation and concentrations. These findings contribute to understanding how changing precipitation patterns impact the dynamics of DBP formation, thereby offering insights for monitoring the mobilization and alterations of DBP precursors within catchment areas and lake ecosystems.
Collapse
Affiliation(s)
- Angela Pedregal-Montes
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, Parc Científic i Tecnològic de la Universitat de Girona, 17003 Girona, Spain; University of Girona, Plaça de Sant Domènec 3, 17004 Girona, Spain.
| | - Eleanor Jennings
- Centre for Freshwater and Environmental Studies, Dundalk Institute of Technology, A91 K584 Dundalk, Ireland
| | - Dolly Kothawala
- Department of Ecology and Genetics/Limnology, Uppsala University, SE-75236 Uppsala, Sweden
| | - Kevin Jones
- Department of Biology, Aquatic Ecology, Lund University, Lund, Sweden
| | - Johanna Sjöstedt
- Department of Biology, Aquatic Ecology, Lund University, Lund, Sweden; School of Business, Innovation and Sustainability, Halmstad University, Halmstad, Sweden
| | - Silke Langenheder
- Department of Ecology and Genetics/Limnology, Uppsala University, SE-75236 Uppsala, Sweden
| | - Rafael Marcé
- Centre for Advanced Studies of Blanes (CEAB), Spanish National Research Council (CSIC), 17300 Blanes, Spain
| | - Maria José Farré
- Catalan Institute for Water Research (ICRA), Carrer Emili Grahit 101, Parc Científic i Tecnològic de la Universitat de Girona, 17003 Girona, Spain; University of Girona, Plaça de Sant Domènec 3, 17004 Girona, Spain.
| |
Collapse
|
29
|
Cheng S, Wang X, Zou P, Sun Z, Wei X, Ma G, Yu H. Theoretical studies on the aqueous phase and graphene heterogeneous degradation of acrylamide and acrylonitrile by HO, ClO, and BrO radicals. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 364:121473. [PMID: 38878582 DOI: 10.1016/j.jenvman.2024.121473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
The newly discovered ClO• and BrO• contribute to pollutant degradation in advanced oxidation processes, while acrylamide (AM) and acrylonitrile (ACN) are always the focus of scientists concerned due to their continuous production and highly toxic effects. Moreover, various particles with a graphene-like structure are the companions of AM/ACN in dry/wet sedimentation or aqueous phase existence, which play an important role in heterogeneous oxidation. Thus, this work focuses on the reaction mechanism and environmental effect of AM/ACN with ClO•/BrO•/HO• in the water environment under the influence of graphene (GP). The results show that although the reactivity sequence of AM and ACN takes the order of with HO• > with BrO• > with ClO•, the easiest channel always occurs at the same C-position of the two reactants. The reaction rate constants (k) of AM with three radicals are 2 times larger than that with ACN, and amide groups have a better ability to activate CC bonds than cyanide groups. The existence of GP can accelerate the target reaction, and the k increased by 9-13 orders of magnitude. The toxicity assessment results show that the toxic effect of most products is lower than that of parent compounds, but the environmental risk of products from ClO•/BrO•-adducts is higher than those from HO•-adducts. The oxidative degradation process based on ClO• and BrO• deserves special attention, and the catalytic effect of GP and its derivatives on the oxidation process is non-negligible.
Collapse
Affiliation(s)
- Sisi Cheng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Xueyu Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Pengcheng Zou
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Zhenkun Sun
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Xiaoxuan Wei
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Guangcai Ma
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
30
|
Gao X, Yan J, Wang C, Yang P, Lu J, Ji Y. Formation of brominated and nitrated byproducts during unactivated peroxymonosulfate oxidation of phenol. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134265. [PMID: 38608590 DOI: 10.1016/j.jhazmat.2024.134265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/19/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Brominated and nitrated byproducts generated from bromide (Br-) and nitrite (NO2-), respectively, by sulfate radical (SO4•-) oxidation have raised increasing concern. However, little is known about the concurrent generation of brominated and nitrated byproducts in the unactivated peroxymonosulfate (PMS) oxidation process. This study revealed that Br- can facilitate the transformation of NO2- to nitrated byproducts during unactivated PMS oxidation of phenol. In the co-existence of 0.1 mM Br- and 0.5 mM NO2-, the total yield of identified nitrated byproducts reached 2.316 μM in 20 min, while none was found with NO2- alone. Nitryl bromide (BrNO2) as the primary nitrating agent was formed via the reaction of NO2- with free bromine in situ generated through the oxidation of Br- by PMS. BrNO2 rapidly reacted with phenol or bromophenols, generating highly toxic nitrophenols or nitrated bromophenols, respectively. Increasing NO2- concentration led to more nitrated byproducts but less brominated byproducts. This study advances our understanding of the transformation of Br- and NO2- in the unactivated PMS oxidation process. It also provides important insights into the potentially underestimated environmental risks when PMS is applied to degrade organic contaminants under realistic environments, particularly when Br- and NO2- co-exist.
Collapse
Affiliation(s)
- Xu Gao
- School of Biological and Environmental Engineering, Chaohu University, Chaohu Regional Collaborative Technology Service Center for Rural Revitalization, Hefei 238000, China; Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Yan
- School of Biological and Environmental Engineering, Chaohu University, Chaohu Regional Collaborative Technology Service Center for Rural Revitalization, Hefei 238000, China
| | - Chunyu Wang
- School of Biological and Environmental Engineering, Chaohu University, Chaohu Regional Collaborative Technology Service Center for Rural Revitalization, Hefei 238000, China
| | - Peizeng Yang
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China.
| | - Junhe Lu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuefei Ji
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
31
|
Deng Y, Mo S, Korshin GV, Yan M. A universal model to predict yields of THMs and HAAs based on UV-Visible absorption spectra. WATER RESEARCH 2024; 254:121367. [PMID: 38417268 DOI: 10.1016/j.watres.2024.121367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
Differential absorption spectroscopy (DAS) quantifies changes in the UV-Visible absorbance of dissolved organic matter (DOM) caused by reactions of its chromophores. As a result of its precision and sensitvity, DAS serves as a powerful tool for characterizing the formation of disinfection by-products (DBPs) in generated in DOM chlorination reactions. However, the nonlinear relationship between the intensity of DAS and DBP concentrations as well as the need to develop site-specific fitting parameters limit its practical applications. This study investigated the physico-chemical nature of DAS of chlorinated DOM through experimental measurements and theoretical calculations. Results of this study provide molecular-level evidence that electrophilic substitution reactions involving DOM reactive sites result in the emergence of DAS feaures ascribed to the "fast" chromophores. The ring opening in the cyclic enones-like structures which can be present either in the original DOM or are generated as intermediates in its chlorination, leads to the emergence of DAS features associated with the "slow" chromophores and high yields of DBPs. The kinetic study of chlorination of real waters reveals a strong linear relationship (R2 > 0.91) between ln([DBP]) and the long-wavelength (λ > 325 nm) parameter of the DAS, notably (ln(-DA350)). This relationship varies among different water sources due to the differences in the heterogeneity of Band A3 whose maximum is near 350 nm. Band A3 is one of the Gaussian bands that comprise the overall UV-Visible spectrum of DOM. A new function (f(-DA350)) is proposed in this study to quantify DBP formation. This function, which is determined by the Band A3's area, allows establishing a universal linear relationship between f(-DA350) and ln([THMs]), as well as f(-DA350) and ln([HAAs]), across various water sources. The findings of this study will stimulate further development of spectroscopy-based DBP monitoring technology for monitoring and optimization of water disinfection processes.
Collapse
Affiliation(s)
- Yang Deng
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
| | - Shansheng Mo
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China
| | - Gregory V Korshin
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, WA 98195-2700, United States
| | - Mingquan Yan
- Department of Environmental Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing, 100871, China.
| |
Collapse
|
32
|
Xie Y, Zhang K, Shen Z, Feng M, Wang C. Simulated sunlight/periodate-triggered formation of toxic halogenated bisphenols in highly saline water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26320-26329. [PMID: 38523216 DOI: 10.1007/s11356-024-32962-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/13/2024] [Indexed: 03/26/2024]
Abstract
Periodate (PI)-based oxidation using the activators, such as metal ions and light irradiation, has emerged as a feasible treatment strategy for the effective remediation of contaminated water and wastewater. Given the pervasive nature of PI residues and solar exposure during application, the role of solar light in remediating the challenging highly saline water matrices needs to be elucidated. In this study, bisphenol A (BPA) was selected as the targeted micropollutant, which can be efficiently eliminated by the simulated sunlight (SSL)/PI system in the presence of high-level Cl- (up to 846.0 mM) at pH 7.0. The presence of different background constituents of water, such as halides, nitrate, and dissolved organic matter, had no effect, or even accelerated BPA abatement. Particularly, the ubiquitous Br- or I- appreciably enhanced the BPA transformation efficiency, which may be ascribed to the generation of high-selective reactive HOBr or HOI. The in silico predictions suggested that the transformation products generated by halide-mediated SSL/PI systems via halogen substitutions showed greater persistence, bioaccumulation, and aquatic toxicity than BPA itself. These findings highlighted a widespread phenomenon during PI-based oxidative treatment of highly saline water, which needs special attention under solar light illumination.
Collapse
Affiliation(s)
- Yuwei Xie
- College of the Environment & Ecology, Xiamen University, Xiamen, 361100, People's Republic of China
| | - Kaiting Zhang
- College of the Environment & Ecology, Xiamen University, Xiamen, 361100, People's Republic of China
| | - Zhen Shen
- College of the Environment & Ecology, Xiamen University, Xiamen, 361100, People's Republic of China
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen, 361100, People's Republic of China
| | - Chong Wang
- College of Resources and Environment, Southwest University, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
33
|
Murata Y, Sakai H, Kosaka K. Degrading surface-water-based natural organic matter and mitigating haloacetonitrile formation during chlorination: Comparison of UV/persulfate and UV/hydrogen peroxide pre-treatments. CHEMOSPHERE 2024; 354:141717. [PMID: 38490617 DOI: 10.1016/j.chemosphere.2024.141717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Haloacetonitriles (HANs) are unregulated disinfection by-products that are more toxic than regulated species. Therefore, efficient decomposition of HAN precursors prior to disinfection is crucial for allaying the potential HAN-induced health risks. This study investigated the key roles of ultraviolet-activated persulfate (UV/PS) treatment in alleviating HAN formation. The effects of UV/PS treatment were evaluated by correlating with the characteristics of organic matter in surface water and comparing with conventional UV/H2O2 treatment. Upon irradiating raw water samples and a Suwannee River humic acid solution spiked with 10 mM PS or H2O2 with 254 nm UV light, UV/PS treatment was found to be more potent than UV/H2O2 in mitigating the HAN production and degrading organic substances; moreover, UV/PS treatment effectively decreased the dissolved organic nitrogen (DON) content. In contrast, UV/H2O2 treatment did not induce any noticeable reduction in DON level. Furthermore, both UV/PS and UV/H2O2 treatments reduced the dichloroacetonitrile (DCAN) formation potential (FP), leading to strong correlations with the degradation of aromatic and humic-acid-like compounds. Notably, UV/PS treatment efficiently decreased the FP of bromochloroacetonitrile (BCAN) and dramatically reduced that of dibromoacetonitrile (DBAN) after a sharp increase; however, UV/H2O2 treatment gradually increased the DBAN-FP. Bromide was activated by sulfate radicals during UV/PS treatment, negatively correlating with the BCAN-FP and DBAN-FP, indicating that the formation of reactive bromine species increased the DBAN-FP; however, excessive oxidation possibly led to the recovery of inorganic bromine for decreasing the BCAN-FP and DBAN-FP. Additionally, UV/PS treatment effectively suppressed toxicity owing to its high reduction rate for brominated HANs; in contrast, UV/H2O2 treatment resulted in less significant BCAN and DBAN reductions, leading to minimal net reduction in toxicity. Overall, UV/PS treatment was remarkably effective at diminishing the toxicity of brominated HANs, underscoring its potential to mitigate drinking-water-related health risks.
Collapse
Affiliation(s)
- Yuichiro Murata
- Department of Civil and Environmental Engineering, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji-city, Tokyo, 1920397, Japan
| | - Hiroshi Sakai
- Department of Civil and Environmental Engineering, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji-city, Tokyo, 1920397, Japan.
| | - Koji Kosaka
- Department of Environmental Health, National Institute of Public Health, 2-3-6 Minami, Wako-city, Saitama, 3510197, Japan
| |
Collapse
|
34
|
von Gunten U. Oxidation processes and me. WATER RESEARCH 2024; 253:121148. [PMID: 38387263 DOI: 10.1016/j.watres.2024.121148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 02/24/2024]
Abstract
This publication summarizes my journey in the field of chemical oxidation processes for water treatment over the last 30+ years. Initially, the efficiency of the application of chemical oxidants for micropollutant abatement was assessed by the abatement of the target compounds only. This is controlled by reaction kinetics and therefore, second-order rate constant for these reactions are the pre-requisite to assess the efficiency and feasibility of such processes. Due to the tremendous efforts in this area, we currently have a good experimental data base for second-order rate constants for many chemical oxidants, including radicals. Based on this, predictions can be made for compounds without experimental data with Quantitative Structure Activity Relationships with Hammet/Taft constants or energies of highest occupied molecular orbitals from quantum chemical computations. Chemical oxidation in water treatment has to be economically feasible and therefore, the extent of transformation of micropollutants is often limited and mineralization of target compounds cannot be achieved under realistic conditions. The formation of transformation products from the reactions of the target compounds with chemical oxidants is inherent to oxidation processes and the following questions have evolved over the years: Are the formed transformation products biologically less active than the target compounds? Is there a new toxicity associated with transformation products? Are transformation products more biodegradable than the corresponding target compounds? In addition to the positive effects on water quality related to abatement of micropollutants, chemical oxidants react mainly with water matrix components such as the dissolved organic matter (DOM), bromide and iodide. As a matter of fact, the fraction of oxidants consumed by the DOM is typically > 99%, which makes such processes inherently inefficient. The consequences are loss of oxidation capacity and the formation of organic and inorganic disinfection byproducts also involving bromide and iodide, which can be oxidized to reactive bromine and iodine with their ensuing reactions with DOM. Overall, it has turned out in the last three decades, that chemical oxidation processes are complex to understand and to manage. However, the tremendous research efforts have led to a good understanding of the underlying processes and allow a widespread and optimized application of such processes in water treatment practice such as drinking water, municipal and industrial wastewater and water reuse systems.
Collapse
Affiliation(s)
- Urs von Gunten
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Duebendorf, Switzerland; ENAC, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale, CH-1000, Lausanne, Switzerland.
| |
Collapse
|
35
|
Du Y, Liu T, Yang LL, Song ZM, Dai X, Wang WL, Lai B, Wu QY. Ferrate(VI) assists in reducing cytotoxicity and genotoxicity to mammalian cells and organic bromine formation in ozonated wastewater. WATER RESEARCH 2024; 253:121353. [PMID: 38401473 DOI: 10.1016/j.watres.2024.121353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/04/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Ozonation of wastewater containing bromide (Br-) forms highly toxic organic bromine. The effectiveness of ozonation in mitigating wastewater toxicity is minimal. Simultaneous application of ozone (O3) (5 mg/L) and ferrate(VI) (Fe(VI)) (10 mg-Fe/L) reduced cytotoxicity and genotoxicity towards mammalian cells by 39.8% and 71.1% (pH 7.0), respectively, when the wastewater has low levels of Br-. This enhanced reduction in toxicity can be attributed to increased production of reactive iron species Fe(IV)/Fe(V) and reactive oxygen species (•OH) that possess higher oxidizing ability. When wastewater contains 2 mg/L Br-, ozonation increased cytotoxicity and genotoxicity by 168%-180% and 150%-155%, respectively, primarily due to the formation of organic bromine. However, O3/Fe(VI) significantly (p < 0.05) suppressed both total organic bromine (TOBr), BrO3-, as well as their associated toxicity. Electron donating capacity (EDC) measurement and precursor inference using Orbitrap ultra-high resolution mass spectrometry found that Fe(IV)/Fe(V) and •OH enhanced EDC removal from precursors present in wastewater, inhibiting electrophilic substitution and electrophilic addition reactions that lead to organic bromine formation. Additionally, HOBr quenched by self-decomposition-produced H2O2 from Fe(VI) also inhibits TOBr formation along with its associated toxicity. The adsorption of Fe(III) flocs resulting from Fe(VI) decomposition contributes only minimally to reducing toxicity. Compared to ozonation alone, integration of Fe(VI) with O3 offers improved safety for treating wastewater with varying concentrations of Br-.
Collapse
Affiliation(s)
- Ye Du
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Tong Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Lu-Lin Yang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhi-Min Song
- Michigan Technological University, 1400 Townsend Drive Houghton, MI 49931, United States
| | - Xin Dai
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Wen-Long Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Bo Lai
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
36
|
Marques Dos Santos M, Li C, Jia S, Thomas M, Gallard H, Croué JP, Carato P, Snyder SA. Formation of halogenated forms of bisphenol A (BPA) in water: Resolving isomers with ion mobility - mass spectrometry and the role of halogenation position in cellular toxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133229. [PMID: 38232544 DOI: 10.1016/j.jhazmat.2023.133229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 01/19/2024]
Abstract
Halogenated BPA (XBPA) forms resulting from water chlorination can lead to increased toxicity and different biological effects. While previous studies have reported the occurrence of different XBPAs, analytical limitation have hindered the analysis and differentiation of the many potential isomeric forms. Using online solid-phase extraction - liquid chromatography - ion-mobility - high-resolution mass spectrometry (OSPE-LC-IM-HRMS), we demonstrated a rapid analysis method for the analysis of XBPA forms after water chlorination, with a total analysis time of less than 10 min including extraction and concentration and low detection limits (∼5-80 ng/L range). A multi in-vitro bioassay testing approach for the identified products revealed that cytotoxicity and bioenergetics impacts were largely associated with the presence of halogen atoms at positions 2 or 2' and the overall number of halogens incorporated into the BPA molecule. Different XBPA also showed distinct impacts on oxidative stress, peroxisome proliferator-activated receptor gamma - PPARγ, and inflammatory response. While increased DNA damage was observed for chlorinated water samples (4.14 ± 1.21-fold change), the additive effect of the selected 20 XBPA studied could not explain the increased DNA damage observed, indicating that additional species or synergistic effects might be at play.
Collapse
Affiliation(s)
- Mauricius Marques Dos Santos
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, CleanTech One, 1 Cleantech Loop, 637141, Singapore
| | - Caixia Li
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, CleanTech One, 1 Cleantech Loop, 637141, Singapore
| | - Shenglan Jia
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, CleanTech One, 1 Cleantech Loop, 637141, Singapore
| | - Mikael Thomas
- Institut de Chimie des Milieux et des Matériaux de Poitiers, IC2MP UMR 7285 CNRS, Université de Poitiers, France
| | - Hervé Gallard
- Institut de Chimie des Milieux et des Matériaux de Poitiers, IC2MP UMR 7285 CNRS, Université de Poitiers, France
| | - Jean-Philippe Croué
- Institut de Chimie des Milieux et des Matériaux de Poitiers, IC2MP UMR 7285 CNRS, Université de Poitiers, France
| | - Pascal Carato
- Laboratoire Ecologie & Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, France; INSERM CIC1402, Université de Poitiers, IHES Research Group, Poitiers, France
| | - Shane Allen Snyder
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, CleanTech One, 1 Cleantech Loop, 637141, Singapore.
| |
Collapse
|
37
|
Han J, Zhai H, Zhang X, Liu J, Sharma VK. Effects of ozone dose on brominated DBPs in subsequent chlor(am)ination: A comprehensive study of aliphatic, alicyclic and aromatic DBPs. WATER RESEARCH 2024; 250:121039. [PMID: 38142503 DOI: 10.1016/j.watres.2023.121039] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Ozone‒chlor(am)ine is a commonly used combination of disinfectants in drinking water treatment. Although there are quite a few studies on the formation of some individual DBPs in the ozone‒chlor(am)ine disinfection, an overall picture of the DBP formation in the combined disinfection is largely unavailable. In this study, the effects of ozone dose on the formation and speciation of organic brominated disinfection byproducts (DBPs) in subsequent chlorination, chloramination, or chlorination‒chloramination of simulated drinking water were investigated. High-molecular-weight, aliphatic, alicyclic and aromatic brominated DBPs were selectively detected and studied using a powerful precursor ion scan method with ultra performance liquid chromatography/electrospray ionization triple quadrupole mass spectrometry (UPLC/ESI-tqMS). Two groups of unregulated yet relatively toxic DBPs, dihalonitromethanes and dihaloacetaldehydes, were detected by the UPLC/ESI-tqMS for the first time. With increasing ozone dose, the levels of high-molecular-weight (m/z 300-500) and alicyclic and aromatic brominated DBPs generally decreased, the levels of brominated aliphatic acids were slightly affected, and the levels of dihalonitromethanes and dihaloacetaldehydes generally increased in the subsequent disinfection processes. Despite different molecular compositions of the detected DBPs, increasing ozone dose generally shifted the formation of DBPs from chlorinated ones to brominated analogues in the subsequent disinfection processes. This study provided a comprehensive analysis of the impact of ozone dose on the DBP formation and speciation in subsequent chlor(am)ine disinfection.
Collapse
Affiliation(s)
- Jiarui Han
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Hongyan Zhai
- School of Environmental Science and Engineering, Tianjin University, Tianjin, China.
| | - Xiangru Zhang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| | - Jiaqi Liu
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China; Department of Environmental and Occupational Health, Texas A&M University, TX, USA
| | - Virender K Sharma
- Department of Environmental and Occupational Health, Texas A&M University, TX, USA
| |
Collapse
|
38
|
Lei X, Lei Y, Fu Q, Fu H, Guan J, Yang X. One-electron oxidant-induced transformation of dissolved organic matter: Optical and antioxidation properties and molecules. WATER RESEARCH 2024; 249:121011. [PMID: 38101043 DOI: 10.1016/j.watres.2023.121011] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/22/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
Dissolved organic matter (DOM) is a major sink of radicals in advanced oxidation processes (AOPs) and the radical-induced DOM transformation influences the subsequent water treatment processes or receiving waters. In this study, we quantified and compared DOM transformation by tracking the changes of dissolved organic carbon (DOC), UVA254, and electron donating capacity (EDC) as functions of four one-electron oxidants (SO4•-, Cl2•-, Br2•-, and CO3•-) exposures as well as the changes of functional groups and molecule distribution. SO4•- had the highest DOC reduction while Cl2•- had the highest EDC reduction, which could be due to their preferential reaction pathways of decarboxylation and converting phenols to quinones, respectively. Br2•- and CO3•- induced less changes in DOC, UVA254, and EDC than SO4•- and Cl2•-. Additionally, DOM enriched with high aromatic contents tended to have higher DOC, UVA254, and EDC reductions. Decreases in hydroxyl and carboxyl groups and increases in carbonyl groups were observed in these four types of radicals treated DOM using Fourier transform infrared spectroscopy. High resolution mass spectrometry using FTICR-MS showed that one-electron oxidants preferred to attack unsaturated carbon skeletons and transformed into molecules featuring high saturation and low aromaticity. Moreover, SO4•- was inclined to decrease oxidation state of carbon and O/C of DOM due to its strong decarboxylation capacity. This study highlights the distinct DOM transformation by four one-electron oxidants and provides comprehensive insights into the reactions of one-electron oxidants with DOM.
Collapse
Affiliation(s)
- Xin Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China; Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, PR China
| | - Yu Lei
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Beijing 100190, PR China
| | - Qinglong Fu
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, PR China
| | - Hengyi Fu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Jingmeng Guan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
39
|
Cochran KH, Westerman DC, Montagner CC, Coffin S, Diaz L, Fryer B, Harraka G, Xu EG, Huang Y, Schlenk D, Dionysiou DD, Richardson SD. Chlorination of Emerging Contaminants for Application in Potable Wastewater Reuse: Disinfection Byproduct Formation, Estrogen Activity, and Cytotoxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:704-716. [PMID: 38109774 DOI: 10.1021/acs.est.3c05978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
With increasing water scarcity, many utilities are considering the potable reuse of wastewater as a source of drinking water. However, not all chemicals are removed in conventional wastewater treatment, and disinfection byproducts (DBPs) can form from these contaminants when disinfectants are applied during or after reuse treatment, especially if applied upstream of advanced treatment processes to control biofouling. We investigated the chlorination of seven priority emerging contaminants (17β-estradiol, estrone, 17α-ethinylestradiol, bisphenol A (BPA), diclofenac, p-nonylphenol, and triclosan) in ultrapure water, and we also investigated the impact of chlorination on real samples from different treatment stages of an advanced reuse plant to evaluate the role of chlorination on the associated cytotoxicity and estrogenicity. Many DBPs were tentatively identified via liquid chromatography (LC)- and gas chromatography (GC)-high resolution mass spectrometry, including 28 not previously reported. These encompassed chlorinated, brominated, and oxidized analogs of the parent compounds as well as smaller halogenated molecules. Chlorinated BPA was the least cytotoxic of the DBPs formed but was highly estrogenic, whereas chlorinated hormones were highly cytotoxic. Estrogenicity decreased by ∼4-6 orders of magnitude for 17β-estradiol and estrone following chlorination but increased 2 orders of magnitude for diclofenac. Estrogenicity of chlorinated BPA and p-nonylphenol were ∼50% of the natural/synthetic hormones. Potential seasonal differences in estrogen activity of unreacted vs reacted advanced wastewater treatment field samples were observed.
Collapse
Affiliation(s)
- Kristin H Cochran
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Danielle C Westerman
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Cassiana C Montagner
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
- Institute of Chemistry, University of Campinas, São Paulo 13083-970, Brazil
| | - Scott Coffin
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Lorivic Diaz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Benjamin Fryer
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Gary Harraka
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Elvis Genbo Xu
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Ying Huang
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
- School of the Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, California 92521, United States
| | - Dionysios D Dionysiou
- Environmental Engineering and Science Program, Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Susan D Richardson
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
40
|
Yang W, Fang C, Bond T, Luan X, Xiao R, Xu Z, Chu W. Stormwater discharge: An overlooked source of disinfection byproduct precursors. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132720. [PMID: 37813036 DOI: 10.1016/j.jhazmat.2023.132720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023]
Abstract
Discharge from the stormwater system is as an important pathway for contaminant transport, impacting the quantity and characteristics of dissolved organic matter (DOM) in surface water, and thus the formation of disinfection byproducts (DBPs) during downstream drinking water disinfection. In this study, DOM in stormwater pipes was characterized by size-exclusion chromatography, and the formation of 27 DBPs and halogen-specific total organic halogen (TOX) following chlorination was investigated. Overall, DOM in stormwater pipes was characterized by low molecular weight compounds and microbial-derived organics. Total DBP concentrations in chlorinated stormwaters were ∼1-15 times higher than in chlorinated surface waters. DBPs formed in stormwaters were dominated by trihalomethanes and haloacetic acids. Moreover, the DBP-associated toxicity of chlorinated stormwaters was ∼1-38 times higher than in chlorinated surface waters, and mainly due to the presence of large amount of haloacetaldehydes and haloacetonitriles. Sampling during a rainfall event suggested that stormwater discharge significantly increased DBP precursors in the surface water. The high formation and estimated toxicity of DBPs in stormwater discharge indicates this is an overlooked source of DBP precursors, posing a threat to the aquatic environment and potentially drinking water quality.
Collapse
Affiliation(s)
- Wenyuan Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Chao Fang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Tom Bond
- School of Sustainability, Civil and Environmental Engineering, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - Xinmiao Luan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Rong Xiao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
41
|
Xiang Y, Xu H. Occurrence, formation, and proteins perturbation of disinfection byproducts in indoor air resulting from chlorine disinfection. CHEMOSPHERE 2023; 343:140182. [PMID: 37716567 DOI: 10.1016/j.chemosphere.2023.140182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Increased amounts of chlorine disinfectant have been sprayed to inactivate viruses in the environment since the COVID-19 pandemic, and the health risk from chemicals, especially disinfection byproducts (DBPs), has unintentionally increased. In this study, we characterized the occurrence of haloacetic acids (HAAs) and trihalomethanes (THMs) in indoor air and evaluated their formation potential from typical indoor ingredients. Subsequently, the adverse effect of chloroacetic acid on A549 cells was depicted at the proteomic, transcriptional and silico levels. The results revealed that the total concentrations of HAAs and THMs ranged from 1.46 to 4.20 μg/m3 in ten indoor environments. Both classes of DBPs could be generated during the chlorination of prevalent terpenes by competing reactions, which are associated with the volatile state of indoor ingredients after disinfection. The C-type lectin receptor signaling pathway and cellular senescence were significantly perturbed pathways, which interfered with the development of lung fibrosis. The negative effect was further investigated by molecular docking and transcription, which showed that HAAs can interact with four C-type lectin receptor proteins by hydrogen bonds and inhibit the mRNA expression of related proteins. This study highlights the potential secondary biological risk caused by intensive DBPs generated from chlorination and draws our attention to the potential environmental factors leading to chronic respiratory disease.
Collapse
Affiliation(s)
- Yangwei Xiang
- Department of Lung Transplantation and Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 310003, Zhejiang Province, China.
| | - Huan Xu
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| |
Collapse
|
42
|
Zhao J, Shang C, Yin R. Developing a hybrid model for predicting the reaction kinetics between chlorine and micropollutants in water. WATER RESEARCH 2023; 247:120794. [PMID: 37918199 DOI: 10.1016/j.watres.2023.120794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/03/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
Understanding the reactivities of chlorine towards micropollutants is crucial for assessing the fate of micropollutants in water chlorination. In this study, we integrated machine learning with kinetic modeling to predict the reaction kinetics between micropollutants and chlorine in deionized water and real surface water. We first established a framework to predict the apparent second-order rate constants for micropollutants with chlorine by combining Morgan molecular fingerprints with machine learning algorithms. The framework was tuned using Bayesian optimization and showed high prediction accuracy. It was validated through experiments and used to predict the unreported apparent second-order rate constants for 103 emerging micropollutants with chlorine. The framework also improved the understanding of the structure-dependence of micropollutants' reactivity with chlorine. We incorporated the predicted apparent second-order rate constants into the Kintecus software to establish a hybrid model to profile the time-dependent changes of micropollutant concentrations by chlorination. The hybrid model was validated by experiments conducted in real surface water in the presence of natural organic matter. The hybrid model could predict how much micropollutants were degraded by chlorination with varied chlorine contact times and/or initial chlorine dosages. This study advances fundamental understanding of the reaction kinetics between chlorine and emerging micropollutants, and also offers a valuable tool to assess the fate of micropollutants during chlorination of drinking water.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Ran Yin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
43
|
Psoras AW, McCoy SW, Reber KP, McCurry DL, Sivey JD. Ipso Substitution of Aromatic Bromine in Chlorinated Waters: Impacts on Trihalomethane Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18801-18810. [PMID: 37096875 DOI: 10.1021/acs.est.3c00852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Parabens and salicylates were examined as disinfection byproduct (DBP) precursors to explore the possible influence of ipso substitution (i.e., halogen exchange) on the yield and speciation of trihalomethanes (THMs) formed during water chlorination. Substoichiometric conversion of C-Br bonds into C-Cl bonds was confirmed for several parabens and salicylates. The co-occurrence of (mono)brominated and nonhalogenated precursors in the presence of free chlorine (but in the absence of added Br-) generated polybrominated THMs, implicating ipso substitution. The THM molar yield, bromine incorporation, and bromine recovery from brominated and nonhalogenated precursor mixtures were commensurate with those observed from equimolar additions of NaBr, indicating efficient displacement of aromatic bromine by free chlorine followed by reincorporation of liberated HOBr into DBP precursors. The THM molar yield from brominated precursors was enhanced by a factor of ≤20 relative to that from nonhalogenated precursors. Trends in THM molar yields and bromine incorporation differed between brominated parabens and brominated salicylates, suggesting that the influence of ipso substitution on THM formation varies with the structure of the organic precursor. Collectively, these results provide new evidence of the often-overlooked role ipso substitution can play in promoting halogen exchange and bromine enrichment among DBPs in chlorinated waters.
Collapse
Affiliation(s)
- Andrew W Psoras
- Environmental Science & Studies Program, Towson University, Towson, Maryland 21252, United States
| | - Seth W McCoy
- Department of Chemistry, Towson University, Towson, Maryland 21252, United States
| | - Keith P Reber
- Department of Chemistry, Towson University, Towson, Maryland 21252, United States
| | - Daniel L McCurry
- Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - John D Sivey
- Environmental Science & Studies Program, Towson University, Towson, Maryland 21252, United States
- Department of Chemistry, Towson University, Towson, Maryland 21252, United States
- Urban Environmental Biogeochemistry Laboratory, Towson University, Towson, Maryland 21252, United States
| |
Collapse
|
44
|
Mensah AT, Xiang Y, Berne F, Soreau S, Gallard H. Reactions of Monobromamine and Dibromamine with Phenolic Compounds and Organic Matter: Kinetics and Formation of Bromophenols and Bromoform. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18981-18990. [PMID: 37226837 DOI: 10.1021/acs.est.3c00935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Monobromamine (NH2Br) and dibromamine (NHBr2) produced from reactions of hypobromous acid (HOBr) with ammonia can react with phenolic structures of natural organic matter (NOM) to produce disinfection byproducts such as bromoform (CHBr3). The reactivity of NH2Br was controlled by the reaction of the bromoammonium ion (NH3Br+) with phenolate species, with specific rate constants ranging from 6.32 × 102 for 2,4,6-tribromophenol to 1.22 × 108 M-1 s-1 for phenol. Reactions of NHBr2 with phenol and bromophenols were negligible compared to its self-decomposition; rate constants could be determined only with resorcinol for pH > 7. At pH 8.1-8.2, no formation of CHBr3 was observed from the reaction of NH2Br with phenol while the reaction of NH2Br with resorcinol produced a significant concentration of CHBr3. In contrast to NH2Br, a significant amount of CHBr3 produced with an excess of NHBr2 over phenol was explained by the reactions of HOBr produced from NHBr2 decomposition. A comprehensive kinetic model including the formation and decomposition of bromamines and the reactivity of HOBr and NH2Br with phenolic compounds was developed at pH 8.0-8.3. Furthermore, the kinetic model was used to evaluate the significance of the NH2Br and NHBr2 reactions with the phenolic structures of two NOM isolates.
Collapse
Affiliation(s)
- Anette T Mensah
- Institut de Chimie des Milieux et des Matériaux de Poitiers IC2MP UMR 7285 CNRS Université de Poitiers, ENSI Poitiers, 1 rue Marcel Doré TSA 41105, 86 073 Cedex 9, Poitiers, France
| | - Yingying Xiang
- Institut de Chimie des Milieux et des Matériaux de Poitiers IC2MP UMR 7285 CNRS Université de Poitiers, ENSI Poitiers, 1 rue Marcel Doré TSA 41105, 86 073 Cedex 9, Poitiers, France
| | - Florence Berne
- Institut de Chimie des Milieux et des Matériaux de Poitiers IC2MP UMR 7285 CNRS Université de Poitiers, ENSI Poitiers, 1 rue Marcel Doré TSA 41105, 86 073 Cedex 9, Poitiers, France
| | - Sylvie Soreau
- EDF - Recherche et Développement, Laboratoire National d'Hydraulique et Environnement (LNHE), 6 quai Watier, 78401 Chatou Cedex, France
| | - Hervé Gallard
- Institut de Chimie des Milieux et des Matériaux de Poitiers IC2MP UMR 7285 CNRS Université de Poitiers, ENSI Poitiers, 1 rue Marcel Doré TSA 41105, 86 073 Cedex 9, Poitiers, France
| |
Collapse
|
45
|
Liu Y, Liu H, Croue JP, Liu C. CuO Promotes the Formation of Halogenated Disinfection Byproducts during Chlorination via an Enhanced Oxidation Pathway. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19043-19053. [PMID: 37710978 DOI: 10.1021/acs.est.3c05975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Previous studies showed that cupric oxide (CuO) can enhance the formation of trihalomethanes (THMs), haloacetic acids, and bromate during chlorination of bromide-containing waters. In this study, the impact of CuO on the formation kinetics and mechanisms of halogenated disinfection byproducts (DBPs) during chlorination was investigated. CuO does not enhance the formation of DBPs (i.e., 1,1,1-trichloropropanone, chloroform, and trichloroacetaldehyde (TCAL) /dichloroacetonitrile) during chlorination of acetone, 3-oxopentanedioic acid (3-OPA), and aspartic acid, respectively. This indicates that the halogen substitution pathway cannot be enhanced by CuO. Instead, CuO (0.1 g L-1) accelerates the second-order rate constants for reactions of chlorine (HOCl) with TCAL, citric acid, and oxalic acid at pH 8.0 and 21 °C from <0.1 to 29.4, 7.2, and 15.8 M-1 s-1, respectively. Oxidation pathway predominates based on the quantification of oxidation products (e.g., a trichloroacetic acid yield of ∼100% from TCAL) and kinetic modeling. CuO can enhance the formation of DBPs (e.g., THMs, haloacetaldehydes, and haloacetonitriles) during chlorination of model compounds and dissolved organic matter, of which both halogen substitution and oxidation pathways are required. Reaction rate constants of rate-limiting steps (e.g., citric acid to 3-OPA, aromatic ring cleavage) could be enhanced by CuO via an oxidation pathway since CuO-HOCl complex is more oxidative toward a range of substrates than HOCl in water. These findings provide novel insights into the DBP formation pathway in copper-containing distribution systems.
Collapse
Affiliation(s)
- Yunsi Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hang Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
| | - Jean-Philippe Croue
- Institut de Chimie des Milieux et des Matériaux IC2MP UMR 7285 CNRS, Université de Poitiers, Poitiers 86073, France
| | - Chao Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
46
|
Yao J, Li H, Ong SL, Hu J. Analyzing disinfection by-products yield and mechanisms in UV/Cl 2 using response surface methodology and quantitative structure-activity relationship models. CHEMOSPHERE 2023; 341:140072. [PMID: 37678597 DOI: 10.1016/j.chemosphere.2023.140072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
The study aimed to investigate the formation of halogenated disinfection byproducts (DBPs) during applying UV/chlorine (UV/Cl2) and unravel the interactive impacts of critical operational parameters and the mechanisms behind DBPs formation. Response surface methodology and quantitative structure-activity relationship models were developed to evaluate the contribution of electrophilic, nucleophilic, and free radical reactions to the formation of DBPs in UV/Cl2. The study found that Cl2 and its interactions dominated the total DBPs and non-Br-DBPs formation, while Br- and the Cl2-Br- interaction played a decisive role in the Br-DBPs formation. The study also observed significant interactions of Br, Cl2, and pH on chloroform, bromodichloromethane, dichloroacetonitrile, 1,1-dichloro-2-propanone, trichloroactic acid, and chlorodibromoacetic acid formations, while no evident interaction on chloral hydrate, dibromochloromethane, trichloroacetone, dibromoacetic acid, and bromodichloroacetic acid formations. The electrophilic substitution of HOBr mainly controlled the formation of trihalomethanes, and the contribution of nucleophilic, electrophilic, and free radical (•OH, Cl•, Cl2•- and ClO•) reactions depended on the molar ratio of Cl2 to Br, and pH-determined hydrolysis rate constants of DBPs and the types of free radicals. Overall, the response surface methodology and quantitative structure-activity relationship models provided a reference for revealing DBPs formation mechanisms in other disinfection processes.
Collapse
Affiliation(s)
- Jingjing Yao
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore; Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore; Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, PR China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha 410083, PR China.
| | - Say Leong Ong
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore
| | - Jiangyong Hu
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore.
| |
Collapse
|
47
|
Fang C, Yang W, Lu N, Xiao R, Du Z, Wang Q, Chu W. Alkaline chlorination of drinking water: A trade-off between genotoxicity control and trihalomethane formation. WATER RESEARCH 2023; 246:120692. [PMID: 37890262 DOI: 10.1016/j.watres.2023.120692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023]
Abstract
The pH of chlorination is an important factor affecting the formation of disinfection byproducts (DBPs). In this study, we discovered that the genotoxicity induced by chlorination can be effectively reduced under alkaline conditions. As the pH of chlorination increased from 6.5 to 8.5, the genotoxicity of investigated waters reduced by ∼30-90 %. By assessing the genotoxicity of the mixture of measured DBPs, it was found that the contribution of measured DBPs to the overall genotoxicity was lower than 5 %, and the significant reduction of genotoxicity was largely associated with unknown DBPs. The result of Pearson's correlation analysis indicated that humified organics and soluble microbial byproducts were likely responsible for the genotoxicity, and their derived genotoxic compounds (i.e., unknown DBPs) tended to decompose during alkaline chlorination. However, the control of genotoxicity by alkaline chlorination was achieved at the expense of promoting trihalomethane (THM) formation. The highest genotoxicity reduction (93 %) was observed for chlorinated granular activated carbon-treated waters, but the formation of THMs was promoted to a level approaching that in untreated waters. The inconsistent trend of overall genotoxicity and THM concentration during alkaline chlorination suggested the inadequacy of THMs as metric for DBP exposure, and considerations should also be given to the toxicity of bulk water in addition to regulated DBPs.
Collapse
Affiliation(s)
- Chao Fang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Wenyuan Yang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Nannan Lu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shandong Province Water Supply and Drainage Monitoring Centre, Jinan 250101, China
| | - Rong Xiao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Zhenqi Du
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Qi Wang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China.
| |
Collapse
|
48
|
Cai Y, Li X, Feng M, Chovelon JM, Zhou L, Lu J, Chen J, Ji Y. Formation of halogenated chloroxylenols through chlorination and their photochemical activity. WATER RESEARCH 2023; 243:120366. [PMID: 37494746 DOI: 10.1016/j.watres.2023.120366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023]
Abstract
Trace organic contaminants usually go through multiple treatment units in a modern water treatment train. Structural modification triggered by pretreatment (e.g., prechlorination) may influence the further transformation and fate of contaminants in downstream units. However, knowledge on this aspect is still limited. In this contribution, we investigated the chlorination of chloroxylenol (PCMX), an antimicrobial agent extensively used during COVID-19 pandemic, and the photoreactivity of its halogenated derivatives. Results indicate that chlorination of PCMX mainly proceeded through electrophilic substitution to give chlorinated products, including Cl- and 2Cl-PCMX. The presence of bromide (Br-) resulted in brominated analogues. Owing to the bathochromic and "heavy atom" effects of halogen substituents, these products show increased light absorption and photoreactivity. Toxicity evaluation suggest that these halo-derivatives have higher persistence, bioaccumulation, and toxicity (PBT) than the parent PCMX. Results of this contribution advance our understanding of the transformation of PCMX during chlorination and the photochemical activity of its halogenated derivatives in subsequent UV disinfection process or sunlit surface waters.
Collapse
Affiliation(s)
- Yan Cai
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoci Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingbao Feng
- College of the Environment & Ecology, Xiamen University, Xiamen, 361102, China
| | - Jean-Marc Chovelon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, F-69626, Villeurbanne, France
| | - Lei Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Processes, School of Resources & Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Junhe Lu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuefei Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
49
|
Zhang T, von Gunten U. Chlorination of amides: Kinetics and mechanisms of formation of N-chloramides and their reactions with phenolic compounds. WATER RESEARCH 2023; 242:120131. [PMID: 37364355 DOI: 10.1016/j.watres.2023.120131] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023]
Abstract
Amides are common constituents in natural organic matter and synthetic chemicals. In this study, we investigated kinetics and mechanisms of the reactions of chlorine with seven amides, including acetamide, N-methylformamide, N-methylacetamide, benzamide, N-methylbenzamide, N-propylbenzamide, and N-(benzoylglycyl)glycine amide. Apparent second-order rate constants for the reactions of the amides with chlorine at pH 8 are in the range of 5.8 × 10-3 - 1.8 M-1s-1 and activation energies in the range of 62-88 kJ/mol. The second-order rate constants for the reactions of chlorine with different amides decrease with increasing electron donor character of the substituents on the amide-N and N-carbonyl-C in the amide structures. Hypochlorite (‒OCl) dominates the reactions of chlorine with amides yielding N-chloramides with species-specific second-order rate constants in the range of 7.3 × 10-3 - 2.3 M-1s-1. Kinetic model simulations suggest that N-chlorinated primary amides further react with HOCl with second-order rate constants in the order of 10 M-1s-1. The chlorination products of amides, N-chloramides are reactive towards phenolic compounds, forming chlorinated phenols via electrophilic aromatic substitution (phenol and resorcinol) and quinone via electron transfer (hydroquinone). Meanwhile, N-chloramides were recycled to the parent amides. At neutral pH, apparent second-order rate constants for the reactions between phenols and N-chloramides are in the order of 10-4-0.1 M-1s-1, comparable to those with chloramine. The findings of this study improve the understanding of the fate of amides and chlorine during chlorination processes.
Collapse
Affiliation(s)
- Tianqi Zhang
- School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Urs von Gunten
- School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland; Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf CH-8600, Switzerland.
| |
Collapse
|
50
|
Wu XN, Yuan CJ, Huo ZY, Wang TT, Chen Y, Liu M, Wang WL, Du Y, Wu QY. Reduction of byproduct formation and cytotoxicity to mammalian cells during post-chlorination by the combined pretreatment of ferrate(VI) and biochar. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131935. [PMID: 37385095 DOI: 10.1016/j.jhazmat.2023.131935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/28/2023] [Accepted: 06/23/2023] [Indexed: 07/01/2023]
Abstract
Ferrate [Fe(VI)] can efficiently degrade various pollutants in wastewater. Biochar application can reduce resource use and waste emission. This study investigated the performance of Fe(VI)/biochar pretreatment to reduce disinfection byproducts (DBPs) and cytotoxicity to mammalian cells of wastewater during post-chlorination. Fe(VI)/biochar was more effective at inhibiting the cytotoxicity formation than Fe(VI) alone, reducing the cytotoxicity from 12.7 to 7.6 mg-phenol/L. The concentrations of total organic chlorine and total organic bromine decreased from 277 to 130 μg/L and from 51 to 39 μg/L, compared to the samples without pretreatment. Orbitrap ultra-high resolution mass spectrometry revealed that the number of molecules of DBPs decreased substantially from 517 to 229 by Fe(VI)/biochar, with the greatest reduction for phenols and highly unsaturated aliphatic compounds. In combination with the substantial reduction of 1Cl-DBPs and 2Cl-DBPs, 1Br-DBPs and 2Br-DBPs were also reduced. Fluorescence excitation-emission matrix coupled with parallel factor analysis suggested that fulvic acid-like substances and aromatic amino acid was obviously reduce likely due to the enhanced oxidation of Fe(IV)/Fe(V) produced by Fe(VI)/biochar and adsorption of biochar. Furthermore, the DBPs generated by electrophilic addition and electrophilic substitution of precursors were reduced. This study shows that Fe(VI)/biochar pretreatment can effectively reduce cytotoxicity formation during post-chlorination by transforming DBPs and their precursors.
Collapse
Affiliation(s)
- Xiao-Nan Wu
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Chang-Jie Yuan
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Zheng-Yang Huo
- School of Environment and Natural Resources, Renmin University of China, Beijing 100872, China
| | - Ting-Ting Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Ying Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China.
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Wen-Long Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ye Du
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China.
| | - Qian-Yuan Wu
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|