1
|
Torres J, Silva R, Farias G, Sousa Lobo JM, Ferreira DC, Silva AC. Enhancing Acute Migraine Treatment: Exploring Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for the Nose-to-Brain Route. Pharmaceutics 2024; 16:1297. [PMID: 39458626 PMCID: PMC11510892 DOI: 10.3390/pharmaceutics16101297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Migraine has a high prevalence worldwide and is one of the main disabling neurological diseases in individuals under the age of 50. In general, treatment includes the use of oral analgesics or non-steroidal anti-inflammatory drugs (NSAIDs) for mild attacks, and, for moderate or severe attacks, triptans or 5-HT1B/1D receptor agonists. However, the administration of antimigraine drugs in conventional oral pharmaceutical dosage forms is a challenge, since many molecules have difficulty crossing the blood-brain barrier (BBB) to reach the brain, which leads to bioavailability problems. Efforts have been made to find alternative delivery systems and/or routes for antimigraine drugs. In vivo studies have shown that it is possible to administer drugs directly into the brain via the intranasal (IN) or the nose-to-brain route, thus avoiding the need for the molecules to cross the BBB. In this field, the use of lipid nanoparticles, in particular solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), has shown promising results, since they have several advantages for drugs administered via the IN route, including increased absorption and reduced enzymatic degradation, improving bioavailability. Furthermore, SLN and NLC are capable of co-encapsulating drugs, promoting their simultaneous delivery to the site of therapeutic action, which can be a promising approach for the acute migraine treatment. This review highlights the potential of using SLN and NLC to improve the treatment of acute migraine via the nose-to-brain route. First sections describe the pathophysiology and the currently available pharmacological treatment for acute migraine, followed by an outline of the mechanisms underlying the nose-to-brain route. Afterwards, the main features of SLN and NLC and the most recent in vivo studies investigating the use of these nanoparticles for the treatment of acute migraine are presented.
Collapse
Affiliation(s)
- Joana Torres
- UCIBIO, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Renata Silva
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | | | - José Manuel Sousa Lobo
- UCIBIO, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Domingos Carvalho Ferreira
- UCIBIO, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ana Catarina Silva
- UCIBIO, Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- FP-BHS (Biomedical and Health Sciences Research Unit), FP-I3ID (Instituto de Investigação, Inovação e Desenvolvimento), Faculty of Health Sciences, University Fernando Pessoa, 4200-150 Porto, Portugal
| |
Collapse
|
2
|
Susa F, Arpicco S, Pirri CF, Limongi T. An Overview on the Physiopathology of the Blood-Brain Barrier and the Lipid-Based Nanocarriers for Central Nervous System Delivery. Pharmaceutics 2024; 16:849. [PMID: 39065547 PMCID: PMC11279990 DOI: 10.3390/pharmaceutics16070849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The state of well-being and health of our body is regulated by the fine osmotic and biochemical balance established between the cells of the different tissues, organs, and systems. Specific districts of the human body are defined, kept in the correct state of functioning, and, therefore, protected from exogenous or endogenous insults of both mechanical, physical, and biological nature by the presence of different barrier systems. In addition to the placental barrier, which even acts as a linker between two different organisms, the mother and the fetus, all human body barriers, including the blood-brain barrier (BBB), blood-retinal barrier, blood-nerve barrier, blood-lymph barrier, and blood-cerebrospinal fluid barrier, operate to maintain the physiological homeostasis within tissues and organs. From a pharmaceutical point of view, the most challenging is undoubtedly the BBB, since its presence notably complicates the treatment of brain disorders. BBB action can impair the delivery of chemical drugs and biopharmaceuticals into the brain, reducing their therapeutic efficacy and/or increasing their unwanted bioaccumulation in the surrounding healthy tissues. Recent nanotechnological innovation provides advanced biomaterials and ad hoc customized engineering and functionalization methods able to assist in brain-targeted drug delivery. In this context, lipid nanocarriers, including both synthetic (liposomes, solid lipid nanoparticles, nanoemulsions, nanostructured lipid carriers, niosomes, proniosomes, and cubosomes) and cell-derived ones (extracellular vesicles and cell membrane-derived nanocarriers), are considered one of the most successful brain delivery systems due to their reasonable biocompatibility and ability to cross the BBB. This review aims to provide a complete and up-to-date point of view on the efficacy of the most varied lipid carriers, whether FDA-approved, involved in clinical trials, or used in in vitro or in vivo studies, for the treatment of inflammatory, cancerous, or infectious brain diseases.
Collapse
Affiliation(s)
- Francesca Susa
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (F.S.); (C.F.P.)
| | - Silvia Arpicco
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy;
| | - Candido Fabrizio Pirri
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (F.S.); (C.F.P.)
| | - Tania Limongi
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy;
| |
Collapse
|
3
|
Xu K, Duan S, Wang W, Ouyang Q, Qin F, Guo P, Hou J, He Z, Wei W, Qin M. Nose-to-brain delivery of nanotherapeutics: Transport mechanisms and applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1956. [PMID: 38558503 DOI: 10.1002/wnan.1956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024]
Abstract
The blood-brain barrier presents a key limitation to the administration of therapeutic molecules for the treatment of brain disease. While drugs administered orally or intravenously must cross this barrier to reach brain targets, the unique anatomical structure of the olfactory system provides a route to deliver drugs directly to the brain. Entering the brain via receptor, carrier, and adsorption-mediated transcytosis in the nasal olfactory and trigeminal regions has the potential to increase drug delivery. In this review, we introduce the physiological and anatomical structures of the nasal cavity, and summarize the possible modes of transport and the relevant receptors and carriers in the nose-to-brain pathway. Additionally, we provide examples of nanotherapeutics developed for intranasal drug delivery to the brain. Further development of nanoparticles that can be applied to intranasal delivery systems promises to improve drug efficacy and reduce drug resistance and adverse effects by increasing molecular access to the brain. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease.
Collapse
Affiliation(s)
- Kunyao Xu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Medical Primate Research Center & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Suqin Duan
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Medical Primate Research Center & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
| | - Wenjing Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, China
| | - Qiuhong Ouyang
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Qin
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Peilin Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, China
| | - Jinghan Hou
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Medical Primate Research Center & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Medical Primate Research Center & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing, China
| | - Meng Qin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Hassan DM, El-Kamel AH, Allam EA, Bakr BA, Ashour AA. Chitosan-coated nanostructured lipid carriers for effective brain delivery of Tanshinone IIA in Parkinson's disease: interplay between nuclear factor-kappa β and cathepsin B. Drug Deliv Transl Res 2024; 14:400-417. [PMID: 37598133 PMCID: PMC10761445 DOI: 10.1007/s13346-023-01407-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2023] [Indexed: 08/21/2023]
Abstract
Parkinson's disease (PD) is the second most common progressive neurodegenerative disorder associated with increased oxidative stress, the underlying vital process contributing to cell death. Tanshinone IIA (TAN) is a phytomedicine with a documented activity in treating many CNS disorders, particularly PD owing to its unique anti-inflammatory and antioxidant effect. However, its clinical utility is limited by its poor aqueous solubility, short half-life, and hence low concentration reaching targeted cells. This work aimed to develop a biocompatible chitosan-coated nanostructured lipid carriers (CS-NLCs) for effective brain delivery of TAN for PD management. The proposed nanosystem was successfully prepared using a simple melt-emulsification ultra-sonication method, optimized and characterized both in vitro and in vivo in a rotenone-induced PD rat model. The developed TAN-loaded CS-NLCs (CS-TAN-NLCs) showed good colloidal properties (size ≤ 200 nm, PDI ≤ 0.2, and ζ-potential + 20 mV) and high drug entrapment efficiency (> 97%) with sustained release profile for 24 h. Following intranasal administration, CS-TAN-NLCs succeeded to achieve a remarkable antiparkinsonian and antidepressant effect in diseased animals compared to both the uncoated TAN-NLCs and free TAN suspension as evidenced by the conducted behavioral tests and improved histopathological findings. Furthermore, biochemical evaluation of oxidative stress along with inflammatory markers, nuclear factor-kabba β (NF-Kβ) and cathepsin B further confirmed the potential of the CS-TAN-NLCs in enhancing brain delivery and hence the therapeutic effect of TAN of treatment of PD. Accordingly, CS-TAN-NLCs could be addressed as a promising nano-platform for the effective management of PD.
Collapse
Affiliation(s)
- Donia M Hassan
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Alexandria, Egypt
| | - Amal H El-Kamel
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Alexandria, Egypt.
| | - Eman A Allam
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Basant A Bakr
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Asmaa A Ashour
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 1 Khartoum Square, Azarita, Alexandria, Egypt
| |
Collapse
|
5
|
Tulbah AS, Elkomy MH, Zaki RM, Eid HM, Eissa EM, Ali AA, Yassin HA, Aldosari BN, Naguib IA, Hassan AH. Novel nasal niosomes loaded with lacosamide and coated with chitosan: A possible pathway to target the brain to control partial-onset seizures. Int J Pharm X 2023; 6:100206. [PMID: 37637477 PMCID: PMC10458293 DOI: 10.1016/j.ijpx.2023.100206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/29/2023] Open
Abstract
This work aimed to develop and produce lacosamide-loaded niosomes coated with chitosan (LCA-CTS-NSM) using a thin-film hydration method and the Box-Behnken design. The effect of three independent factors (Span 60 amount, chitosan concentration, and cholesterol amount) on vesicle size, entrapment efficiency, zeta potential, and cumulative release (8 h) was studied. The optimal formulation of LCA-CTS-NSM was chosen from the design space and assessed for morphology, in vitro release, nasal diffusion, stability, tolerability, and in vivo biodistribution for brain targeting after intranasal delivery. The vesicle size, entrapment, surface charge, and in vitro release of the optimal formula were found to be 194.3 nm, 58.3%, +35.6 mV, and 81.3%, respectively. Besides, it exhibits sustained release behavior, enhanced nasal diffusion, and improved physical stability. Histopathological testing revealed no evidence of toxicity or structural damage to the nasal mucosa. It demonstrated significantly more brain distribution than the drug solution. Overall, the data is encouraging since it points to the potential for non-invasive intranasal administration of LCA as an alternative to oral or parenteral routes.
Collapse
Affiliation(s)
- Alaa S. Tulbah
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Mohammed H. Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
| | - Randa Mohammed Zaki
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Hussein M. Eid
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Essam M. Eissa
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Adel A. Ali
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Heba A. Yassin
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Sinai University (Arish campus), Arish, Egypt
| | - Basmah Nasser Aldosari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ibrahim A. Naguib
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amira H. Hassan
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
6
|
Shafique U, Din FU, Sohail S, Batool S, Almari AH, Lahiq AA, Fatease AA, Alharbi HM. Quality by design for sumatriptan loaded nano-ethosomal mucoadhesive gel for the therapeutic management of nitroglycerin induced migraine. Int J Pharm 2023; 646:123480. [PMID: 37797784 DOI: 10.1016/j.ijpharm.2023.123480] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/16/2023] [Accepted: 10/01/2023] [Indexed: 10/07/2023]
Abstract
Migraine is a progressive neurological condition often accompanied by nausea and vomiting. Various drugs have recently been used in the treatment of migraine, including sumatriptan (SUT). However, SUT has poor pharmacological effects mainly due to its reduced permeability, blood brain barrier (BBB) effect, half-life and bioavailability. Herein, we developed SUT loaded nano-ethosomes (SUT-NEs) for intranasal (IN) delivery, after their incorporation into chitosan based mucoadhesive gel (SUT-NEsG). The observed mean particle size of SUT-NEs was 109.45 ± 4.03 nm with spherical morphology, mono dispersion (0.191 ± 0.001), negatively charged (-20.90 ± 1.98 mV) and with excellent entrapment efficiency (96.90 ± 1.85 %). Fourier-transform infrared (FTIR) spectra have depicted the compatibility of the components. Moreover, SUT-NEsG was homogeneous having suitable viscosity and mucoadhesive strength. In vitro release and ex vivo permeation analysis showed sustained release and improved permeation of the SUT-NEsG, respectively. Additionally, histopathological studies of nasal membrane affirmed the safety of SUT-NEsG after IN application. In vivo pharmacokinetic study demonstrated improved brain bioavailability of SUT-NEsG as compared to orally administered sumatriptan solution (SUT-SL). Furthermore, significantly enhanced pharmacological effect of SUT-NEsG was observed in behavioral and biochemical analysis, immunohistochemistry for NF-κB, and enzyme linked immuno assay (ELISA) for IL-1β and TNF-α in Nitroglycerin (NTG) induced migraine model. It can be concluded that migraine may be successfully managed through IN application of SUT-NEsG owing to the direct targeted delivery to the brain.
Collapse
Affiliation(s)
- Uswa Shafique
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320 Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Fakhar Ud Din
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320 Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, 45320 Islamabad, Pakistan.
| | - Saba Sohail
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320 Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Sibgha Batool
- Nanomedicine Research Group, Department of Pharmacy Quaid-i-Azam University, 45320 Islamabad, Pakistan; Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Ali H Almari
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Ahmed A Lahiq
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 66262, Saudi Arabi
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Hanan M Alharbi
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| |
Collapse
|
7
|
Magdy M, Elmowafy E, Elassal M, Ishak RAH. Glycerospanlastics: State-of-the-art two-in-one nano-vesicles for boosting ear drug delivery in otitis media treatment. Int J Pharm 2023; 645:123406. [PMID: 37703960 DOI: 10.1016/j.ijpharm.2023.123406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
The purpose of this research was to design innovative nanovesicles for ototopical conveyance of triamcinolone acetonide (TA) for otitis media (OM) treatment via incorporating glycerol into nanospanlastics to be termed "Glycerospanlastics". The glycerospanlastics were formulated employing ethanol injection procedure, and central composite design (CCD) was harnessed for optimization of the vesicles. Various attributes of the nanovesicles, viz. particle size distribution, surface charge, TA entrapment efficiency, morphology as well as ex-vivo permeation across the tympanic membrane (TM) were characterized. In vivo implementation of the optimized glycerospanlastics loaded with TA was appraised in OM-induced rats via histopathological and biochemical measurements of the tumor necrosis factor-α (TNF-α) and Interleukin-1β (IL-1β) levels in ear homogenates. The safety and tolerability of optimized TA glycerospanlastics was also investigated in non-OM induced animals. The results demonstrated that the optimized TA-glycerospanlastics were in a nanometer range (around 200 nm) with negative charges, high TA entrapment (>85%), good storage properties and better TM permeation relative to TA suspension. More importantly, TA-glycerospanlastics performed better than marketed drug suspension in OM treatment as manifested by restoration of histopathological alterations in TM and lowered values of IL-1β and TNF-α. Glycerospanlastics could be promising safe ototopical nanoplatforms for OM treatment and other middle ear disorders.
Collapse
Affiliation(s)
- Manar Magdy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt (FUE), Fifth Settlement, P.O. Box 11835, Cairo, Egypt
| | - Enas Elmowafy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassia, P.O. Box 11566, Cairo, Egypt
| | - Mona Elassal
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Future University in Egypt (FUE), Fifth Settlement, P.O. Box 11835, Cairo, Egypt
| | - Rania A H Ishak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Abbassia, P.O. Box 11566, Cairo, Egypt.
| |
Collapse
|
8
|
Botti G, Bianchi A, Dalpiaz A, Tedeschi P, Albanese V, Sorrenti M, Catenacci L, Bonferoni MC, Beggiato S, Pavan B. Dimeric ferulic acid conjugate as a prodrug for brain targeting after nasal administration of loaded solid lipid microparticles. Expert Opin Drug Deliv 2023; 20:1657-1679. [PMID: 38014509 DOI: 10.1080/17425247.2023.2286369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023]
Abstract
OBJECTIVE Ferulic acid (Fer) displays antioxidant/anti-inflammatory properties useful against neurodegenerative diseases. To increase Fer uptake and its central nervous system residence time, a dimeric prodrug, optimizing the Fer loading on nasally administrable solid lipid microparticles (SLMs), was developed. METHODS The prodrug was synthesized as Fer dimeric conjugate methylated on the carboxylic moiety. Prodrug antioxidant/anti-inflammatory properties and ability to release Fer in physiologic environments were evaluated. Tristearin or stearic acid SLMs were obtained by hot emulsion technique. In vivo pharmacokinetics were quantified by HPLC. RESULTS The prodrug was able to release Fer in physiologic environments (whole blood and brain homogenates) and induce in vitro antioxidant/anti-inflammatory effects. Its half-life in rats was 18.0 ± 1.9 min. Stearic acid SLMs, exhibiting the highest prodrug loading and dissolution rate, were selected for nasal administration to rats (1 mg/kg dose), allowing to obtain high prodrug bioavailability and prolonged residence in the cerebrospinal fluid, showing AUC (Area Under Concentration) values (108.5 ± 3.9 μg∙mL-1∙min) up to 30 times over those of Fer free drug, after its intravenous/nasal administration (3.3 ± 0.3/5.16 ± 0.20 μg∙mL-1∙min, respectively) at the same dose. Chitosan presence further improved the prodrug brain uptake. CONCLUSIONS Nasal administration of prodrug-loaded SLMs can be proposed as a noninvasive approach for neurodegenerative disease therapy.
Collapse
Affiliation(s)
- Giada Botti
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Anna Bianchi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Alessandro Dalpiaz
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Paola Tedeschi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Valentina Albanese
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Milena Sorrenti
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Laura Catenacci
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | | | - Sarah Beggiato
- Department of Life Sciences and Biotechnology, University of Ferrara and LTTA Center, Ferrara, Italy
| | - Barbara Pavan
- Department of Neuroscience and Rehabilitation-Section of Physiology, University of Ferrara, Ferrara, Italy
- Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara, Italy
| |
Collapse
|
9
|
Correia AC, Moreira JN, Sousa Lobo JM, Silva AC. Design of experiment (DoE) as a quality by design (QbD) tool to optimise formulations of lipid nanoparticles for nose-to-brain drug delivery. Expert Opin Drug Deliv 2023; 20:1731-1748. [PMID: 37905547 DOI: 10.1080/17425247.2023.2274902] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/20/2023] [Indexed: 11/02/2023]
Abstract
INTRODUCTION The nose-to-brain route has been widely investigated to improve drug targeting to the central nervous system (CNS), where lipid nanoparticles (solid lipid nanoparticles - SLN and nanostructured lipid carriers - NLC) seem promising, although they should meet specific criteria of particle size (PS) <200 nm, polydispersity index (PDI) <0.3, zeta potential (ZP) ~|20| mV and encapsulation efficiency (EE) >80%. To optimize SLN and NLC formulations, design of experiment (DoE) has been recommended as a quality by design (QbD) tool. AREAS COVERED This review presents recently published work on the optimization of SLN and NLC formulations for nose-to-brain drug delivery. The impact of different factors (or independent variables) on responses (or dependent variables) is critically analyzed. EXPERT OPINION Different DoEs have been used to optimize SLN and NLC formulations for nose-brain drug delivery, and the independent variables lipid and surfactant concentration and sonication time had the greatest impact on the dependent variables PS, EE, and PDI. Exploring different DoE approaches is important to gain a deeper understanding of the factors that affect successful optimization of SLN and NLC and to facilitate future work improving machine learning techniques.
Collapse
Affiliation(s)
- A C Correia
- Faculty of Pharmacy, University of Porto, UCIBIO, REQUIMTE, Porto, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - J N Moreira
- CNC - Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), Faculty of Medicine (Pólo I), University of Coimbra, Coimbra, Portugal
- Faculty of Pharmacy, Univ Coimbra - University of Coimbra, CIBB, Pólo das Ciências da Saúde, Azinhaga de, Santa Comba, Coimbra, Portugal
| | - J M Sousa Lobo
- Faculty of Pharmacy, University of Porto, UCIBIO, REQUIMTE, Porto, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - A C Silva
- Faculty of Pharmacy, University of Porto, UCIBIO, REQUIMTE, Porto, Portugal
- Associate Laboratory i4HB Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- FP-I3ID (Instituto de Investigação, Inovação e Desenvolvimento), FP-BHS (Biomedical and Health Sciences Research Unit), Faculty of Health Sciences, University Fernando Pessoa, Porto, Portugal
| |
Collapse
|
10
|
Khan S, Sharma A, Jain V. An Overview of Nanostructured Lipid Carriers and its Application in Drug Delivery through Different Routes. Adv Pharm Bull 2023; 13:446-460. [PMID: 37646052 PMCID: PMC10460807 DOI: 10.34172/apb.2023.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 07/24/2022] [Accepted: 09/09/2022] [Indexed: 09/01/2023] Open
Abstract
Nanostructured Lipid Carriers (NLC) are nano-sized colloidal drug delivery system that contains a lipid mixture consisting of both solid and liquid lipids in their core. This Lipid-Based Nanosystem is introduced as a biocompatible, non-toxic, and safe nano-drug delivery system as compared to polymeric or metallic nanoparticles. Due to its safety, stability, and high drug loading capacity compared to other lipid-based nanocarriers, NLC gained the attention of researchers to formulate safe and effective drug carriers. The ability to increase drug solubility and permeability while encapsulating the drug in a lipidic shell makes them an ideal carrier for drug delivery through difficult-to-achieve routes. Surface modification of NLC and the use of various additives result in drug targeting and increased residence time. With such qualities, NLCs can be used to treat a variety of diseases such as cancer, infections, neurodegenerative diseases, hypertension, diabetes, and pain management. This review focuses on the recent developments being made to deliver the drugs and genes through different routes via these nanocarriers. Here, we also discuss about historical background, structure, types of NLC and commonly employed techniques for manufacturing lipid-based nanocarriers.
Collapse
Affiliation(s)
- Shadab Khan
- Mahakal Institute of Pharmaceutical Studies, Ujjain, India
| | | | - Vikas Jain
- Mahakal Institute of Pharmaceutical Studies, Ujjain, India
| |
Collapse
|
11
|
Ibrahim SS. Nanostructured Lipid Carriers for Oral Delivery of a Corticosteroid: Role of Formulation on Biopharmaceutical Performance. J Pharm Sci 2023; 112:790-797. [PMID: 36270540 DOI: 10.1016/j.xphs.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022]
Abstract
Corticosteroids are potent anti-inflammatory and immunosuppressive drugs widely used world-wide for treatment of diverse conditions. However, their use is restricted by their poor bioavailability and high risk-benefit ratio. Therefore, the aim of this study was to develop nanostructred lipid carriers (NLC) of prednisolone acetate (PA) to improve the drug's therapeutic outcome by altering its pharmacokinetic profile and/or allow preferential targeting to inflammatory tissues. PA-loaded NLCs were formulated by solvent injection method using Compritol (solid lipid), oleic acid (liquid lipid) and Tween 80 or Pluronic F68 (surfactant). Formulation conditions, such as liquid lipid concentration, total lipids, drug:lipid ratio and surfactant type were optimized based on particle size (PS), polydispersity index (PDI), and encapsulation efficiency (EE%) results. Optimized formulation was further characterized for its surface morphology, thermal properties, storage stability and anti-inflammatory activity in an animal acute inflammation model. Selected NLCs displayed PS of 170.7 nm, EE% of 67.4%, sustained release over 72 h and good stability for 30 days at refrigeration conditions. PA NLCs displayed superior anti-inflammatory activity of 83.9 ± 4.46% compared to PA suspension (40.5 ± 7.03%) and drug-free NLCs (54.7 ± 6.12%). The current work delineates the potential of NLCs for distinctly improved biopharmaceutical performance of PA.
Collapse
Affiliation(s)
- Shaimaa S Ibrahim
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, 11566 Cairo, Egypt.
| |
Collapse
|
12
|
Shehata MK, Ismail AA, Kamel MA. Nose to Brain Delivery of Astaxanthin–Loaded Nanostructured Lipid Carriers in Rat Model of Alzheimer’s Disease: Preparation, in vitro and in vivo Evaluation. Int J Nanomedicine 2023; 18:1631-1658. [PMID: 37020692 PMCID: PMC10069509 DOI: 10.2147/ijn.s402447] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Background Astaxanthin (AST) is a second-generation antioxidant with anti-inflammatory and neuroprotective properties and could be a promising candidate for Alzheimer's disease (AD) therapy, but is shows poor oral bioavailability due to its high lipophilicity. Purpose This study aimed to prepare and evaluate AST-loaded nanostructured lipid carriers (NLCs), for enhanced nose-to-brain drug delivery to improve its therapeutic efficacy in rat model of AD. Methods AST-NLCs were prepared using hot high-pressure homogenization technique, and processing parameters such as total lipid-to-drug ratio, solid lipid-to-liquid lipid ratio, and concentration of surfactant were optimized. Results The optimized AST-NLCs had a mean particle size of 142.8 ± 5.02 nm, polydispersity index of 0.247 ± 0.016, zeta potential of -32.2 ± 7.88 mV, entrapment efficiency of 94.1 ± 2.46%, drug loading of 23.5 ± 1.48%, and spherical morphology as revealed by transmission electron microscopy. Differential scanning calorimetry showed that AST was molecularly dispersed in the NLC matrix in an amorphous state, whereas Fourier transform infrared spectroscopy indicated that there is no interaction between AST and lipids. AST displayed a biphasic release pattern from NLCs; an initial burst release followed by sustained release for 24 h. AST-NLCs were stable at 4-8 ±2°C for six months. Intranasal treatment of AD-like rats with the optimized AST-NLCs significantly decreased oxidative stress, amyloidogenic pathway, neuroinflammation and apoptosis, and significantly improved the cholinergic neurotransmission compared to AST-solution. This was observed by the significant decline in the levels of malondialdehyde, nuclear factor-kappa B, amyloid beta (Aβ1‑42), caspase-3, acetylcholinesterase, and β-site amyloid precursor protein cleaving enzyme-1 expression, and significant increase in the contents of acetylcholine and glutathione after treatment with AST-NLCs. Conclusion NLCs enhanced the intranasal delivery of AST and significantly improved its therapeutic properties.
Collapse
Affiliation(s)
- Mustafa K Shehata
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Correspondence: Mustafa K Shehata, Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Khartoum Square, Azzarita, Alexandria, 21521, Egypt, Tel +20 1114740302, Fax +20 3 4871668, Email ;
| | - Assem A Ismail
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Maher A Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
13
|
Salem HF, Ali AA, Rabea YK, Abo El-Ela FI, Khallaf RA. Optimization and Appraisal of Chitosan-Grafted PLGA Nanoparticles for Boosting Pharmacokinetic and Pharmacodynamic Effect of Duloxetine HCl Using Box-Benkhen Design. J Pharm Sci 2023; 112:544-561. [PMID: 36063878 DOI: 10.1016/j.xphs.2022.08.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/28/2022] [Accepted: 08/28/2022] [Indexed: 01/18/2023]
Abstract
Duloxetine HCl (DXH) is a psychiatric medicine employed for treating major depressive disorder. Nonetheless, its low water solubility, high first-pass metabolism, and acid instability diminish the absolute oral bioavailability to 40%, thus necessitating frequent administration. Therefore, the aim of the current study was to formulate DXH as nasal chitosan-grafted polymeric nanoparticles to improve its pharmacokinetic and pharmacodynamic properties. Applying the Box-Behnken design, DXH loaded PLGA-Chitosan nanoparticles (DXH-PLGA-CS-NPs) were fabricated and optimized using polylactide-co-glycolic acid (PLGA), chitosan (CS), and polyvinyl alcohol (PVA) as the independent factors. Particle size, entrapment efficiency, release percent, and cumulative amount permeated after 24 h of DXH-PLGA-CS-NPs (dependent variables) were evaluated. The in-vivo biodistribution and pharmacodynamic studies were done in male Wistar rats. The optimized DXH-PLGA-CS-NPs had a vesicle size of 122.11 nm and EE% of 66.95 with 77.65% release and Q24 of 555.34 (µg/cm2). Ex-vivo permeation study revealed 4-folds increase in DXH permeation from DXH-PLGA-CS-NPs after 24 h compared to DXH solution. Intranasal administration of optimized DXH-PLGA-CS-NPs resulted in significantly higher (p < 0.05) Cmax, AUCtotal, t1/2, and MRT in rat brain and plasma than oral DXH solution. Pharmacodynamics investigation revealed that intranasally exploited optimal DXH-PLGA-CS-NPs could be deemed a fruitful horizon for DXH as a treatment for depression.
Collapse
Affiliation(s)
- Heba F Salem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Adel A Ali
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Yasmine K Rabea
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Fatma I Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Egypt, 62511
| | - Rasha A Khallaf
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|
14
|
Kannavou M, Karali K, Katsila T, Siapi E, Marazioti A, Klepetsanis P, Calogeropoulou T, Charalampopoulos I, Antimisiaris SG. Development and Comparative In Vitro and In Vivo Study of BNN27 Mucoadhesive Liposomes and Nanoemulsions for Nose-to-Brain Delivery. Pharmaceutics 2023; 15:pharmaceutics15020419. [PMID: 36839740 PMCID: PMC9967044 DOI: 10.3390/pharmaceutics15020419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Intranasal administration offers an alternative and promising approach for direct nose-to-brain delivery. Herein, we developed two chitosan (CHT)-coated (and uncoated) nanoformulations of BNN27 (a synthetic C-17-spiro-dehydroepiandrosterone analogue), liposomes (LIPs), and nanoemulsions (NEs), and compared their properties and brain disposition (in vitro and in vivo). LIPs were formulated by thin film hydration and coated with CHT by dropwise addition. BNN27-loaded NEs (BNEs) were developed by spontaneous emulsification and optimized for stability and mucoadhesive properties. Mucoadhesive properties were evaluated by mucin adherence. Negatively charged CHT-coated LIPs (with 0.1% CHT/lipid) demonstrated the highest coating efficiency and mucoadhesion. BNEs containing 10% w/w Capmul-MCM and 0.3% w/w CHT demonstrated the optimal properties. Transport of LIP or NE-associated rhodamine-lipid across the blood-brain barrier (in vitro) was significantly higher for NEs compared to LIPs, and the CHT coating demonstrated a negative effect on transport. However, the CHT-coated BNEs demonstrated higher and faster in vivo brain disposition following intranasal administration compared to CHT-LIPs. For both BNEs and LIPs, CHT-coating resulted in the increased (in vivo) brain disposition of BNN27. Current results prove that CHT-coated NEs consisting of compatible nasal administration ingredients succeeded in to delivering more BNN27 to the brain (and faster) compared to the CHT-coated LIPs.
Collapse
Affiliation(s)
- Maria Kannavou
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, 26510 Rio, Greece
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences, FORTH/ICE-HT, 26504 Rio, Greece
| | - Kanelina Karali
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece
- Institute of Molecular Biology & Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece
| | - Theodora Katsila
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Eleni Siapi
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Antonia Marazioti
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, 26510 Rio, Greece
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences, FORTH/ICE-HT, 26504 Rio, Greece
| | - Pavlos Klepetsanis
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, 26510 Rio, Greece
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences, FORTH/ICE-HT, 26504 Rio, Greece
| | - Theodora Calogeropoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| | - Ioannis Charalampopoulos
- Department of Pharmacology, Medical School, University of Crete, 71003 Heraklion, Greece
- Institute of Molecular Biology & Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), 70013 Heraklion, Greece
| | - Sophia G. Antimisiaris
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, University of Patras, 26510 Rio, Greece
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences, FORTH/ICE-HT, 26504 Rio, Greece
- Correspondence: ; Tel.: +30-610962332
| |
Collapse
|
15
|
Gupta S, Perla A, Roy A, Vitore JG, K B, Salave S, Rana D, Sharma A, Rathod R, Kumar H, Benival D. In Vivo Evaluation of Almotriptan malate Formulation through Intranasal Route for the Treatment of Migraine: Systematic Development and Pharmacokinetic Assessment. AAPS PharmSciTech 2023; 24:32. [PMID: 36627414 DOI: 10.1208/s12249-022-02496-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Migraine headaches are usually intolerable, and a quick-relief treatment remains an unmet medical need. Almotriptan malate is a serotonin (5-HT1B/1D) receptor agonist approved for the treatment of acute migraine in adults. It is currently available in an oral tablet dosage form and has a Tmax of 1-3 h, and therefore, there is a medical need to develop a non-invasive rapidly acting formulation. We have developed an intranasal formulation of almotriptan malate using the quality-by-design (QbD) approach. A 2-factor 3-level full factorial design was selected to build up the experimental setting. The developed formulation was characterized for pH, viscosity, in vitro permeation, ex vivo permeation, and histopathological tolerance. To assess the potential of the developed formulation to produce a rapid onset of action following intranasal delivery, a pharmacokinetic study was performed in the Sprague-Dawley rat model and compared to the currently available marketed oral tablet formulation. For this, the LC-MS/MS bioanalytical method was developed and used for the determination of plasma almotriptan malate concentrations. Results of a pharmacokinetic study revealed that intranasal administration of optimized almotriptan malate formulation enabled an almost five-fold reduction in Tmax and about seven-fold increase in bioavailability in comparison to the currently available oral tablet formulation, suggesting the potential of developed almotriptan malate intranasal formulation in producing a rapid onset of action as well as enhanced bioavailability.
Collapse
Affiliation(s)
- Shubham Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research - Ahmedabad (NIPER-A), Gandhinagar, 382355, India
| | - Akhil Perla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research - Ahmedabad (NIPER-A), Gandhinagar, 382355, India
| | - Abhishek Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research - Ahmedabad (NIPER-A), Gandhinagar, 382355, India
| | - Jyotsna G Vitore
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research - Ahmedabad (NIPER-A), Gandhinagar, 382355, India
| | - Bharathi K
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research - Ahmedabad (NIPER-A), Gandhinagar, 382355, India
| | - Sagar Salave
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research - Ahmedabad (NIPER-A), Gandhinagar, 382355, India
| | - Dhwani Rana
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research - Ahmedabad (NIPER-A), Gandhinagar, 382355, India
| | - Amit Sharma
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research - Ahmedabad (NIPER-A), Gandhinagar, 382355, India
| | - Rajeshwari Rathod
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research - Ahmedabad (NIPER-A), Gandhinagar, 382355, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research - Ahmedabad (NIPER-A), Gandhinagar, 382355, India
| | - Derajram Benival
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research - Ahmedabad (NIPER-A), Gandhinagar, 382355, India. .,Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Gandhinagar, 382355, Gujarat, India.
| |
Collapse
|
16
|
Shete MB, Deshpande AS, Shende PK. Nanostructured lipid carrier-loaded metformin hydrochloride: Design, optimization, characterization, assessment of cytotoxicity and ROS evaluation. Chem Phys Lipids 2023; 250:105256. [PMID: 36372117 DOI: 10.1016/j.chemphyslip.2022.105256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/29/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Metformin hydrochloride (MET) is commonly used in diabetes treatment. Recently, it has gained interest for its anticancer potential against a wide range of cancers. Owing to its hydrophilic nature, the delivery and clinical actions of MET are limited. Therefore, the present work aims to develop MET-encapsulated NLCs using the hot-melt emulsification and probe-sonication method. The optimization was accomplished by 33 BB design wherein lipid ratio, surfactant concentration, and sonication time were independent variables while the PS (nm), PDI, and EE (%) were dependent variables. The PS, PDI, % EE and ZP of optimized GMSMET-NLCs were found to be 114.9 ± 1.32 nm, 0.268 ± 0.04 %, 60.10 ± 2.23 %, and ZP - 15.76 mV, respectively. The morphological features, DSC and PXRD, and FTIR analyses suggested the confirmation of formation of the NLCs. Besides, optimized GMSMET-NLCs showed up to 88 % MET release in 24 h. Moreover, GMSMET-NLCs showed significant cell cytotoxicity against KB oral cancer cells compared with MET solution as shown by the reduction of IC50 values. Additionally, GMSMET-NLCs displayed significantly increased intracellular ROS levels suggesting the GMSMET-NLCs induced cell death in KB cells. GMSMET-NLCs can therefore be explored to deliver MET through different routes of administration for the effective treatment of oral cancer.
Collapse
Affiliation(s)
- Meghanath B Shete
- School of Pharmacy & Technology Management, SVKM'S NMIMS, Shirpur, Maharashtra, India; Department of Pharmaceutical Quality Assurance, R C Patel Institute of Pharmaceutical Education and Research, Shirpur, Dist., Dhule 425405, Maharashtra, India
| | - Ashwini S Deshpande
- School of Pharmacy & Technology Management, SVKM'S NMIMS, Polepally SEZ, TSIIC Jadcherla, Hyderabad 509301, India
| | - Pravin K Shende
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S NMIMS, Vile-Parle (W), Mumbai, Maharashtra, India.
| |
Collapse
|
17
|
Vasilieva EA, Kuznetsova DA, Valeeva FG, Kuznetsov DM, Zakharov AV, Amerhanova SK, Voloshina AD, Zueva IV, Petrov KA, Zakharova LY. Therapy of Organophosphate Poisoning via Intranasal Administration of 2-PAM-Loaded Chitosomes. Pharmaceutics 2022; 14:pharmaceutics14122846. [PMID: 36559339 PMCID: PMC9781263 DOI: 10.3390/pharmaceutics14122846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Chitosan-decorated liposomes were proposed for the first time for the intranasal delivery of acetylcholinesterase (AChE) reactivator pralidoxime chloride (2-PAM) to the brain as a therapy for organophosphorus compounds (OPs) poisoning. Firstly, the chitosome composition based on phospholipids, cholesterol, chitosans (Cs) of different molecular weights, and its arginine derivative was developed and optimized. The use of the polymer modification led to an increase in the encapsulation efficiency toward rhodamine B (RhB; ~85%) and 2-PAM (~60%) by 20% compared to conventional liposomes. The formation of monodispersed and stable nanosized particles with a hydrodynamic diameter of up to 130 nm was shown using dynamic light scattering. The addition of the polymers recharged the liposome surface (from -15 mV to +20 mV), which demonstrates the successful deposition of Cs on the vesicles. In vitro spectrophotometric analysis showed a slow release of substrates (RhB and 2-PAM) from the nanocontainers, while the concentration and Cs type did not significantly affect the chitosome permeability. Flow cytometry and fluorescence microscopy qualitatively and quantitatively demonstrated the penetration of the developed chitosomes into normal Chang liver and M-HeLa cervical cancer cells. At the final stage, the ability of the formulated 2-PAM to reactivate brain AChE was assessed in a model of paraoxon-induced poisoning in an in vivo test. Intranasal administration of 2-PAM-containing chitosomes allows it to reach the degree of enzyme reactivation up to 35 ± 4%.
Collapse
|
18
|
Hawthorne D, Pannala A, Sandeman S, Lloyd A. Sustained and targeted delivery of hydrophilic drug compounds: A review of existing and novel technologies from bench to bedside. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Elkomy MH, Ali AA, Eid HM. Chitosan on the surface of nanoparticles for enhanced drug delivery: A comprehensive review. J Control Release 2022; 351:923-940. [DOI: 10.1016/j.jconrel.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 11/26/2022]
|
20
|
Magdy M, Elmowafy E, El-Assal MI, Ishak RA. Engineered triamcinolone acetonide loaded glycerosomes as a novel ear delivery system for the treatment of otitis media. Int J Pharm 2022; 628:122276. [DOI: 10.1016/j.ijpharm.2022.122276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 10/31/2022]
|
21
|
Correia AC, Monteiro AR, Silva R, Moreira JN, Sousa Lobo JM, Silva AC. Lipid nanoparticles strategies to modify pharmacokinetics of central nervous system targeting drugs: Crossing or circumventing the blood-brain barrier (BBB) to manage neurological disorders. Adv Drug Deliv Rev 2022; 189:114485. [PMID: 35970274 DOI: 10.1016/j.addr.2022.114485] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 01/24/2023]
Abstract
The main limitation to the success of central nervous system (CNS) therapies lies in the difficulty for drugs to cross the blood-brain barrier (BBB) and reach the brain. Regarding its structure and enzymatic complexity, crossing the BBB is a challenge, although several alternatives have been identified. For instance, the use of drugs encapsulated in lipid nanoparticles has been described as one of the most efficient approaches to bypass the BBB, as they allow the passage of drugs through this barrier, improving brain bioavailability. In particular, solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) have been a focus of research related to drug delivery to the brain. These systems provide protection of lipophilic drugs, improved delivery and bioavailability, having a major impact on treatments outcomes. In addition, the use of lipid nanoparticles administered via routes that transport drugs directly into the brain seems a promising solution to avoid the difficulties in crossing the BBB. For instance, the nose-to-brain route has gained considerable interest, as it has shown efficacy in 3D human nasal models and in animal models. This review addresses the state of the art on the use of lipid nanoparticles to modify the pharmacokinetics of drugs employed in the management of neurological disorders. A description of the structural components of the BBB, the role of the neurovascular unit and limitations for drugs to entry into the CNS is first addressed, along with the developments to increase drug delivery to the brain, with a special focus on lipid nanoparticles. In addition, the obstacle of BBB complexity in the creation of new effective drugs for the treatment of the most prevalent neurological disorders is also addressed. Finally, the proposed strategies for lipid nanoparticles to reach the CNS, crossing or circumventing the BBB, are described. Although promising results have been reported, especially with the nose-to-brain route, they are still ongoing to assess its real efficacy in vivo in the management of neurological disorders.
Collapse
Affiliation(s)
- A C Correia
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | - A R Monteiro
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, Porto, Portugal
| | - R Silva
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, Porto, Portugal.
| | - J N Moreira
- CNC - Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Pólo I), Coimbra, Portugal; Univ Coimbra - University of Coimbra, CIBB, Faculty of Pharmacy, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - J M Sousa Lobo
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Portugal
| | - A C Silva
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Portugal; FP-I3ID (Instituto de Investigação, Inovação e Desenvolvimento), FP-BHS (Biomedical and Health Sciences Research Unit), Faculty of Health Sciences, University Fernando Pessoa, 4249 004 Porto, Portugal.
| |
Collapse
|
22
|
Zafar A, Awad Alsaidan O, Alruwaili NK, Sarim Imam S, Yasir M, Saad Alharbi K, Singh L, Muqtader Ahmed M. Formulation of intranasal surface engineered nanostructured lipid carriers of rotigotine: Full factorial design optimization, in vitro characterization, and pharmacokinetic evaluation. Int J Pharm 2022; 627:122232. [PMID: 36155794 DOI: 10.1016/j.ijpharm.2022.122232] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 11/26/2022]
Abstract
The objective of the present research was to develop, optimize, and evaluate rotigotine (RT)-loaded chitosan (CH) coated nanostructured lipid carriers (RT-CH-NLCs) for nose-to-brain delivery. The NLCs were prepared by homogenization and sonication technique as well as optimized by using three factors at three-level Box-Behnken design. The prepared NLCs were evaluated for particle size, zeta potential, entrapment efficiency, drug release, and ex vivo permeation. The pharmacokinetic study was conducted on albino Wistar rats to evaluate the bioavailability and neuropharmacokinetic parameters after intranasal administration of the optimized formulation (RT-CH-NLCs-OPT). The optimized formulation showed the particle size (170.48 ± 8.37 nm), PDI (0.19 ± 0.03), zeta potential (+ 26.73 mV), and entrapment efficiency (82.37 ± 2.48 %). In vitro drug release study displayed a sustained drug release pattern from RT-CH-NLCs-OPT (86.73±8.58 % in 24 h) in comparison to RT-Dis (98.61±7.24 % in 16 h). The permeability coefficient (PC) was found to be 11.39 ± 1.08×10-4 cm.h-1 and 2.34 folds higher than RT-Dis (4.85±1.53×10-4 cm.h-1). The relative bioavailability of RT from RT-CH-NLCs-OPT was 3.2-fold greater as compared to RT-Dis. The absolute bioavailability of RT after intranasal administration of RT-CH-NLCs-OPT was 2.1-fold higher than RT-CH-NLCs-OPT administered intravenously. The brain targeting and targeting potential was displayed by DTE (422.03 %) and DTP (76.03 %) after intranasal administration of RT-CH-NLCs-OPT as compared to RT-Dis (DTE 173.91 % and DTP 59.97 %). Furthermore, confocal laser scanning microscopy results confirmed better brain targeting for RT-CH-NLCs-OPT as compared to RT-Dis. From these findings, it could be concluded that RT-CH-NLCs could serve as a promising strategy for targeting RT through the intranasal route.
Collapse
Affiliation(s)
- Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia.
| | - Omar Awad Alsaidan
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Nabil K Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohd Yasir
- Department of Pharmacy, College of Health Sciences, Arsi University, Asella 396, Ethiopia
| | - Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, 72341, Al-Jouf, Saudi Arabia
| | - Lubhan Singh
- Kharvel Subharti College of Pharmacy, Swami Vivekanand Subharti University, Meerut, UP 250005, India
| | - Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| |
Collapse
|
23
|
Yasir M, Zafar A, Noorulla KM, Tura AJ, Sara UVS, Panjwani D, Khalid M, Haji MJ, Gobena WG, Gebissa T, Dalecha DD. Nose to brain delivery of donepezil through surface modified NLCs: Formulation development, optimization, and brain targeting study. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
24
|
Abbas H, Sayed NSE, Youssef NAHA, M. E. Gaafar P, Mousa MR, Fayez AM, Elsheikh MA. Novel Luteolin-Loaded Chitosan Decorated Nanoparticles for Brain-Targeting Delivery in a Sporadic Alzheimer's Disease Mouse Model: Focus on Antioxidant, Anti-Inflammatory, and Amyloidogenic Pathways. Pharmaceutics 2022; 14:1003. [PMID: 35631589 PMCID: PMC9148113 DOI: 10.3390/pharmaceutics14051003] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/27/2022] [Accepted: 05/04/2022] [Indexed: 11/17/2022] Open
Abstract
Preparation and evaluation of a non-invasive intranasal luteolin delivery for the management of cognitive dysfunction in Alzheimer's disease (AD) using novel chitosan decorated nanoparticles. Development of luteolin-loaded chitosomes was followed by full in vitro characterization. In vivo efficacy was evaluated using a sporadic Alzheimer's disease (SAD) animal model via intracerebroventricular injection of 3 mg/kg streptozotocin (ICV-STZ). Treatment groups of luteolin suspension and chitosomes (50 mg/kg) were then intranasally administered after 5 h of ICV-STZ followed by everyday administration for 21 consecutive days. Behavioral, histological, immunohistochemical, and biochemical studies were conducted. Chitosomes yielded promising quality attributes in terms of particle size (PS) (412.8 ± 3.28 nm), polydispersity index (PDI) (0.378 ± 0.07), Zeta potential (ZP) (37.4 ± 2.13 mv), and percentage entrapment efficiency (EE%) (86.6 ± 2.05%). Behavioral findings showed obvious improvement in the acquisition of short-term and long-term spatial memory. Furthermore, histological evaluation revealed an increased neuronal survival rate with a reduction in the number of amyloid plaques. Biochemical results showed improved antioxidant effects and reduced pro-inflammatory mediators' levels. In addition, a suppression by half was observed in the levels of both Aβ aggregation and hyperphosphorylated-tau protein in comparison to the model control group which in turn confirmed the capability of luteolin-loaded chitosomes (LUT-CHS) in attenuating the pathological changes of AD. The prepared nanoparticles are considered a promising safe, effective, and non-invasive nanodelivery system that improves cognitive function in SAD albino mice as opposed to luteolin suspension.
Collapse
Affiliation(s)
- Haidy Abbas
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt;
| | - Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza11562, Egypt
| | | | - Passent M. E. Gaafar
- Department of Pharmaceutics, Division of Pharmaceutical Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria 21500, Egypt;
| | - Mohamed R. Mousa
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Ahmed M. Fayez
- Department of Pharmacology and Toxicology, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo 11835, Egypt;
| | - Manal A Elsheikh
- Department of Pharmaceutics, Faculty of Pharmacy, Damanhour University, Damanhour 22511, Egypt;
| |
Collapse
|
25
|
O’Connell RC, Dodd TM, Clingerman SM, Fluharty KL, Coyle J, Stueckle TA, Porter DW, Bowers L, Stefaniak AB, Knepp AK, Derk R, Wolfarth M, Mercer RR, Boots TE, Sriram K, Hubbs AF. Developing a Solution for Nasal and Olfactory Transport of Nanomaterials. Toxicol Pathol 2022; 50:329-343. [PMID: 35416103 PMCID: PMC9872725 DOI: 10.1177/01926233221089209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
With advances in nanotechnology, engineered nanomaterial applications are a rapidly growing sector of the economy. Some nanomaterials can reach the brain through nose-to-brain transport. This transport creates concern for potential neurotoxicity of insoluble nanomaterials and a need for toxicity screening tests that detect nose-to-brain transport. Such tests can involve intranasal instillation of aqueous suspensions of nanomaterials in dispersion media that limit particle agglomeration. Unfortunately, protein and some elements in existing dispersion media are suboptimal for potential nose-to-brain transport of nanomaterials because olfactory transport has size- and ion-composition requirements. Therefore, we designed a protein-free dispersion media containing phospholipids and amino acids in an isotonic balanced electrolyte solution, a solution for nasal and olfactory transport (SNOT). SNOT disperses hexagonal boron nitride nanomaterials with a peak particle diameter below 100 nm. In addition, multiwalled carbon nanotubes (MWCNTs) in an established dispersion medium, when diluted with SNOT, maintain dispersion with reduced albumin concentration. Using stereomicroscopy and microscopic examination of plastic sections, dextran dyes dispersed in SNOT are demonstrated in the neuroepithelium of the nose and olfactory bulb of B6;129P2-Omptm3Mom/MomJ mice after intranasal instillation in SNOT. These findings support the potential for SNOT to disperse nanomaterials in a manner permitting nose-to-brain transport for neurotoxicity studies.
Collapse
Affiliation(s)
- Ryan C. O’Connell
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA,West Virginia University, Morgantown, West Virginia, USA
| | - Tiana M. Dodd
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | | | - Kara L. Fluharty
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Jayme Coyle
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Todd A. Stueckle
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Dale W. Porter
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Lauren Bowers
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | | | - Alycia K. Knepp
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Raymond Derk
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Michael Wolfarth
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Robert R. Mercer
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Theresa E. Boots
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Krishnan Sriram
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| | - Ann F. Hubbs
- Centers for Disease Control and Prevention, Morgantown, West Virginia, USA
| |
Collapse
|
26
|
Nguyen TTL, Maeng HJ. Pharmacokinetics and Pharmacodynamics of Intranasal Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for Nose-to-Brain Delivery. Pharmaceutics 2022; 14:572. [PMID: 35335948 PMCID: PMC8948700 DOI: 10.3390/pharmaceutics14030572] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 02/01/2023] Open
Abstract
Nose-to-brain drug delivery has been of great interest for the treatment of many central nervous system (CNS) diseases and psychiatric disorders over past decades. Several nasally administered formulations have been developed to circumvent the blood-brain barrier and directly deliver drugs to the CNS through the olfactory and trigeminal pathways. However, the nasal mucosa's drug absorption is insufficient and the volume of the nasal cavity is small, which, in combination, make nose-to-brain drug delivery challenging. These problems could be minimized using formulations based on solid lipid nanoparticles (SLNs) or nanostructured lipid carriers (NLCs), which are effective nose-to-brain drug delivery systems that improve drug bioavailability by increasing drug solubility and permeation, extending drug action, and reducing enzymatic degradation. Various research groups have reported in vivo pharmacokinetics and pharmacodynamics of SLNs and NLCs nose-to-brain delivery systems. This review was undertaken to provide an overview of these studies and highlight research performed on SLN and NLC-based formulations aimed at improving the treatment of CNS diseases such neurodegenerative diseases, epilepsy, and schizophrenia. We discuss the efficacies and brain targeting efficiencies of these formulations based on considerations of their pharmacokinetic parameters and toxicities, point out some gaps in current knowledge, and propose future developmental targets.
Collapse
Affiliation(s)
| | - Han-Joo Maeng
- College of Pharmacy, Gachon University, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea;
| |
Collapse
|
27
|
Jahan S, Aqil M, Ahad A, Imam SS, Waheed A, Qadir A, Ali A. Nanostructured lipid carrier for transdermal gliclazide delivery: development and optimization by Box-Behnken design. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2021.2025097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Samreen Jahan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), India
| | - Mohd. Aqil
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), India
| | - Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ayesha Waheed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), India
| | - Abdul Qadir
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), India
| | - Asgar Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Deemed University), India
| |
Collapse
|
28
|
Jordan S, Zielinski M, Kortylewski M, Kuhn T, Bystritsky A. Noninvasive Delivery of Biologicals to the Brain. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2022; 20:64-70. [PMID: 35746928 PMCID: PMC9063603 DOI: 10.1176/appi.focus.20210028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In the past, psychotherapy and neuropharmacological approaches have been the most common treatments for disordered thoughts, moods, and behaviors. One new path of brain therapeutics is in the deployment of noninvasive approaches designed to reprogram brain function at the cellular level. Treatment at the cellular level may be considered for a wide array of disorders, ranging from mood disorders to neurodegenerative disorders. Brain-targeted biological therapy may provide minimally invasive and accurate delivery of treatment. The present article discusses the hurdles and advances that characterize the pathway to this goal.
Collapse
|
29
|
Goel H, Kalra V, Verma SK, Dubey SK, Tiwary AK. Convolutions in the rendition of nose to brain therapeutics from bench to bedside: Feats & fallacies. J Control Release 2021; 341:782-811. [PMID: 34906605 DOI: 10.1016/j.jconrel.2021.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022]
Abstract
Brain, a subtle organ of multifarious nature presents plethora of physiological, metabolic and bio-chemical convolutions that impede the delivery of biomolecules and thereby resulting in truncated therapeutic outcome in pathological conditions of central nervous system (CNS). The absolute bottleneck in the therapeutic management of such devastating CNS ailments is the BBB. Another pitfall is the lack of efficient technological platforms (due to high cost and low approval rates) as well as limited clinical trials (due to failures of neuro‑leads in late-stage pipelines) for CNS disorders which has become a literal brain drain with poorest success rates compared to other therapeutic areas, owing to time consuming processes, tremendous convolutions and conceivable adverse effects. With the advent of intranasal delivery (via direct N2B or indirect nose to blood to brain), several novel drug delivery carriers viz. unmodified or surface modified nanoparticle based carriers, lipid based colloidal nanocarriers and drysolid/liquid/semisolid nanoformulations or delivery platforms have been designed as a means to deliver therapeutic agents (small and large molecules, peptides and proteins, genes) to brain, bypassing BBB for disorders such as Alzheimer's disease (AD), Parkinson's disease (PD), epilepsy, schizophrenia and CNS malignancies primarily glioblastomas. Intranasal application offers drug delivery through both direct and indirect pathways for the peripherally administered psychopharmacological agents to CNS. This route could also be exploited for the repurposing of conventional drugs for new therapeutic uses. The limited clinical translation of intranasal formulations has been primarily due to existence of barriers of mucociliary clearance in the nasal cavity, enzyme degradation and low permeability of the nasal epithelium. The present review literature aims to decipher the new paradigms of nano therapeutic systems employed for specific N2B drug delivery of CNS drugs through in silico complexation studies using rationally chosen mucoadhesive polymers (exhibiting unique physicochemical properties of nanocarrier's i.e. surface modification, prolonging retention time in the nasal cavity, improving penetration ability, and promoting brain specific delivery with biorecognitive ligands) via molecular docking simulations. Further, the review intends to delineate the feats and fallacies associated with N2B delivery approaches by understanding the physiological/anatomical considerations via decoding the intranasal drug delivery pathways or critical factors such as rationale and mechanism of excipients, affecting the permeability of CNS drugs through nasal mucosa as well as better efficacy in terms of brain targeting, brain bioavailability and time to reach the brain. Additionally, extensive emphasis has also been laid on the innovative formulations under preclinical investigation along with their assessment by means of in vitro /ex vivo/in vivo N2B models and current characterization techniques predisposing an efficient intranasal delivery of therapeutics. A critical appraisal of novel technologies, intranasal products or medical devices available commercially has also been presented. Finally, it could be warranted that more reminiscent pharmacokinetic/pharmacodynamic relationships or validated computational models are mandated to obtain effective screening of molecular architecture of drug-polymer-mucin complexes for clinical translation of N2B therapeutic systems from bench to bedside.
Collapse
Affiliation(s)
- Honey Goel
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences, Faridkot, Punjab, India.
| | - Vinni Kalra
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Sant Kumar Verma
- Department of Pharmaceutical Chemistry, Indo-Soviet Friendship College of Pharmacy, Moga, Punjab, India
| | | | - Ashok Kumar Tiwary
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India.
| |
Collapse
|
30
|
Clementino A, Velasco-Estevez M, Buttini F, Sonvico F, Dev KK. Hybrid Nanoparticles as a Novel Tool for Regulating Psychosine-Induced Neuroinflammation and Demyelination In Vitro and Ex vivo. Neurotherapeutics 2021; 18:2608-2622. [PMID: 34480290 PMCID: PMC8804066 DOI: 10.1007/s13311-021-01109-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2021] [Indexed: 10/27/2022] Open
Abstract
Polymeric nanoparticles are being extensively investigated as an approach for brain delivery of drugs, especially for their controlled release and targeting capacity. Nose-to-brain administration of nanoparticles, bypassing the blood brain barrier, offers a promising strategy to deliver drugs to the central nervous system. Here, we investigated the potential of hybrid nanoparticles as a therapeutic approach for demyelinating diseases, more specifically for Krabbe's disease. This rare leukodystrophy is characterized by the lack of enzyme galactosylceramidase, leading to the accumulation of toxic psychosine in glial cells causing neuroinflammation, extensive demyelination and death. We present evidence that lecithin/chitosan nanoparticles prevent damage associated with psychosine by sequestering the neurotoxic sphingolipid via physicochemical hydrophobic interactions. We showed how nanoparticles prevented the cytotoxicity caused by psychosine in cultured human astrocytes in vitro, and how the nanoparticle size and PDI augmented while the electrostatic charges of the surface decreased, suggesting a direct interaction between psychosine and the nanoparticles. Moreover, we studied the effects of nanoparticles ex vivo using mouse cerebellar organotypic cultures, observing that nanoparticles prevented the demyelination and axonal damage caused by psychosine, as well as a moderate prevention of the astrocytic death. Taken together, these results suggest that lecithin-chitosan nanoparticles are a potential novel delivery system for drugs for certain demyelinating conditions such as Krabbe's disease, due to their dual effect: not only are they an efficient platform for drug delivery, but they exert a protective effect themselves in tampering the levels of psychosine accumulation.
Collapse
Affiliation(s)
- Adryana Clementino
- Drug Development Group, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Department of Food and Drug, Università Degli Studi Di Parma, Parma, Italy
- National Council for Scientific and Technological Development-CNPq, Brasilia, Brazil
| | - Maria Velasco-Estevez
- Drug Development Group, School of Medicine, Trinity College Dublin, Dublin, Ireland
- H12O-CNIO Haematological Malignancies Clinical Research Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Francesca Buttini
- Department of Food and Drug, Università Degli Studi Di Parma, Parma, Italy
| | - Fabio Sonvico
- Department of Food and Drug, Università Degli Studi Di Parma, Parma, Italy.
| | - Kumlesh K Dev
- Drug Development Group, School of Medicine, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
31
|
Deruyver L, Rigaut C, Lambert P, Haut B, Goole J. The importance of pre-formulation studies and of 3D-printed nasal casts in the success of a pharmaceutical product intended for nose-to-brain delivery. Adv Drug Deliv Rev 2021; 175:113826. [PMID: 34119575 DOI: 10.1016/j.addr.2021.113826] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/19/2021] [Accepted: 06/07/2021] [Indexed: 02/08/2023]
Abstract
This review aims to cement three hot topics in drug delivery: (a) the pre-formulation of new products intended for nose-to-brain delivery; (b) the development of nasal casts for studying the efficacy of potential new nose-to-brain delivery systems at the early of their development (pre-formulation); (c) the use of 3D printing based on a wide variety of materials (transparent, biocompatible, flexible) providing an unprecedented fabrication tool towards personalized medicine by printing nasal cast on-demand based on CT scans of patients. This review intends to show the links between these three subjects. Indeed, the pathway selected to administrate the drug to the brain not only influence the formulation strategies to implement but also the design of the cast, to get the most convincing measures from it. Moreover, the design of the cast himself influences the choice of the 3D-printing technology, which, in its turn, bring more constraints to the nasal replica design. Consequently, the formulation of the drug, the cast preparation and its realisation should be thought of as a whole and not separately.
Collapse
Affiliation(s)
- Laura Deruyver
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Clément Rigaut
- TIPs (Transfers, Interfaces and Processes), Université libre de Bruxelles, Brussels, Belgium
| | - Pierre Lambert
- TIPs (Transfers, Interfaces and Processes), Université libre de Bruxelles, Brussels, Belgium
| | - Benoît Haut
- TIPs (Transfers, Interfaces and Processes), Université libre de Bruxelles, Brussels, Belgium
| | - Jonathan Goole
- Laboratoire de Pharmacie Galénique et de Biopharmacie, Université libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
32
|
Lombardo R, Musumeci T, Carbone C, Pignatello R. Nanotechnologies for intranasal drug delivery: an update of literature. Pharm Dev Technol 2021; 26:824-845. [PMID: 34218736 DOI: 10.1080/10837450.2021.1950186] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Scientific research has focused its attention on finding an alternative route to systemic oral and parenteral administration, to overcome their usual drawbacks, such as hepatic first-pass which decreases drug bioavailability after oral administration, off-target effects, low patient compliance and low speed of onset of the pharmacological action in first-aid cases. Innovative drug delivery systems (DDS), mainly based on polymer and lipid biocompatible materials, have given a great prompt in this direction in the last years. The intranasal (IN) route of administration is a valid non-invasive alternative. It is highly suitable for self-administration, the drug quickly reaches the bloodstream, largely avoiding the first pass effect, and can also reach directly the brain bypassing BBB. Association of IN route with DDS can thus become a winning strategy for the controlled delivery of drugs, especially when a very quick effect is desired or needed. This review aims at analyzing the scientific literature regarding IN-DDS and their different ways of administration (systemic, topical, pulmonary, nose-to-brain). In particular, attention was devoted to polymer- and lipid-based micro- and nanocarriers, being the topic of most published articles in the last decade, but the whole plethora of colloidal DDS investigated in recent years for IN administration was presented.
Collapse
Affiliation(s)
- Rosamaria Lombardo
- Department of Drug Sciences, University of Catania, Catania, Italy.,Neurosciences, University of Catania, Catania, Italy
| | - Teresa Musumeci
- Department of Drug Sciences, University of Catania, Catania, Italy.,NANO-i - Research Center for Ocular Nanotechnology, University of Catania, Catania, Italy
| | - Claudia Carbone
- Department of Drug Sciences, University of Catania, Catania, Italy.,NANO-i - Research Center for Ocular Nanotechnology, University of Catania, Catania, Italy
| | - Rosario Pignatello
- Department of Drug Sciences, University of Catania, Catania, Italy.,NANO-i - Research Center for Ocular Nanotechnology, University of Catania, Catania, Italy
| |
Collapse
|
33
|
Al Hujran TA, Magharbeh MK, Al-Gharabli S, Haddadin RR, Al Soub MN, Tawfeek HM. Studying the Complex Formation of Sulfonatocalix[4]naphthalene and Meloxicam towards Enhancing Its Solubility and Dissolution Performance. Pharmaceutics 2021; 13:pharmaceutics13070994. [PMID: 34209201 PMCID: PMC8309163 DOI: 10.3390/pharmaceutics13070994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022] Open
Abstract
The interaction between meloxicam and sulfonatocalix [4] naphthalene was investigated to improve the meloxicam solubility and its dissolution performance. Solubility behavior was investigated in distilled water (DW) and at different pH conditions. Besides, solid systems were prepared in a 1:1 molar ratio using coevaporate, kneading, and simple physical mixture techniques. Further, they were characterized by PXRD, FT-IR, DCS, and TGA. In vitro dissolution rate for coevaporate, kneaded, and physical mixture powders were also investigated. Solubility study revealed that meloxicam solubility significantly increased about 23.99 folds at phosphate buffer of pH 7.4 in the presence of sulfonatocalix [4] naphthalene. The solubility phase diagram was classified as AL type, indicating the formation of 1:1 stoichiometric inclusion complex. PXRD, FT-IR, DCS, and TGA pointed out the formation of an inclusion complex between meloxicam and sulfonatocalix [4] naphthalene solid powders prepared using coevaporate technique. In addition, in vitro meloxicam dissolution studies revealed an improvement of the drug dissolution rate. Furthermore, a significantly higher drug release (p ≤ 0.05) and a complete dissolution was achieved during the first 10 min compared with the other solid powders and commercial meloxicam product. The coevaporate product has the highest increasing dissolution fold and RDR10 in the investigated media, with average values ranging from 5.4-65.28 folds and 7.3-90.7, respectively. In conclusion, sulfonatocalix [4] naphthalene is a promising host carrier for enhancing the solubility and dissolution performance of meloxicam with an anticipated enhanced bioavailability and fast action for acute and chronic pain disorders.
Collapse
Affiliation(s)
- Tayel A. Al Hujran
- The Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mutah University, Al-Karak 61710, Jordan; (M.K.M.); (R.R.H.); (M.N.A.S.)
- Correspondence: ; Tel.: +962-790-476-947
| | - Mousa K. Magharbeh
- The Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mutah University, Al-Karak 61710, Jordan; (M.K.M.); (R.R.H.); (M.N.A.S.)
| | - Samer Al-Gharabli
- Pharmaceutical and Chemical Engineering Department, School of Applied Medical Sciences, German Jordanian University, Amman 11118, Jordan;
| | - Rula R. Haddadin
- The Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mutah University, Al-Karak 61710, Jordan; (M.K.M.); (R.R.H.); (M.N.A.S.)
| | - Manal N. Al Soub
- The Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mutah University, Al-Karak 61710, Jordan; (M.K.M.); (R.R.H.); (M.N.A.S.)
| | - Hesham M. Tawfeek
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt;
| |
Collapse
|
34
|
Akel H, Ismail R, Katona G, Sabir F, Ambrus R, Csóka I. A comparison study of lipid and polymeric nanoparticles in the nasal delivery of meloxicam: Formulation, characterization, and in vitro evaluation. Int J Pharm 2021; 604:120724. [PMID: 34023443 DOI: 10.1016/j.ijpharm.2021.120724] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/21/2022]
Abstract
With the increasingly widespread of central nervous system (CNS) disorders and the lack of sufficiently effective medication, meloxicam (MEL) has been reported as a possible medication for Alzheimer's disease (AD) management. Unfortunately, following the conventional application routes, the low brain bioavailability of MEL forms a significant limitation. The intranasal (IN) administration route is considered revolutionary for CNS medications delivery. The objective of the present study was to develop two types of nanocarriers, poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) and solid lipid nanoparticles (SLNs), for the IN delivery of MEL adapting the Quality by Design approach (QbD). Turning then to further enhance the optimized nanoformulation behavior by chitosan-coating. SLNs showed higher encapsulation efficacy (EE) and drug loading (DL) than PLGA NPs 87.26% (EE) and 2.67% (DL); 72.23% (EE) and 2.55% (DL), respectively. MEL encapsulated into the nanoformulations improved in vitro release, mucoadhesion, and permeation behavior compared to the native drug with greater superiority of chitosan-coated SLNs (C-SLNs). In vitro-in vivo correlation (IVIVC) results estimated a significant in vivo brain distribution of the nanoformulations compared to native MEL with estimated greater potential in the C-SLNs. Hence, MEL encapsulation into C-SLNs towards IN route can be promising in enhancing its brain bioavailability.
Collapse
Affiliation(s)
- Hussein Akel
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary
| | - Ruba Ismail
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary; Institute of Chemistry, Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Hungary
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary
| | - Fakhara Sabir
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary.
| |
Collapse
|
35
|
El-Laithy HM, Youssef A, El-Husseney SS, El Sayed NS, Maher A. Enhanced alveo pulmonary deposition of nebulized ciclesonide for attenuating airways inflammations: a strategy to overcome metered dose inhaler drawbacks. Drug Deliv 2021; 28:826-843. [PMID: 33928836 PMCID: PMC8812587 DOI: 10.1080/10717544.2021.1905747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ciclesonide (CIC), an inhaled corticosteroid for bronchial asthma is currently available as metered dose inhaler (CIC–MDI) which possesses a major challenge in the management of the elderly, critically ill patients and children. In this work, nebulized CIC nano-structure lipid particles (CIC-NLPs) were prepared and evaluated for their deep pulmonary delivery and cytotoxicity to provide additional clinical benefits to patients in controlled manner and lower dose. The bio-efficacy following nebulization in ovalbumin (OVA) induced asthma Balb/c mice compared to commercial (CIC–MDI) was also assessed. The developed NLPs of 222.6 nm successfully entrapped CIC (entrapment efficiency 93.3%) and exhibited favorable aerosolization efficiency (mass median aerodynamic diameter (MMAD) 2.03 μm and fine particle fraction (FPF) of 84.51%) at lower impactor stages indicating deep lung deposition without imparting any cytotoxic effect up to a concentration of 100 μg/ml. The nebulization of 40 µg dose of the developed CIC-NLPs revealed significant therapeutic impact in the mitigation of the allergic airways inflammations when compared to 80 µg dose of the commercial CIC–MDI inhaler (Alvesco®). Superior anti-inflammatory and antioxidative stress effects characterized by significant decrease (p< .0001) in inflammatory cytokines IL-4 and 13, serum IgE levels, malondialdehyde (MDA), nitric oxide (NO), TNF-α, and activated nuclear factor-κB (NF-κB) activity were obvious with concomitant increase in superoxide dismutase (SOD) activity. Histological examination with inhibition of inflammatory cell infiltration in the respiratory tract was correlated well with observed biochemical improvement.
Collapse
Affiliation(s)
- Hanan M El-Laithy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Cairo, Egypt
| | - Amal Youssef
- Department of Pharmaceutics, Egyptian Drug Authority, Cairo, Egypt
| | | | - Nesrine S El Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed Maher
- Department of Biochemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Cairo, Egypt
| |
Collapse
|
36
|
Fernandes F, Dias-Teixeira M, Delerue-Matos C, Grosso C. Critical Review of Lipid-Based Nanoparticles as Carriers of Neuroprotective Drugs and Extracts. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:563. [PMID: 33668341 PMCID: PMC7996241 DOI: 10.3390/nano11030563] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/13/2022]
Abstract
The biggest obstacle to the treatment of diseases that affect the central nervous system (CNS) is the passage of drugs across the blood-brain barrier (BBB), a physical barrier that regulates the entry of substances into the brain and ensures the homeostasis of the CNS. This review summarizes current research on lipid-based nanoparticles for the nanoencapsulation of neuroprotective compounds. A survey of studies on nanoemulsions (NEs), nanoliposomes/nanophytosomes and solid lipid nanoparticles (SLNs)/nanostructured lipid carriers (NLCs) was carried out and is discussed herein, with particular emphasis upon their unique characteristics, the most important parameters influencing the formulation of each one, and examples of neuroprotective compounds/extracts nanoencapsulated using these nanoparticles. Gastrointestinal absorption is also discussed, as it may pose some obstacles for the absorption of free and nanoencapsulated neuroprotective compounds into the bloodstream, consequently hampering drug concentration in the brain. The transport mechanisms through which compounds or nanoparticles may cross BBB into the brain parenchyma, and the potential to increase drug bioavailability, are also discussed. Additionally, factors contributing to BBB disruption and neurodegeneration are described. Finally, the advantages of, and obstacles to, conventional and unconventional routes of administration to deliver nanoencapsulated neuroprotective drugs to the brain are also discussed, taking into account the avoidance of first-pass metabolism, onset of action, ability to bypass the BBB and concentration of the drug in the brain.
Collapse
Affiliation(s)
- Filipe Fernandes
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (F.F.); (M.D.-T.); (C.D.-M.)
| | - Mónica Dias-Teixeira
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (F.F.); (M.D.-T.); (C.D.-M.)
- NICiTeS—Núcleo de Investigação em Ciências e Tecnologias da Saúde, Escola Superior de Saúde Ribeiro Sanches, 1649-028 Lisbon, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (F.F.); (M.D.-T.); (C.D.-M.)
| | - Clara Grosso
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (F.F.); (M.D.-T.); (C.D.-M.)
| |
Collapse
|
37
|
Tailoring functional nanostructured lipid carriers for glioblastoma treatment with enhanced permeability through in-vitro 3D BBB/BBTB models. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 121:111774. [PMID: 33579439 DOI: 10.1016/j.msec.2020.111774] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/25/2020] [Accepted: 11/27/2020] [Indexed: 01/14/2023]
Abstract
The blood-brain barrier (BBB) and blood-brain tumour barrier (BBTB) pose a significant challenge to drug delivery to brain tumours, including aggressive glioblastoma (GB). The present study rationally designed functional nanostructured lipid carriers (NLC) to tailor their BBB penetrating properties with high encapsulation of CNS negative chemotherapeutic drug docetaxel (DTX). We investigated the effect of four liquid lipids, propylene glycol monolaurate (Lauroglycol® 90), Capryol® propylene glycol monocaprylate, caprylocaproylmacrogol-8-glycerides (Labrasol®) and polyoxyl-15-hydroxystearate (Kolliphor® HS15) individually and in combination to develop NLCs with effective permeation across in-vitro 3D BBB model without alteration in the integrity of the barrier. With desirable spherical shape as revealed by TEM and an average particle size of 123.3 ± 0.642 nm and zeta potential of -32 mV, DTX-NLCs demonstrated excellent stability for six months in its freeze-dried form. The confocal microscopy along with flow cytometry data revealed higher internalisation of DTX-NLCs in U87MG over SVG P12 cells. Micropinocytosis was observed to be one of the dominant pathways for internalisation in U87MG cells while clathrin-mediated pathway was more predominat in patient-derived glioblastoma cells. The NLCs readily penetrated the actively proliferating peripheral cells on the surface of the 3D tumour spheroids as compared to the necrotic core. The DTX-NLCs induced cell arrest through G2/M phase with a significant decrease in the mitochondrial reserve capacity of cells. The NLCs circumvented BBTB with high permeability followed by accumulation in glioblastoma cells with patient-derived cells displaying ~2.4-fold higher uptake in comparison to U87MG when studied in a 3D in-vitro model of BBTB/GB. We envisage this simple and industrially feasible technology as a potential candidate to be developed as GB nanomedicine.
Collapse
|
38
|
Cortés H, Alcalá-Alcalá S, Caballero-Florán IH, Bernal-Chávez SA, Ávalos-Fuentes A, González-Torres M, González-Del Carmen M, Figueroa-González G, Reyes-Hernández OD, Floran B, Del Prado-Audelo ML, Leyva-Gómez G. A Reevaluation of Chitosan-Decorated Nanoparticles to Cross the Blood-Brain Barrier. MEMBRANES 2020; 10:E212. [PMID: 32872576 PMCID: PMC7559907 DOI: 10.3390/membranes10090212] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022]
Abstract
The blood-brain barrier (BBB) is a sophisticated and very selective dynamic interface composed of endothelial cells expressing enzymes, transport systems, and receptors that regulate the passage of nutrients, ions, oxygen, and other essential molecules to the brain, regulating its homeostasis. Moreover, the BBB performs a vital function in protecting the brain from pathogens and other dangerous agents in the blood circulation. Despite its crucial role, this barrier represents a difficult obstacle for the treatment of brain diseases because many therapeutic agents cannot cross it. Thus, different strategies based on nanoparticles have been explored in recent years. Concerning this, chitosan-decorated nanoparticles have demonstrated enormous potential for drug delivery across the BBB and treatment of Alzheimer's disease, Parkinson's disease, gliomas, cerebral ischemia, and schizophrenia. Our main objective was to highlight the high potential of chitosan adsorption to improve the penetrability through the BBB of nanoformulations for diseases of CNS. Therefore, we describe the BBB structure and function, as well as the routes of chitosan for crossing it. Moreover, we define the methods of decoration of nanoparticles with chitosan and provide numerous examples of their potential utilization in a variety of brain diseases. Lastly, we discuss future directions, mentioning the need for extensive characterization of proposed nanoformulations and clinical trials for evaluation of their efficacy.
Collapse
Affiliation(s)
- Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de Mexico 14389, Mexico;
| | - Sergio Alcalá-Alcalá
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico;
| | - Isaac H. Caballero-Florán
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (I.H.C.-F.); (S.A.B.-C.); (M.L.D.P.-A.)
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico 07360, Mexico; (A.Á.-F.); (B.F.)
| | - Sergio A. Bernal-Chávez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (I.H.C.-F.); (S.A.B.-C.); (M.L.D.P.-A.)
| | - Arturo Ávalos-Fuentes
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico 07360, Mexico; (A.Á.-F.); (B.F.)
| | - Maykel González-Torres
- CONACyT-Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de Mexico 14389, Mexico;
| | | | - Gabriela Figueroa-González
- Laboratorio de Farmacogenética, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de Mexico 09230, Mexico;
| | - Octavio D. Reyes-Hernández
- Laboratorio de Biología Molecular del Cáncer, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de Mexico 09230, Mexico;
| | - Benjamín Floran
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico 07360, Mexico; (A.Á.-F.); (B.F.)
| | - María L. Del Prado-Audelo
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (I.H.C.-F.); (S.A.B.-C.); (M.L.D.P.-A.)
- Escuela de Ingeniería y Ciencias, Departamento de Bioingeniería, Tecnológico de Monterrey Campus Ciudad de México, Ciudad de Mexico 14380, Mexico
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (I.H.C.-F.); (S.A.B.-C.); (M.L.D.P.-A.)
| |
Collapse
|
39
|
Antimicrobial Essential Oil Formulation: Chitosan Coated Nanoemulsions for Nose to Brain Delivery. Pharmaceutics 2020; 12:pharmaceutics12070678. [PMID: 32709076 PMCID: PMC7407154 DOI: 10.3390/pharmaceutics12070678] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 12/26/2022] Open
Abstract
Brain infections as meningitis and encephalitis are attracting a great interest. Challenges in the treatment of these diseases are mainly represented by the blood brain barrier (BBB) that impairs the efficient delivery of even very potent drugs to reach the brain. The nose to the brain administration route, is a non-invasive alternative for a quick onset of action, and enables the transport of numerous medicinal agents straight to the brain thus workarounding the BBB through the highly vascularized olfactory region. In this report, Thymus vulgaris and Syzygium aromaticum essential oils (EOs) were selected to be included in chitosan coated nanoemulsions (NEs). The EOs were firstly analyzed to determine their chemical composition, then used to prepare NEs, that were deeply characterized in order to evaluate their use in intranasal administration. An in vitro evaluation against a collection of clinical isolated bacterial strains was carried out for both free and nanoemulsioned EOs. Chitosan coated NEs showed to be a potential and effective intranasal formulation against multi-drug resistant Gram-negative bacteria such as methicillin-susceptible Staphylococcus aureus and multi-drug resistant Gram-negative microorganisms including carbapenem-resistant Acinetobacter baumannii and Klebsiella pneumoniae.
Collapse
|