1
|
Sasine JP, Kozlova NY, Valicente L, Dukov J, Tran DH, Himburg HA, Kumar S, Khorsandi S, Chan A, Grohe S, Li M, Kan J, Sehl ME, Schiller GJ, Reinhardt B, Singh BK, Ho R, Yue P, Pasquale EB, Chute JP. Inhibition of Ephrin B2 Reverse Signaling Abolishes Multiple Myeloma Pathogenesis. Cancer Res 2024; 84:919-934. [PMID: 38231476 PMCID: PMC10940855 DOI: 10.1158/0008-5472.can-23-1950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/30/2023] [Revised: 11/14/2023] [Accepted: 01/11/2024] [Indexed: 01/18/2024]
Abstract
Bone marrow vascular endothelial cells (BM EC) regulate multiple myeloma pathogenesis. Identification of the mechanisms underlying this interaction could lead to the development of improved strategies for treating multiple myeloma. Here, we performed a transcriptomic analysis of human ECs with high capacity to promote multiple myeloma growth, revealing overexpression of the receptor tyrosine kinases, EPHB1 and EPHB4, in multiple myeloma-supportive ECs. Expression of ephrin B2 (EFNB2), the binding partner for EPHB1 and EPHB4, was significantly increased in multiple myeloma cells. Silencing EPHB1 or EPHB4 in ECs suppressed multiple myeloma growth in coculture. Similarly, loss of EFNB2 in multiple myeloma cells blocked multiple myeloma proliferation and survival in vitro, abrogated multiple myeloma engraftment in immune-deficient mice, and increased multiple myeloma sensitivity to chemotherapy. Administration of an EFNB2-targeted single-chain variable fragment also suppressed multiple myeloma growth in vivo. In contrast, overexpression of EFNB2 in multiple myeloma cells increased STAT5 activation, increased multiple myeloma cell survival and proliferation, and decreased multiple myeloma sensitivity to chemotherapy. Conversely, expression of mutant EFNB2 lacking reverse signaling capacity in multiple myeloma cells increased multiple myeloma cell death and sensitivity to chemotherapy and abolished multiple myeloma growth in vivo. Complementary analysis of multiple myeloma patient data revealed that increased EFNB2 expression is associated with adverse-risk disease and decreased survival. This study suggests that EFNB2 reverse signaling controls multiple myeloma pathogenesis and can be therapeutically targeted to improve multiple myeloma outcomes. SIGNIFICANCE Ephrin B2 reverse signaling mediated by endothelial cells directly regulates multiple myeloma progression and treatment resistance, which can be overcome through targeted inhibition of ephrin B2 to abolish myeloma.
Collapse
Affiliation(s)
- Joshua P. Sasine
- Division of Hematology & Cellular Therapy, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, California
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Medicine, Cedars Sinai Medical Center, Los Angeles, California
| | - Natalia Y. Kozlova
- Division of Hematology & Cellular Therapy, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, California
| | - Lisa Valicente
- Division of Hematology & Cellular Therapy, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, California
| | - Jennifer Dukov
- Division of Hematology & Cellular Therapy, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, California
| | - Dana H. Tran
- Division of Hematology & Cellular Therapy, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, California
| | - Heather A. Himburg
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Sanjeev Kumar
- Department of Medicine, Cedars Sinai Medical Center, Los Angeles, California
| | - Sarah Khorsandi
- Division of Hematology & Cellular Therapy, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Aldi Chan
- Division of Hematology & Cellular Therapy, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Samantha Grohe
- Division of Hematology & Cellular Therapy, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Michelle Li
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California
| | - Jenny Kan
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California
| | - Mary E. Sehl
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California
| | - Gary J. Schiller
- Division of Hematology/Oncology, Department of Medicine, UCLA, Los Angeles, California
| | - Bryanna Reinhardt
- Division of Hematology & Cellular Therapy, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Brijesh Kumar Singh
- Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, California
| | - Ritchie Ho
- Department of Biomedical Sciences, Cedars Sinai Medical Center, Los Angeles, California
| | - Peibin Yue
- Division of Hematology & Cellular Therapy, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Elena B. Pasquale
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, California
| | - John P. Chute
- Division of Hematology & Cellular Therapy, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, California
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Medicine, Cedars Sinai Medical Center, Los Angeles, California
| |
Collapse
|
2
|
Fitzsimons LA, Tasouri E, Willaredt MA, Stetson D, Gojak C, Kirsch J, Gardner HAR, Gorgas K, Tucker KL. Primary cilia are critical for tracheoesophageal septation. Dev Dyn 2024; 253:312-332. [PMID: 37776236 PMCID: PMC10922539 DOI: 10.1002/dvdy.660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/13/2023] [Revised: 08/14/2023] [Accepted: 09/09/2023] [Indexed: 10/02/2023] Open
Abstract
INTRODUCTION Primary cilia play pivotal roles in the patterning and morphogenesis of a wide variety of organs during mammalian development. Here we examined murine foregut septation in the cobblestone mutant, a hypomorphic allele of the gene encoding the intraflagellar transport protein IFT88, a protein essential for normal cilia function. RESULTS We reveal a crucial role for primary cilia in foregut division, since their dramatic decrease in cilia in both the foregut endoderm and mesenchyme of mutant embryos resulted in a proximal tracheoesophageal septation defects and in the formation of distal tracheo(broncho)esophageal fistulae similar to the most common congenital tracheoesophageal malformations in humans. Interestingly, the dorsoventral patterning determining the dorsal digestive and the ventral respiratory endoderm remained intact, whereas Hedgehog signaling was aberrantly activated. CONCLUSIONS Our results demonstrate the cobblestone mutant to represent one of the very few mouse models that display both correct endodermal dorsoventral specification but defective compartmentalization of the proximal foregut. It stands exemplary for a tracheoesophageal ciliopathy, offering the possibility to elucidate the molecular mechanisms how primary cilia orchestrate the septation process. The plethora of malformations observed in the cobblestone embryo allow for a deeper insight into a putative link between primary cilia and human VATER/VACTERL syndromes.
Collapse
Affiliation(s)
- Lindsey Avery Fitzsimons
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, U.S.A
- Dept. of Biomedical Sciences, Center for Excellence in the Neurosciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005, U.S.A
| | - Evangelia Tasouri
- Interdisciplinary Center for Neurosciences, University of Heidelberg, 69120 Heidelberg, Germany
- Institute of Anatomy and Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Marc August Willaredt
- Interdisciplinary Center for Neurosciences, University of Heidelberg, 69120 Heidelberg, Germany
- Institute of Anatomy and Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Daniel Stetson
- AstraZeneca Pharmaceuticals LP, 35 Gatehouse Drive, Waltham, Massachusetts 02451, U.S.A
| | - Christian Gojak
- Interdisciplinary Center for Neurosciences, University of Heidelberg, 69120 Heidelberg, Germany
- Institute of Anatomy and Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Joachim Kirsch
- Institute of Anatomy and Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | | | - Karin Gorgas
- Institute of Anatomy and Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Kerry L. Tucker
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, U.S.A
- Dept. of Biomedical Sciences, Center for Excellence in the Neurosciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005, U.S.A
| |
Collapse
|
3
|
Pradeep I, Kumar N, Kalyani P, Nigam JS, Somalwar SB, Srirambhatla A, Rath A. Urorectal Septum Malformation Sequence With Retroperitoneal Neuroblastoma: A Case Report of an Unusual Association. Pediatr Dev Pathol 2024; 27:77-82. [PMID: 37771145 DOI: 10.1177/10935266231196032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 09/30/2023]
Abstract
Urorectal septum malformation sequence (URSMS) is an uncommon disease characterized by a failure of the anorectal septum to divide the cloaca and fuse with the cloacal membrane. Complete URSMS is usually lethal in newborn due to severe renal dysfunction and pulmonary hypoplasia. Partial URSMS is compatible with life with a single perineal opening draining a common cloaca with an imperforate anus which amenable to surgical management. Antenatal diagnosis of URSMS is challenging because of multisystem, complex abnormalities involving gastrointestinal, urogenital tract, cardiovascular, and musculoskeletal systems. In this case report, we describe a 15-week male fetus with partial URSMS having a spectrum of multisystem structural anomalies associated with fetal neuroblastoma in retroperitoneal location and adrenal neuroblastoma in situ.
Collapse
Affiliation(s)
- Immanuel Pradeep
- Department of Pathology and Laboratory Medicine, All India Institute of Medical Sciences, Bibinagar, Hyderabad, Telangana, India
| | - Naina Kumar
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, Bibinagar, Hyderabad, Telangana, India
| | - Poojitha Kalyani
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, Bibinagar, Hyderabad, Telangana, India
| | - Jitendra Singh Nigam
- Department of Pathology and Laboratory Medicine, All India Institute of Medical Sciences, Bibinagar, Hyderabad, Telangana, India
| | - Shrinivas Bheemrao Somalwar
- Department of Pathology and Laboratory Medicine, All India Institute of Medical Sciences, Bibinagar, Hyderabad, Telangana, India
| | - Annapurna Srirambhatla
- Department of Radiodiagnosis, All India Institute of Medical Sciences, Bibinagar, Hyderabad, Telangana, India
| | - Ashutosh Rath
- Department of Pathology and Laboratory Medicine, All India Institute of Medical Sciences, Bibinagar, Hyderabad, Telangana, India
| |
Collapse
|
4
|
Faria JAD, Moraes DR, Kulikowski LD, Batista RL, Gomes NL, Nishi MY, Zanardo E, Nonaka CKV, de Freitas Souza BS, Mendonca BB, Domenice S. Cytogenomic Investigation of Syndromic Brazilian Patients with Differences of Sexual Development. Diagnostics (Basel) 2023; 13:2235. [PMID: 37443631 DOI: 10.3390/diagnostics13132235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/16/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Cytogenomic methods have gained space in the clinical investigation of patients with disorders/differences in sexual development (DSD). Here we evaluated the role of the SNP array in achieving a molecular diagnosis in Brazilian patients with syndromic DSD of unknown etiology. METHODS Twenty-two patients with DSD and syndromic features were included in the study and underwent SNP-array analysis. RESULTS In two patients, the diagnosis of 46,XX SRY + DSD was established. Additionally, two deletions were revealed (3q29 and Xp22.33), justifying the syndromic phenotype in these patients. Two pathogenic CNVs, a 10q25.3-q26.2 and a 13q33.1 deletion encompassing the FGFR2 and the EFNB2 gene, were associated with genital atypia and syndromic characteristics in two patients with 46,XY DSD. In a third 46,XY DSD patient, we identified a duplication in the 14q11.2-q12 region of 6.5 Mb associated with a deletion in the 21p11.2-q21.3 region of 12.7 Mb. In a 46,XY DSD patient with delayed neuropsychomotor development and congenital cataracts, a 12 Kb deletion on chromosome 10 was found, partially clarifying the syndromic phenotype, but not the genital atypia. CONCLUSIONS The SNP array is a useful tool for DSD patients, identifying the molecular etiology in 40% (2/5) of patients with 46,XX DSD and 17.6% (3/17) of patients with 46,XY DSD.
Collapse
Affiliation(s)
- José Antonio Diniz Faria
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador 40110-909, Brazil
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - Daniela R Moraes
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - Leslie Domenici Kulikowski
- Laboratório de Citogenômica e Patologia Molecular LIM/03, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - Rafael Loch Batista
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - Nathalia Lisboa Gomes
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - Mirian Yumie Nishi
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - Evelin Zanardo
- Laboratório de Citogenômica e Patologia Molecular LIM/03, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - Carolina Kymie Vasques Nonaka
- Centro de Biotecnologia e Terapia Celular, Hospital São Rafael, Salvador 41253-190, Brazil
- Instituto D'Or de Pesquisa e Ensino (IDOR), Salvador 41253-190, Brazil
| | - Bruno Solano de Freitas Souza
- Centro de Biotecnologia e Terapia Celular, Hospital São Rafael, Salvador 41253-190, Brazil
- Instituto D'Or de Pesquisa e Ensino (IDOR), Salvador 41253-190, Brazil
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador 40296-710, Brazil
| | - Berenice Bilharinho Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-010, Brazil
| | - Sorahia Domenice
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM/42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-010, Brazil
| |
Collapse
|
5
|
Lewis AE, Kuwahara A, Franzosi J, Bush JO. Tracheal separation is driven by NKX2-1-mediated repression of Efnb2 and regulation of endodermal cell sorting. Cell Rep 2022; 38:110510. [PMID: 35294885 PMCID: PMC9033272 DOI: 10.1016/j.celrep.2022.110510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/04/2021] [Revised: 12/29/2021] [Accepted: 02/16/2022] [Indexed: 11/05/2022] Open
Abstract
The mechanisms coupling fate specification of distinct tissues to their physical separation remain to be understood. The trachea and esophagus differentiate from a single tube of definitive endoderm, requiring the transcription factors SOX2 and NKX2-1, but how the dorsoventral site of tissue separation is defined to allocate tracheal and esophageal cell types is unknown. Here, we show that the EPH/EPHRIN signaling gene Efnb2 regulates tracheoesophageal separation by controlling the dorsoventral allocation of tracheal-fated cells. Ventral loss of NKX2-1 results in disruption of separation and expansion of Efnb2 expression in the trachea independent of SOX2. Through chromatin immunoprecipitation and reporter assays, we find that NKX2-1 likely represses Efnb2 directly. Lineage tracing shows that loss of NKX2-1 results in misallocation of ventral foregut cells into the esophagus, while mosaicism for NKX2-1 generates ectopic NKX2-1/EPHRIN-B2 boundaries that organize ectopic tracheal separation. Together, these data demonstrate that NKX2-1 coordinates tracheal specification with tissue separation through the regulation of EPHRIN-B2 and tracheoesophageal cell sorting. Lewis et al. show that, in the development of the mammalian trachea and esophagus, cell fate specification is coupled with morphogenesis by NKX2-1-mediated repression of Efnb2. This establishes an EPH/EPHRIN boundary that drives cell allocation and physical separation of the trachea and esophagus.
Collapse
Affiliation(s)
- Ace E Lewis
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Program in Craniofacial Biology, University of California, San Francisco, 513 Parnassus Avenue, Box 0512, San Francisco, CA 94143, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Akela Kuwahara
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Program in Craniofacial Biology, University of California, San Francisco, 513 Parnassus Avenue, Box 0512, San Francisco, CA 94143, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jacqueline Franzosi
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Program in Craniofacial Biology, University of California, San Francisco, 513 Parnassus Avenue, Box 0512, San Francisco, CA 94143, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey O Bush
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143, USA; Program in Craniofacial Biology, University of California, San Francisco, 513 Parnassus Avenue, Box 0512, San Francisco, CA 94143, USA; Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
6
|
Protein-Protein Interaction Inhibitors Targeting the Eph-Ephrin System with a Focus on Amino Acid Conjugates of Bile Acids. Pharmaceuticals (Basel) 2022; 15:ph15020137. [PMID: 35215250 PMCID: PMC8880657 DOI: 10.3390/ph15020137] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/23/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 02/05/2023] Open
Abstract
The role of the Eph-ephrin system in the etiology of pathological conditions has been consolidated throughout the years. In this context, approaches directed against this signaling system, intended to modulate its activity, can be strategic therapeutic opportunities. Currently, the most promising class of compounds able to interfere with the Eph receptor-ephrin protein interaction is composed of synthetic derivatives of bile acids. In the present review, we summarize the progresses achieved, in terms of chemical expansions and structure-activity relationships, both in the steroidal core and the terminal carboxylic acid group, along with the pharmacological characterization for the most promising Eph-ephrin antagonists in in vivo settings.
Collapse
|
7
|
N'Tumba-Byn T, Yamada M, Seandel M. Loss of tyrosine kinase receptor Ephb2 impairs proliferation and stem cell activity of spermatogonia in culture†. Biol Reprod 2021; 102:950-962. [PMID: 31836902 DOI: 10.1093/biolre/ioz222] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/04/2019] [Revised: 10/30/2019] [Accepted: 12/11/2019] [Indexed: 12/17/2022] Open
Abstract
Germline stem and progenitor cells can be extracted from the adult mouse testis and maintained long-term in vitro. Yet, the optimal culture conditions for preserving stem cell activity are unknown. Recently, multiple members of the Eph receptor family were detected in murine spermatogonia, but their roles remain obscure. One such gene, Ephb2, is crucial for maintenance of somatic stem cells and was previously found enriched at the level of mRNA in murine spermatogonia. We detected Ephb2 mRNA and protein in primary adult spermatogonial cultures and hypothesized that Ephb2 plays a role in maintenance of stem cells in vitro. We employed CRISPR-Cas9 targeting and generated stable mutant SSC lines with complete loss of Ephb2. The characteristics of Ephb2-KO cells were interrogated using phenotypic and functional assays. Ephb2-KO SSCs exhibited reduced proliferation compared to wild-type cells, while apoptosis was unaffected. Therefore, we examined whether Ephb2 loss correlates with activity of canonical pathways involved in stem cell self-renewal and proliferation. Ephb2-KO cells had reduced ERK MAPK signaling. Using a lentiviral transgene, Ephb2 expression was rescued in Ephb2-KO cells, which partially restored signaling and proliferation. Transplantation analysis revealed that Ephb2-KO SSCs cultures formed significantly fewer colonies than WT, indicating a role for Ephb2 in preserving stem cell activity of cultured cells. Transcriptome analysis of wild-type and Ephb2-KO SSCs identified Dppa4 and Bnc1 as differentially expressed, Ephb2-dependent genes that are potentially involved in stem cell function. These data uncover for the first time a crucial role for Ephb2 signaling in cultured SSCs.
Collapse
Affiliation(s)
- Thierry N'Tumba-Byn
- Department of Surgery, Weill Cornell Medical College, New York, NY, United States of America
| | - Makiko Yamada
- Department of Surgery, Weill Cornell Medical College, New York, NY, United States of America
| | - Marco Seandel
- Department of Surgery, Weill Cornell Medical College, New York, NY, United States of America
| |
Collapse
|
8
|
Chang J, Wang S, Zheng Z. Etiology of Hypospadias: A Comparative Review of Genetic Factors and Developmental Processes Between Human and Animal Models. Res Rep Urol 2021; 12:673-686. [PMID: 33381468 PMCID: PMC7769141 DOI: 10.2147/rru.s276141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/08/2020] [Accepted: 09/28/2020] [Indexed: 11/23/2022] Open
Abstract
Hypospadias is a congenital anomaly of the penis with an occurrence of approximately 1 in 200 boys, but the etiology of the majority of hypospadias has remained unknown. Numerous genes have been reported as having variants in hypospadias patients, and many studies on genetic deletion of key genes in mouse genital development have also been published. Until now, no comparative analysis in the genes related literature has been reported. The basic knowledge of penile development and hypospadias is mainly obtained from animal model studies. Understanding of the differences and similarities between human and animal models is crucial for studies of hypospadias. In this review, mutations and polymorphisms of hypospadias-related genes have been compared between humans and mice, and differential genotype–phenotype relationships of certain genes between humans and mice have been discussed using the data available in PubMed and MGI online databases, and our analysis only revealed mutations in seven out of 43 human hypospadias related genes which have been reported to show similar phenotypes in mutant mice. The differences and similarities in the processes of penile development and hypospadias malformation among human and commonly used animal models suggest that the guinea pig may be a good model to study the mechanism of human penile development and etiology of hypospadias.
Collapse
Affiliation(s)
- Jun Chang
- Department of Physiology, School of Medicine, Southern Illinois University Carbondale, Carbondale, IL 62901, USA.,School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi 330013, People's Republic of China
| | - Shanshan Wang
- Department of Physiology, School of Medicine, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| | - Zhengui Zheng
- Department of Physiology, School of Medicine, Southern Illinois University Carbondale, Carbondale, IL 62901, USA
| |
Collapse
|
9
|
Stadler HS, Peters CA, Sturm RM, Baker LA, Best CJM, Bird VY, Geller F, Hoshizaki DK, Knudsen TB, Norton JM, Romao RLP, Cohn MJ. Meeting report on the NIDDK/AUA Workshop on Congenital Anomalies of External Genitalia: challenges and opportunities for translational research. J Pediatr Urol 2020; 16:791-804. [PMID: 33097421 PMCID: PMC7885182 DOI: 10.1016/j.jpurol.2020.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/27/2020] [Revised: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 01/02/2023]
Abstract
Congenital anomalies of the external genitalia (CAEG) are a prevalent and serious public health concern with lifelong impacts on the urinary function, sexual health, fertility, tumor development, and psychosocial wellbeing of affected individuals. Complications of treatment are frequent, and data reflecting long-term outcomes in adulthood are limited. To identify a path forward to improve treatments and realize the possibility of preventing CAEG, the National Institute of Diabetes and Digestive and Kidney Diseases and the American Urological Association convened researchers from a range of disciplines to coordinate research efforts to fully understand the different etiologies of these common conditions, subsequent variation in clinical phenotypes, and best practices for long term surgical success. Meeting participants concluded that a central data hub for clinical evaluations, including collection of DNA samples from patients and their parents, and short interviews to determine familial penetrance (small pedigrees), would accelerate research in this field. Such a centralized datahub will advance efforts to develop detailed multi-dimensional phenotyping and will enable access to genome sequence analyses and associated metadata to define the genetic bases for these conditions. Inclusion of tissue samples and integration of clinical studies with basic research using human cells and animal models will advance efforts to identify the developmental mechanisms that are disrupted during development and will add cellular and molecular granularity to phenotyping CAEG. While the discussion focuses heavily on hypospadias, this can be seen as a potential template for other conditions in the realm of CAEG, including cryptorchidism or the exstrophy-epispadias complex. Taken together with long-term clinical follow-up, these data could inform surgical choices and improve likelihood for long-term success.
Collapse
Affiliation(s)
- H Scott Stadler
- Department of Skeletal Biology, Shriners Hospital for Children, 3101 SW Sam Jackson Park Road, Portland, OR, Oregon Health & Science University, Department of Orthopaedics and Rehabilitation, Portland, 97239, OR, USA.
| | - Craig A Peters
- Department of Urology, University of Texas Southwestern, 5323 Harry Hines Blvd., Dallas, 75390-9110, TX, USA; Pediatric Urology, Children's Health System Texas, University of Texas Southwestern, Dallas, 75390, TX, USA.
| | - Renea M Sturm
- Department of Urology, Division of Pediatric Urology, University of California Los Angeles, 200 Medical Plaza #170, Los Angeles, 90095, CA, USA
| | - Linda A Baker
- Department of Urology, University of Texas Southwestern, 5323 Harry Hines Blvd., Dallas, 75390-9110, TX, USA
| | - Carolyn J M Best
- American Urological Association, 1000 Corporate Boulevard, Linthicum, 21090, MD, USA
| | - Victoria Y Bird
- Department of Urology, University of Florida, Gainesville, 32610, FL, USA; National Medical Association and Research Group, 5745 SW 75th Street, #507, Gainesville, 32608, FL, USA
| | - Frank Geller
- Department of Epidemiology Research, Statens Serum Institut, 5 Artillerivej, Copenhagen S, DK-2300, Denmark
| | - Deborah K Hoshizaki
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 6707 Democracy Boulevard, Bethesda, 20892, MD, USA
| | - Thomas B Knudsen
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Research Triangle Park, 27711, NC, USA
| | - Jenna M Norton
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 6707 Democracy Boulevard, Bethesda, 20892, MD, USA
| | - Rodrigo L P Romao
- Departments of Surgery and Urology, IWK Health Centre, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Martin J Cohn
- Department of Molecular Genetics and Microbiology, Department of Biology, And UF Genetics Institute, University of Florida, PO Box 103610, Gainesville, 32610, FL, USA.
| |
Collapse
|
10
|
Chen Y, Renfree MB. Hormonal and Molecular Regulation of Phallus Differentiation in a Marsupial Tammar Wallaby. Genes (Basel) 2020; 11:genes11010106. [PMID: 31963388 PMCID: PMC7017150 DOI: 10.3390/genes11010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/09/2019] [Revised: 12/24/2019] [Accepted: 01/14/2020] [Indexed: 11/16/2022] Open
Abstract
Congenital anomalies in phalluses caused by endocrine disruptors have gained a great deal of attention due to its annual increasing rate in males. However, the endocrine-driven molecular regulatory mechanism of abnormal phallus development is complex and remains largely unknown. Here, we review the direct effect of androgen and oestrogen on molecular regulation in phalluses using the marsupial tammar wallaby, whose phallus differentiation occurs after birth. We summarize and discuss the molecular mechanisms underlying phallus differentiation mediated by sonic hedgehog (SHH) at day 50 pp and phallus elongation mediated by insulin-like growth factor 1 (IGF1) and insulin-like growth factor binding protein 3 (IGFBP3), as well as multiple phallus-regulating genes expressed after day 50 pp. We also identify hormone-responsive long non-coding RNAs (lncRNAs) that are co-expressed with their neighboring coding genes. We show that the activation of SHH and IGF1, mediated by balanced androgen receptor (AR) and estrogen receptor 1 (ESR1) signalling, initiates a complex regulatory network in males to constrain the timing of phallus differentiation and to activate the downstream genes that maintain urethral closure and phallus elongation at later stages.
Collapse
Affiliation(s)
- Yu Chen
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32603, USA
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence: (Y.C.); (M.B.R.)
| | - Marilyn B. Renfree
- School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence: (Y.C.); (M.B.R.)
| |
Collapse
|
11
|
Mattiske D, Behringer RR, Overbeek PA, Pask AJ. A novel long non-coding RNA, Leat1, causes reduced anogenital distance and fertility in female mice. Differentiation 2019; 112:1-6. [PMID: 31830612 DOI: 10.1016/j.diff.2019.10.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/27/2019] [Revised: 09/07/2019] [Accepted: 10/09/2019] [Indexed: 01/01/2023]
Abstract
Defective anorectal and urogenital malformations are some of the most severe congenital anomalies encountered in children. Only a few molecular cues have been identified in early formation of the female urogenital system. Here we describe a novel long non-coding RNA molecule known as Leat1 (long non-coding RNA, EphrinB2 associated transcript 1). This lncRNA is syntenic with EfnB2 (which encodes EphrinB2) and expressed during embryonic development of the genital tubercle. While lncRNAs have varied functions, many are known to regulate their neighbouring genes. Eph/Ephrin bidirectional signaling molecules mediate many patterning pathways in early embryonic development, including cloacal septation and urethral development. Here we investigate the role of Leat1 and its possible regulation of EphrinB2 during development of the female reproductive tract. We show that a loss of Leat1 leads to reduced EfnB2 expression in the developing female genital tubercle, reduced anogenital distance and decreased fertility.
Collapse
Affiliation(s)
- Deidre Mattiske
- School of BioSciences, The University of Melbourne, Victoria, Australia.
| | - Richard R Behringer
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Paul A Overbeek
- Molecular and Cellular Biology, Baylor College of Medicine. Houston, TX, USA
| | - Andrew J Pask
- School of BioSciences, The University of Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Bellucco FT, Rodrigues de Oliveira-Júnior H, Santos Guilherme R, Bragagnolo S, Alvarez Perez AB, Ayres Meloni V, Melaragno MI. Deletion of Chromosome 13 due to Different Rearrangements and Impact on Phenotype. Mol Syndromol 2019; 10:139-146. [PMID: 31191202 DOI: 10.1159/000497402] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 01/11/2019] [Indexed: 12/20/2022] Open
Abstract
Patients with deletion of chromosome 13 present with variable clinical features, and the correlation between phenotype and genomic aberration is not well established in the literature, mainly due to variable sizes of the deleted segments and inaccuracy of breakpoint mapping. In order to improve the genotype-phenotype correlation, we obtained clinical and cytogenomic data from 5 Brazilian patients with different chromosome 13 deletions characterized by G-banding and array techniques. Breakpoints were nonrecurrent, with deletion sizes ranging from 3.8 to 43.3 Mb. Our patients showed some classic features associated with 13q deletion, independent of the location and size of the deletion: hypotonia, growth delay, psychomotor developmental delay, microcephaly, central nervous system anomalies, and minor facial dysmorphism as well as urogenital and limb abnormalities. Comparisons between the literature and our patients' data allowed us to narrow the critical regions that were previously reported for microphthalmia and urogenital abnormalities, indicating that gene haploinsufficiency of ARHGEF7, PCDH9 and DIAPH3, of MIR17HG and GPC6, and of EFNB2 may contribute to microcephaly, cardiovascular disease, and urogenital abnormalities, respectively. The knowledge about genes involved in the phenotypic features found in 13q deletion patients may help us to understand how the genes interact and contribute to their clinical phenotype, improving the patient's clinical follow-up.
Collapse
Affiliation(s)
- Fernanda T Bellucco
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Roberta Santos Guilherme
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Silvia Bragagnolo
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana B Alvarez Perez
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Vera Ayres Meloni
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maria I Melaragno
- Genetics Division, Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Niethamer TK, Bush JO. Getting direction(s): The Eph/ephrin signaling system in cell positioning. Dev Biol 2019; 447:42-57. [PMID: 29360434 PMCID: PMC6066467 DOI: 10.1016/j.ydbio.2018.01.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/20/2017] [Revised: 12/21/2017] [Accepted: 01/18/2018] [Indexed: 12/16/2022]
Abstract
In vertebrates, the Eph/ephrin family of signaling molecules is a large group of membrane-bound proteins that signal through a myriad of mechanisms and effectors to play diverse roles in almost every tissue and organ system. Though Eph/ephrin signaling has functions in diverse biological processes, one core developmental function is in the regulation of cell position and tissue morphology by regulating cell migration and guidance, cell segregation, and boundary formation. Often, the role of Eph/ephrin signaling is to translate patterning information into physical movement of cells and changes in morphology that define tissue and organ systems. In this review, we focus on recent advances in the regulation of these processes, and our evolving understanding of the in vivo signaling mechanisms utilized in distinct developmental contexts.
Collapse
Affiliation(s)
- Terren K Niethamer
- Department of Cell and Tissue Biology, Program in Craniofacial Biology, and Institute of Human Genetics, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey O Bush
- Department of Cell and Tissue Biology, Program in Craniofacial Biology, and Institute of Human Genetics, University of California at San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
14
|
Zeng X, Hunt A, Jin SC, Duran D, Gaillard J, Kahle KT. EphrinB2-EphB4-RASA1 Signaling in Human Cerebrovascular Development and Disease. Trends Mol Med 2019; 25:265-286. [PMID: 30819650 DOI: 10.1016/j.molmed.2019.01.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/11/2018] [Revised: 01/17/2019] [Accepted: 01/29/2019] [Indexed: 12/13/2022]
Abstract
Recent whole exome sequencing studies in humans have provided novel insight into the importance of the ephrinB2-EphB4-RASA1 signaling axis in cerebrovascular development, corroborating and extending previous work in model systems. Here, we aim to review the human cerebrovascular phenotypes associated with ephrinB2-EphB4-RASA1 mutations, including those recently discovered in Vein of Galen malformation: the most common and severe brain arteriovenous malformation in neonates. We will also discuss emerging paradigms of the molecular and cellular pathophysiology of disease-causing ephrinB2-EphB4-RASA1 mutations, including the potential role of somatic mosaicism. These observations have potential diagnostic and therapeutic implications for patients with rare congenital cerebrovascular diseases and their families.
Collapse
Affiliation(s)
- Xue Zeng
- Department of Genetics, Yale School of Medicine, New Haven CT, USA; Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Ava Hunt
- Department of Neurosurgery, Yale School of Medicine, New Haven CT, USA
| | - Sheng Chih Jin
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Daniel Duran
- Department of Neurosurgery, Yale School of Medicine, New Haven CT, USA
| | - Jonathan Gaillard
- Department of Neurosurgery, Yale School of Medicine, New Haven CT, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Yale School of Medicine, New Haven CT, USA; Department of Pediatrics, Yale School of Medicine, New Haven CT, USA; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven CT, USA.
| |
Collapse
|
15
|
Hsu JSJ, So M, Tang CSM, Karim A, Porsch RM, Wong C, Yu M, Yeung F, Xia H, Zhang R, Cherny SS, Chung PHY, Wong KKY, Sham PC, Ngo ND, Li M, Tam PKH, Lui VCH, Garcia-Barcelo MM. De novo mutations in Caudal Type Homeo Box transcription Factor 2 (CDX2) in patients with persistent cloaca. Hum Mol Genet 2019; 27:351-358. [PMID: 29177441 DOI: 10.1093/hmg/ddx406] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/18/2017] [Accepted: 10/27/2017] [Indexed: 12/24/2022] Open
Abstract
The cloaca is an embryonic cavity that is divided into the urogenital sinus and rectum upon differentiation of the cloacal epithelium triggered by tissue-specific transcription factors including CDX2. Defective differentiation leads to persistent cloaca in humans (PC), a phenotype recapitulated in Cdx2 mutant mice. PC is linked to hypo/hyper-vitaminosis A. Although no gene has ever been identified, there is a strong evidence for a genetic contribution to PC. We applied whole-exome sequencing and copy-number-variants analyses to 21 PC patients and their unaffected parents. The damaging p.Cys132* and p.Arg237His de novo CDX2 variants were identified in two patients. These variants altered the expression of CYP26A1, a direct CDX2 target encoding the major retinoic acid (RA)-degrading enzyme. Other RA genes, including the RA-receptor alpha, were also mutated. Genes governing the development of cloaca-derived structures were recurrently mutated and over-represented in the basement-membrane components set (q-value < 1.65 × 10-6). Joint analysis of the patients' profile highlighted the extracellular matrix-receptor interaction pathway (MsigDBID: M7098, FDR: q-value < 7.16 × 10-9). This is the first evidence that PC is genetic, with genes involved in the RA metabolism at the lead. Given the CDX2 de novo variants and the role of RA, our observations could potentiate preventive measures. For the first time, a gene recapitulating PC in mouse models is found mutated in humans.
Collapse
Affiliation(s)
- Jacob S J Hsu
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Manting So
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Clara S M Tang
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Anwarul Karim
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Robert M Porsch
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Carol Wong
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Michelle Yu
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Fanny Yeung
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guandong, China
| | - Ruizhong Zhang
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou, Guandong, China
| | - Stacey S Cherny
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Patrick H Y Chung
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Kenneth K Y Wong
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Pak C Sham
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Centre for Genomic Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ngoc Diem Ngo
- Department of Human Genetics, National Hospital of Pediatrics, Hà N?i, Vietnam
| | - Miaoxin Li
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Paul K H Tam
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Vincent C H Lui
- Department of Surgery, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
16
|
Arthur A, Nguyen TM, Paton S, Zannettino ACW, Gronthos S. Loss of EfnB1 in the osteogenic lineage compromises their capacity to support hematopoietic stem/progenitor cell maintenance. Exp Hematol 2018; 69:43-53. [PMID: 30326247 DOI: 10.1016/j.exphem.2018.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/06/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022]
Abstract
The bone marrow stromal microenvironment contributes to the maintenance and function of hematopoietic stem/progenitor cells (HSPCs). The Eph receptor tyrosine kinase family members have been implicated in bone homeostasis and stromal support of HSPCs. The present study examined the influence of EfnB1-expressing osteogenic lineage on HSPC function. Mice with conditional deletion of EfnB1 in the osteogenic lineage (EfnB1OB-/-), driven by the Osterix promoter, exhibited a reduced prevalence of osteogenic progenitors and osteoblasts, correlating to lower numbers of HSPCs compared with Osx:Cre mice. Long-term culture-initiating cell (LTC-IC) assays confirmed that the loss of EfnB1 within bone cells hindered HSPC function, with a significant reduction in colony formation in EfnB1OB-/- mice compared with Osx:Cre mice. Human studies confirmed that activation of EPHB2 on CD34+ HSPCs via EFNB1-Fc stimulation enhanced myeloid/erythroid colony formation, whereas functional blocking of either EPHB1 or EPHB2 inhibited the maintenance of LTC-ICs. Moreover, EFNB1 reverse signaling in human and mouse stromal cells was found to be required for the activation of the HSPC-promoting factor CXCL12. Collectively, the results of this study confirm that EfnB1 contributes to the stromal support of HSPC function and maintenance and may be an important factor in regulating the HSPC niche.
Collapse
Affiliation(s)
- Agnieszka Arthur
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia; Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Thao M Nguyen
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia; Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Sharon Paton
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia; Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Andrew C W Zannettino
- Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia; Cancer Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.
| |
Collapse
|
17
|
Liu G, Liu X, Shen J, Sinclair A, Baskin L, Cunha GR. Contrasting mechanisms of penile urethral formation in mouse and human. Differentiation 2018; 101:46-64. [PMID: 29859371 DOI: 10.1016/j.diff.2018.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/05/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 11/27/2022]
Abstract
This paper addresses the developmental mechanisms of formation of the mouse and human penile urethra and the possibility that two disparate mechanisms are at play. It has been suggested that the entire penile urethra of the mouse forms via direct canalization of the endodermal urethral plate. While this mechanism surely accounts for development of the proximal portion of the mouse penile urethra, we suggest that the distal portion of the mouse penile urethra forms via a series of epithelial fusion events. Through review of the recent literature in combination with new data, it is unlikely that the entire mouse urethra is formed from the endodermal urethral plate due in part to the fact that from E14 onward the urethral plate is not present in the distal aspect of the genital tubercle. Formation of the distal portion of the mouse urethra receives substantial contribution from the preputial swellings that form the preputial-urethral groove and subsequently the preputial-urethral canal, the later of which is subdivided by a fusion event to form the distal portion of the mouse penile urethra. Examination of human penile development also reveals comparable dual morphogenetic mechanisms. However, in the case of human, direct canalization of the urethral plate occurs in the glans, while fusion events are involved in formation of the urethra within the penile shaft, a pattern exactly opposite to that of the mouse. The highest incidence of hypospadias in humans occurs at the junction of these two different developmental mechanisms. The relevance of the mouse as a model of human hypospadias is discussed.
Collapse
Affiliation(s)
- Ge Liu
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Department of Urology, University of California, San Francisco, CA, United States
| | - Xin Liu
- Department of Pediatric Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; Department of Urology, University of California, San Francisco, CA, United States
| | - Joel Shen
- Department of Urology, University of California, San Francisco, CA, United States
| | - Adriane Sinclair
- Department of Urology, University of California, San Francisco, CA, United States
| | - Laurence Baskin
- Department of Urology, University of California, San Francisco, CA, United States
| | - Gerald R Cunha
- Department of Urology, University of California, San Francisco, CA, United States.
| |
Collapse
|
18
|
Lévy J, Haye D, Marziliano N, Casu G, Guimiot F, Dupont C, Teissier N, Benzacken B, Gressens P, Pipiras E, Verloes A, Tabet AC. EFNB2haploinsufficiency causes a syndromic neurodevelopmental disorder. Clin Genet 2018; 93:1141-1147. [DOI: 10.1111/cge.13234] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/22/2017] [Revised: 02/07/2018] [Accepted: 02/07/2018] [Indexed: 01/17/2023]
Affiliation(s)
- J. Lévy
- Genetics Department, AP-HP; Robert-Debré University Hospital; Paris France
- Sorbonne Paris-Cité University; Denis Diderot Medical School; Paris France
- INSERM UMR1141, Robert-Debré Hospital; Paris Diderot University, AP-HP; Paris France
| | - D. Haye
- Genetics Department, AP-HP; Robert-Debré University Hospital; Paris France
| | - N. Marziliano
- Unità Operatica Complessa di Cardiologia; ASSL3 Nuoro-ATS Sardegna; Italy
| | - G. Casu
- Unità Operatica Complessa di Cardiologia; ASSL3 Nuoro-ATS Sardegna; Italy
| | - F. Guimiot
- Genetics Department, AP-HP; Robert-Debré University Hospital; Paris France
- Department of Developmental Biology, AP-HP Robert-Debré University Hospital; Paris Diderot University, Sorbonne Paris-Cité University; Paris France
| | - C. Dupont
- Genetics Department, AP-HP; Robert-Debré University Hospital; Paris France
| | - N. Teissier
- Sorbonne Paris-Cité University; Denis Diderot Medical School; Paris France
- INSERM UMR1141, Robert-Debré Hospital; Paris Diderot University, AP-HP; Paris France
| | - B. Benzacken
- INSERM UMR1141, Robert-Debré Hospital; Paris Diderot University, AP-HP; Paris France
- Department of Cytogenetics, University Hospital Jean-Verdier; Embryology and Histology; Bondy France
| | - P. Gressens
- INSERM UMR1141, Robert-Debré Hospital; Paris Diderot University, AP-HP; Paris France
| | - E. Pipiras
- INSERM UMR1141, Robert-Debré Hospital; Paris Diderot University, AP-HP; Paris France
- Department of Cytogenetics, University Hospital Jean-Verdier; Embryology and Histology; Bondy France
| | - A. Verloes
- Genetics Department, AP-HP; Robert-Debré University Hospital; Paris France
- Sorbonne Paris-Cité University; Denis Diderot Medical School; Paris France
- INSERM UMR1141, Robert-Debré Hospital; Paris Diderot University, AP-HP; Paris France
| | - A.-C. Tabet
- Genetics Department, AP-HP; Robert-Debré University Hospital; Paris France
- Neuroscience Department, Human Genetics et Cognitive Function Unit; Pasteur Institute; Paris France
| |
Collapse
|
19
|
Abdullah NL, Mohd-Zin SW, Ahmad-Annuar A, Abdul-Aziz NM. A Novel Occulta-Type Spina Bifida Mediated by Murine Double Heterozygotes EphA2 and EphA4 Receptor Tyrosine Kinases. Front Cell Dev Biol 2018; 5:105. [PMID: 29312933 PMCID: PMC5732981 DOI: 10.3389/fcell.2017.00105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/17/2017] [Accepted: 11/22/2017] [Indexed: 11/27/2022] Open
Abstract
Members of the Eph receptor tyrosine kinase have previously been implicated in cranial neural tube development. Failure of neural tube closure leads to the devastating conditions known as anencephaly and spina bifida. EphA2 and EphA4 are expressed at the tips of the closing spinal neural folds prior and during neural tube closure. We investigated the possible role of murine EphA2 and EphA4 during the last step of primary neural tube closure, which is adhesion and fusion. The individual mouse knockouts of EphA2 and EphA4 per se do not exhibit neural tube defects (NTDs). The embryos generated by the crossing of double heterozygotes Epha2tm1Jrui/+Epha4rb-2J/+ displayed NTDs with a wide degree of severity including close exencephaly and close spina bifida (spina bifida occulta). Interestingly, mutants displaying NTDs had skin covering the underlying lesion. The tissue sections revealed the elevated neural folds had not adhered and fused. The phenotypes seen in Epha2tm1Jrui/+Epha4rb-2J/+ double heterozygous embryos suggest both genes play a compensatory role with each other in the adhesion and fusion of the neural tube. In this study, there exists a >50% penetrance of NTDs in the mouse mutants, which genetically have a single allele each of EphA2 and EphA4 absent.
Collapse
Affiliation(s)
- Nor Linda Abdullah
- Faculty of Medicine, Department of Parasitology, University of Malaya, Kuala Lumpur, Malaysia
| | - Siti W Mohd-Zin
- Faculty of Medicine, Department of Parasitology, University of Malaya, Kuala Lumpur, Malaysia
| | - Azlina Ahmad-Annuar
- Faculty of Medicine, Department of Biomedical Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Noraishah M Abdul-Aziz
- Faculty of Medicine, Department of Parasitology, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Talebian A, Britton R, Ammanuel S, Bepari A, Sprouse F, Birnbaum SG, Szabó G, Tamamaki N, Gibson J, Henkemeyer M. Autonomous and non-autonomous roles for ephrin-B in interneuron migration. Dev Biol 2017; 431:179-193. [PMID: 28947178 DOI: 10.1016/j.ydbio.2017.09.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/23/2017] [Revised: 09/05/2017] [Accepted: 09/18/2017] [Indexed: 11/28/2022]
Abstract
While several studies indicate the importance of ephrin-B/EphB bidirectional signaling in excitatory neurons, potential roles for these molecules in inhibitory neurons are largely unknown. We identify here an autonomous receptor-like role for ephrin-B reverse signaling in the tangential migration of interneurons into the neocortex using ephrin-B (EfnB1/B2/B3) conditional triple mutant (TMlz) mice and a forebrain inhibitory neuron specific Cre driver. Inhibitory neuron deletion of the three EfnB genes leads to reduced interneuron migration, abnormal cortical excitability, and lethal audiogenic seizures. Truncated and intracellular point mutations confirm the importance of ephrin-B reverse signaling in interneuron migration and cortical excitability. A non-autonomous ligand-like role was also identified for ephrin-B2 that is expressed in neocortical radial glial cells and required for proper tangential migration of GAD65-positive interneurons. Our studies thus define both receptor-like and ligand-like roles for the ephrin-B molecules in controlling the migration of interneurons as they populate the neocortex and help establish excitatory/inhibitory (E/I) homeostasis.
Collapse
Affiliation(s)
- Asghar Talebian
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Kent Waldrep Center for Basic Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rachel Britton
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Kent Waldrep Center for Basic Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Simon Ammanuel
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Asim Bepari
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Kent Waldrep Center for Basic Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Francis Sprouse
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Kent Waldrep Center for Basic Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shari G Birnbaum
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gábor Szabó
- Medical Gene Technology Division, Institute of Experimental Medicine, 1083 Budapest, Hungary
| | - Nobuaki Tamamaki
- Department of Morphological Neural Science, Kumamoto University, Kumamoto 860-8556, Japan
| | - Jay Gibson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mark Henkemeyer
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Kent Waldrep Center for Basic Research on Nerve Growth and Regeneration, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
21
|
Gambin T, Yuan B, Bi W, Liu P, Rosenfeld JA, Coban-Akdemir Z, Pursley AN, Nagamani SCS, Marom R, Golla S, Dengle L, Petrie HG, Matalon R, Emrick L, Proud MB, Treadwell-Deering D, Chao HT, Koillinen H, Brown C, Urraca N, Mostafavi R, Bernes S, Roeder ER, Nugent KM, Bader PI, Bellus G, Cummings M, Northrup H, Ashfaq M, Westman R, Wildin R, Beck AE, Immken L, Elton L, Varghese S, Buchanan E, Faivre L, Lefebvre M, Schaaf CP, Walkiewicz M, Yang Y, Kang SHL, Lalani SR, Bacino CA, Beaudet AL, Breman AM, Smith JL, Cheung SW, Lupski JR, Patel A, Shaw CA, Stankiewicz P. Identification of novel candidate disease genes from de novo exonic copy number variants. Genome Med 2017; 9:83. [PMID: 28934986 PMCID: PMC5607840 DOI: 10.1186/s13073-017-0472-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/12/2017] [Accepted: 09/01/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Exon-targeted microarrays can detect small (<1000 bp) intragenic copy number variants (CNVs), including those that affect only a single exon. This genome-wide high-sensitivity approach increases the molecular diagnosis for conditions with known disease-associated genes, enables better genotype-phenotype correlations, and facilitates variant allele detection allowing novel disease gene discovery. METHODS We retrospectively analyzed data from 63,127 patients referred for clinical chromosomal microarray analysis (CMA) at Baylor Genetics laboratories, including 46,755 individuals tested using exon-targeted arrays, from 2007 to 2017. Small CNVs harboring a single gene or two to five non-disease-associated genes were identified; the genes involved were evaluated for a potential disease association. RESULTS In this clinical population, among rare CNVs involving any single gene reported in 7200 patients (11%), we identified 145 de novo autosomal CNVs (117 losses and 28 intragenic gains), 257 X-linked deletion CNVs in males, and 1049 inherited autosomal CNVs (878 losses and 171 intragenic gains); 111 known disease genes were potentially disrupted by de novo autosomal or X-linked (in males) single-gene CNVs. Ninety-one genes, either recently proposed as candidate disease genes or not yet associated with diseases, were disrupted by 147 single-gene CNVs, including 37 de novo deletions and ten de novo intragenic duplications on autosomes and 100 X-linked CNVs in males. Clinical features in individuals with de novo or X-linked CNVs encompassing at most five genes (224 bp to 1.6 Mb in size) were compared to those in individuals with larger-sized deletions (up to 5 Mb in size) in the internal CMA database or loss-of-function single nucleotide variants (SNVs) detected by clinical or research whole-exome sequencing (WES). This enabled the identification of recently published genes (BPTF, NONO, PSMD12, TANGO2, and TRIP12), novel candidate disease genes (ARGLU1 and STK3), and further confirmation of disease association for two recently proposed disease genes (MEIS2 and PTCHD1). Notably, exon-targeted CMA detected several pathogenic single-exon CNVs missed by clinical WES analyses. CONCLUSIONS Together, these data document the efficacy of exon-targeted CMA for detection of genic and exonic CNVs, complementing and extending WES in clinical diagnostics, and the potential for discovery of novel disease genes by genome-wide assay.
Collapse
Affiliation(s)
- Tomasz Gambin
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Institute of Computer Science, Warsaw University of Technology, Warsaw, 00-665, Poland.,Department of Medical Genetics, Institute of Mother and Child, Warsaw, 01-211, Poland
| | - Bo Yuan
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA
| | - Amber N Pursley
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA
| | - Sandesh C S Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA
| | - Ronit Marom
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA
| | - Sailaja Golla
- Division of Pediatric Neurology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lauren Dengle
- Division of Pediatric Neurology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | - Reuben Matalon
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, 77555, USA.,Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Lisa Emrick
- Department of Pediatric, Section of Child Neurology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Monica B Proud
- Department of Pediatric, Section of Child Neurology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Diane Treadwell-Deering
- Department of Psychiatry and Behavioral Sciences, Child and Adolescent Psychiatry Division, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hsiao-Tuan Chao
- Department of Pediatric, Section of Child Neurology, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Hannele Koillinen
- Department of Clinical Genetics, Helsinki University Hospital, Helsinki, 00029, Finland
| | - Chester Brown
- Genetics Division, Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, 38105, USA.,Le Bonheur Children's Hospital, Memphis, TN, 38103, USA
| | - Nora Urraca
- Le Bonheur Children's Hospital, Memphis, TN, 38103, USA
| | | | | | - Elizabeth R Roeder
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Department of Pediatrics, Baylor College of Medicine, San Antonio, TX, 78207, USA
| | - Kimberly M Nugent
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Department of Pediatrics, Baylor College of Medicine, San Antonio, TX, 78207, USA
| | - Patricia I Bader
- Northeast Indiana Genetic Counseling Center, Wayne, IN, 46804, USA
| | - Gary Bellus
- Section of Clinical Genetics & Metabolism, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Michael Cummings
- Department of Psychiatry Erie County Medical Center, Buffalo, NY, 14215, USA
| | - Hope Northrup
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Myla Ashfaq
- Division of Medical Genetics, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | | | - Robert Wildin
- St. Luke's Children's Hospital, Boise, ID, 83702, USA.,The National Human Genome Research Institute, Bethesda, MD, 20892, USA
| | - Anita E Beck
- Seattle Children's Hospital, Seattle, WA, 98105, USA.,Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA, 98195, USA
| | | | - Lindsay Elton
- Child Neurology Consultants of Austin, Austin, TX, 78731, USA
| | - Shaun Varghese
- THINK Neurology for Kids/Children's Memorial Hermann Hospital, The Woodlands, TX, 77380, USA
| | - Edward Buchanan
- Division of Plastic Surgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Laurence Faivre
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Est, FHU-TRANSLAD, CHU Dijon, Dijon, France
| | - Mathilde Lefebvre
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Est, FHU-TRANSLAD, CHU Dijon, Dijon, France
| | - Christian P Schaaf
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Magdalena Walkiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA
| | - Yaping Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA
| | - Sung-Hae L Kang
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA
| | - Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Carlos A Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Arthur L Beaudet
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Amy M Breman
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA
| | - Janice L Smith
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA
| | - Sau Wai Cheung
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA.,Texas Children's Hospital, Houston, TX, 77030, USA
| | - Ankita Patel
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA
| | - Chad A Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA.,Baylor Genetics, Houston, TX, 77021, USA
| | - Paweł Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030-3411, USA. .,Baylor Genetics, Houston, TX, 77021, USA.
| |
Collapse
|
22
|
Zhu Z, Peng L, Chen G, Jiang W, Shen Z, Du C, Zang R, Su Y, Xie H, Li H, Xia Y, Tang W. Mutations of MYH14 are associated to anorectal malformations with recto-perineal fistulas in a small subset of Chinese population. Clin Genet 2017; 92:503-509. [PMID: 28191911 DOI: 10.1111/cge.12993] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/15/2016] [Revised: 01/18/2017] [Accepted: 02/05/2017] [Indexed: 12/01/2022]
Abstract
BACKGROUND Anorectal malformations (ARMs) are among the most commonly congenital abnormalities of distal hindgut development, ranging from anal stenosis to anal atresia with or without fistulas and persistent cloaca. The etiology remains elusive for most ARM cases and the majority of genetic studies on ARMs were based on a candidate gene approach. MATERIALS AND METHODS In all eight family members of a non-consanguineous Chinese family, we performed whole-exome sequencing. Subsequently, exome sequencing of MYH14 in 72 unrelated probands with ARMs was performed. The accurate distribution of non-muscle myosin II heavy chain (NMHC II) was investigated by immunohistochemistry in serial sagittal sections of E11.5-13.5 mouse cloacal regions. RESULTS A homozygous mutation in MYH14 was identified in the two siblings of family 1. Compound heterozygous MYH14 changes were identified in an unrelated individual. Immunohistochemical analysis suggest stronger NMHC IIC localization in the epithelium of the murine embryonic cloaca, urorectal septum and hindgut compared with another two NMHC II isoforms. CONCLUSION This is the first identification of mutations in MYH14 as a cause of ARMs. The stronger localization of NMHC IIC in E11.5-13.5 mouse cloacal regions further supports the role of MYH14 in anorectal development.
Collapse
Affiliation(s)
- Zhongxian Zhu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Peng
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Guanglin Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Weiwei Jiang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Ziyang Shen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Chunxia Du
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Rujin Zang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Su
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology (Nanjing Medical University), Ministry of Education, Nanjing, China
| | - Hua Xie
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hongxing Li
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China.,Key Laboratory of Modern Toxicology (Nanjing Medical University), Ministry of Education, Nanjing, China
| | - Weibing Tang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Pediatric Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
23
|
Wang YP, Wang DJ, Niu ZB, Cui WT. Chromosome 13q deletion syndrome involving 13q31‑qter: A case report. Mol Med Rep 2017; 15:3658-3664. [PMID: 28393221 PMCID: PMC5436299 DOI: 10.3892/mmr.2017.6425] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/25/2015] [Accepted: 01/27/2017] [Indexed: 02/05/2023] Open
Abstract
Partial deletions on the long arm of chromosome 13 lead to a number of different phenotypes depending on the size and position of the deleted region. The present study investigated 2 patients with 13q terminal (13qter) deletion syndrome, which manifested as anal atresia with rectoperineal fistula, complex type congenital heart disease, esophageal hiatus hernia with gastroesophageal reflux, facial anomalies and developmental and mental retardation. Array comparative genomic hybridization identified 2 regions of deletion on chromosome 13q31‑qter; 20.38 Mb in 13q31.3‑qter and 12.99 Mb in 13q33.1‑qter in patients 1 and 2, respectively. Comparisons between the results observed in the present study and those obtained from patients in previous studies indicate that the gene encoding ephrin B2 (EFNB2) located in the 13q33.3‑q34 region, and the gene coding for endothelin receptor type B, in the 13q22.1‑31.3 region, may be suitable candidate genes for the observed urogenital/anorectal anomalies. In addition, the microRNA‑17‑92a‑1 cluster host gene and the glypican 6 gene in the 13q31.3 region, as well as EFNB2 and the collagen type IV a1 chain (COL4A1) and COL4A2 genes in the 13q33.1‑q34 region may together contribute to cardiovascular disease development. It is therefore possible that these genes may be involved in the pathogenesis of complex type congenital heart disease in patients with 13q deletion syndrome.
Collapse
Affiliation(s)
- Yue-Ping Wang
- Department of Clinical Genetics, Shengjing Hospital Affiliated to China Medical University, Heping, Shenyang, Liaoning 110004, P.R. China
| | - Da-Jia Wang
- Department of Pediatric Surgery, Shengjing Hospital Affiliated to China Medical University, Heping, Shenyang, Liaoning 110004, P.R. China
| | - Zhi-Bin Niu
- Department of Pediatric Surgery, Shengjing Hospital Affiliated to China Medical University, Heping, Shenyang, Liaoning 110004, P.R. China
| | - Wan-Ting Cui
- Department of Clinical Genetics, Shengjing Hospital Affiliated to China Medical University, Heping, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
24
|
Abstract
BACKGROUND Studies have shown that hypospadias is associated with placenta-mediated pregnancy complication (PMPC). The role of placental lesions is still unclear. We aimed to examine the association between hyposadias and placental pathology, and the effect of PMPC. METHODS Using data from the US Collaborative Perinatal Project in 1959-1966, we identified 15,780 male subjects (167 hypospadias) for analysis. Detailed placental examinations were conducted following a standard protocol. Subjects were divided into two groups according to whether they had PMPC, including small-for-gestational-age, pre-eclampsia/eclampsia or placental abruption. Logistic regression models were used to explore the association. RESULTS The prevalence of hypospadias was two times higher in subjects with PMPC than those without. Compared to pregnancies with PMPC but no hypospadias, those with both PMPC and hypospadias had significant higher prevalence of placental lesions, such as low placental weight, vascular lesions, villous lesions, and membranous insertion of cord (adjusted odds ratio (OR) ranging from 2.6 to 5.2) after adjusting for potential confounders. In subjects without PMPC, no significant difference of placental pathology was found between those with or without hypospadias. CONCLUSION About one third of hypospadias cases were complicated with PMPC and had a higher risk of placental lesions, suggesting heterogeneity of hypospadias etiology and mechanisms.
Collapse
|
25
|
Dworschak GC, Crétolle C, Hilger A, Engels H, Korsch E, Reutter H, Ludwig M. Comprehensive review of the duplication 3q syndrome and report of a patient with Currarino syndrome and de novo duplication 3q26.32-q27.2. Clin Genet 2016; 91:661-671. [PMID: 27549440 DOI: 10.1111/cge.12848] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/15/2016] [Revised: 08/16/2016] [Accepted: 08/17/2016] [Indexed: 12/19/2022]
Abstract
Partial duplications of the long arm of chromosome 3, dup(3q), are a rare but well-described condition, sharing features of Cornelia de Lange syndrome. Around two thirds of cases are derived from unbalanced translocations, whereas pure dup(3q) have rarely been reported. Here, we provide an extensive review of the literature on dup(3q). This search revealed several patients with caudal malformations and anomalies, suggesting that caudal malformations or anomalies represent an inherent phenotypic feature of dup(3q). In this context, we report a patient with a pure de novo duplication 3q26.32-q27.2. The patient had the clinical diagnosis of Currarino syndrome (CS) (characterized by the triad of sacral anomalies, anorectal malformations and a presacral mass) and additional features, frequently detected in patients with a dup(3q). Mutations within the MNX1 gene were found to be causative in CS but no MNX1 mutation could be detected in our patient. Our comprehensive search for candidate genes located in the critical region of the duplication 3q syndrome, 3q26.3-q27, revealed a so far neglected phenotypic overlap of dup(3q) and the Pierpont syndrome, associated with a mutation of the TBL1XR1 gene on 3q26.32.
Collapse
Affiliation(s)
- G C Dworschak
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Pediatrics, Children's Hospital, University of Bonn, Bonn, Germany
| | - C Crétolle
- Department of Pediatric Surgery, Paris Descartes University, Paris, France.,National Reference Centre for Rare Diseases on Anorectal Malformations and Rare Pelvic Anomalies, Necker-Enfants Malades Hospital, Paris Descartes University, Paris, France
| | - A Hilger
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - H Engels
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - E Korsch
- Clinic for Pediatric Diseases, Kliniken der Stadt Köln GmbH, Cologne, Germany
| | - H Reutter
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany
| | - M Ludwig
- Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| |
Collapse
|
26
|
Computational modeling and simulation of genital tubercle development. Reprod Toxicol 2016; 64:151-61. [PMID: 27180093 DOI: 10.1016/j.reprotox.2016.05.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/10/2016] [Revised: 04/13/2016] [Accepted: 05/07/2016] [Indexed: 11/22/2022]
Abstract
Hypospadias is a developmental defect of urethral tube closure that has a complex etiology involving genetic and environmental factors, including anti-androgenic and estrogenic disrupting chemicals; however, little is known about the morphoregulatory consequences of androgen/estrogen balance during genital tubercle (GT) development. Computer models that predictively model sexual dimorphism of the GT may provide a useful resource to translate chemical-target bipartite networks and their developmental consequences across the human-relevant chemical universe. Here, we describe a multicellular agent-based model of genital tubercle (GT) development that simulates urethrogenesis from the sexually-indifferent urethral plate stage to urethral tube closure. The prototype model, constructed in CompuCell3D, recapitulates key aspects of GT morphogenesis controlled by SHH, FGF10, and androgen pathways through modulation of stochastic cell behaviors, including differential adhesion, motility, proliferation, and apoptosis. Proper urethral tube closure in the model was shown to depend quantitatively on SHH- and FGF10-induced effects on mesenchymal proliferation and epithelial apoptosis-both ultimately linked to androgen signaling. In the absence of androgen, GT development was feminized and with partial androgen deficiency, the model resolved with incomplete urethral tube closure, thereby providing an in silico platform for probabilistic prediction of hypospadias risk across combinations of minor perturbations to the GT system at various stages of embryonic development.
Collapse
|
27
|
Shah K, Nayak SS, Shukla A, Girisha KM. Spectrum of urorectal septum malformation sequence. Congenit Anom (Kyoto) 2016; 56:119-26. [PMID: 26663027 DOI: 10.1111/cga.12149] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/28/2015] [Accepted: 12/01/2015] [Indexed: 11/30/2022]
Abstract
Urorectal septum malformation sequence (URSMS) is a rare spectrum of malformations involving various organ systems. Here, we present eight cases of URSMS, noted in autopsy, with different degrees of complexity, seven being the complete type and one being the partial type. All cases had gastrointestinal tract malformation in the form of the imperforate anus and indeterminate genitalia. Other gastrointestinal tract anomalies were anal agenesis in two cases, anorectal agenesis in two cases, and malformed lower intestinal tract in four cases. The associated renal abnormality was noted in five cases, which were unilateral renal agenesis, dysplastic kidney, hydronephrosis, horseshoe kidney, and unilateral hypoplastic ectopic kidney. External genital malformation, present in both male and female fetuses, included a knob-like structure at perineum in female fetuses, genital fold hypoplasia and penile aplasia or hypoplasia in male fetuses. Skeletal abnormalities included two cases of sacral agenesis and one case of lumbosacral dysraphism. Other anomalies included a case with alobar holoprosencephaly, truncus arteriosus with hypoplastic lungs in one case, and three cases with abdominal wall defects. It is our attempt to delineate a spectrum of abnormalities associated with URSMS.
Collapse
Affiliation(s)
- Krupa Shah
- Department of Obstetrics and Gynecology, Melaka Manipal Medical College, Manipal, India
| | - Shalini S Nayak
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal University, Karnataka, India
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal University, Karnataka, India
| | - Katta M Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal University, Karnataka, India
| |
Collapse
|
28
|
von Lowtzow C, Hofmann A, Zhang R, Marsch F, Ebert AK, Rösch W, Stein R, Boemers TM, Hirsch K, Marcelis C, Feitz WFJ, Brusco A, Migone N, Di Grazia M, Moebus S, Nöthen MM, Reutter H, Ludwig M, Draaken M. CNV analysis in 169 patients with bladder exstrophy-epispadias complex. BMC MEDICAL GENETICS 2016; 17:35. [PMID: 27138190 PMCID: PMC4852408 DOI: 10.1186/s12881-016-0299-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 10/17/2015] [Accepted: 04/22/2016] [Indexed: 12/28/2022]
Abstract
Background The bladder exstrophy-epispadias complex (BEEC) represents the severe end of the congenital uro-rectal malformation spectrum. Initial studies have implicated rare copy number variations (CNVs), including recurrent duplications of chromosomal region 22q11.21, in BEEC etiology. Methods To detect further CNVs, array analysis was performed in 169 BEEC patients. Prior to inclusion, 22q11.21 duplications were excluded using multiplex ligation-dependent probe amplification. Results Following the application of stringent filter criteria, seven rare CNVs were identified: n = 4, not present in 1307 in-house controls; n = 3, frequency of <0.002 in controls. These CNVs ranged from 1 to 6.08 Mb in size. To identify smaller CNVs, relaxed filter criteria used in the detection of previously reported BEEC associated chromosomal regions were applied. This resulted in the identification of six additional rare CNVs: n = 4, not present in 1307 in-house controls; n = 2, frequency <0.0008 in controls. These CNVs ranged from 0.03–0.08 Mb in size. For 10 of these 13 CNVs, confirmation and segregation analyses were performed (5 of maternal origin; 5 of paternal origin). Interestingly, one female with classic bladder extrophy carried a 1.18 Mb duplication of 22q11.1, a chromosomal region that is associated with cat eye syndrome. Conclusions A number of rare CNVs were identified in BEEC patients, and these represent candidates for further evaluation. Rare inherited CNVs may constitute modifiers of, or contributors to, multifactorial BEEC phenotypes.
Collapse
Affiliation(s)
| | - Andrea Hofmann
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life & Brain Center, Bonn, Germany
| | - Rong Zhang
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life & Brain Center, Bonn, Germany
| | - Florian Marsch
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | | | - Wolfgang Rösch
- Department of Pediatric Urology, St. Hedwig Hospital Barmherzige Brüder, Regensburg, Germany
| | - Raimund Stein
- Department of Pediatric and Adolescent Urology, University of Mannheim, Mannheim, Germany
| | - Thomas M Boemers
- Department of Pediatric Surgery and Pediatric Urology, Children's Hospital of Cologne, Cologne, Germany
| | - Karin Hirsch
- Department of Urology, Division of Pediatric Urology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Carlo Marcelis
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Wouter F J Feitz
- Pediatric Urology Center, Department of Urology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Alfredo Brusco
- Department of Medical Sciences and Medical Genetics Unit, Città della Salute e della Scienza University Hospital, University of Torino, Torino, Italy
| | - Nicola Migone
- Department of Medical Sciences and Medical Genetics Unit, Città della Salute e della Scienza University Hospital, University of Torino, Torino, Italy
| | - Massimo Di Grazia
- Institute for Maternal and Child Health, IRCCS Burlo Garofalo, Trieste, Italy
| | - Susanne Moebus
- Institute of Medical Informatics, Biometry, and Epidemiology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life & Brain Center, Bonn, Germany
| | - Heiko Reutter
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Neonatology and Pediatric Intensive Care, University of Bonn, Bonn, Germany
| | - Michael Ludwig
- Department of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Sigmund-Freud-Str. 25, Bonn, D-53127, Germany.
| | - Markus Draaken
- Institute of Human Genetics, University of Bonn, Bonn, Germany.,Department of Genomics, Life & Brain Center, Bonn, Germany
| |
Collapse
|
29
|
Systematic biochemical characterization of the SAM domains in Eph receptor family from Mus Musculus. Biochem Biophys Res Commun 2016; 473:1281-1287. [PMID: 27086853 DOI: 10.1016/j.bbrc.2016.04.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/06/2016] [Accepted: 04/12/2016] [Indexed: 12/13/2022]
Abstract
The Eph receptor family is the largest subfamily of receptor tyrosine kinases and well-known for their pivotal roles in axon guidance, synaptogenesis, artery/venous differentiation and tumorigenesis, etc. Activation of the Eph receptor needs multimerization of the receptors. The intracellular C-terminal SAM domain of Eph receptor was reported to mediate self-association of Eph receptors via the homo SAM-SAM interaction. In this study, we systematically expressed and purified the SAM domain proteins of all fourteen Eph receptors of Mus musculus in Escherichia coli. The FPLC (fast protein liquid chromatography) results showed the recombinant SAM domains were highly homogeneous. Using CD (circular dichroism) spectrometry, we found that the secondary structure of all the SAM domains was typically alpha helical folded and remarkably similar. The thermo-stability tests showed that they were quite stable in solution. SEC-MALS (size exclusion chromatography coupled with multiple angle light scattering) results illustrated 200 μM Eph SAM domains behaved as good monomers in the size-exclusion chromatography. More importantly, DLS (dynamic light scattering) results revealed the overwhelming majority of SAM domains was not multimerized in solution either at 200 μM or 2000 μM protein concentration, which indicating the SAM domain alone was not sufficient to mediate the polymerization of Eph receptor. In summary, our studies provided the systematic biochemical characterizations of the Eph receptor SAM domains and implied their roles in Eph receptor mediated signaling pathways.
Collapse
|
30
|
Tang XB, Zhang T, Wang WL, Yuan ZW, Bai YZ. Spatiotemporal distribution of caudal-type homeobox proteins during development of the hindgut and anorectum in human embryos. PeerJ 2016; 4:e1771. [PMID: 27042391 PMCID: PMC4811170 DOI: 10.7717/peerj.1771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/16/2015] [Accepted: 02/16/2016] [Indexed: 01/13/2023] Open
Abstract
Background. The objectives of this study were to determine the spatiotemporal distribution of human caudal-type homeobox proteins CDX1, CDX2 and CDX4 during development of the hindgut and anorectum in the embryo and to explore the possible roles of CDX genes during morphogenesis of the hindgut and anorectum. Methods. Embryos (89) were cut into sections serially and sagittally. From gestation weeks 4–9, CDX1, CDX2 and CDX4 proteins were detected on the caudal midline by immunohistochemical staining. Results. During week 4, extensive immunoreactivity of CDX1, CDX2 and CDX4 was detected in the dorsal urorectal septum, urogenital sinus and hindgut. From weeks 5–7, CDX1-, CDX2- and CDX4- positive cells were detected mainly in the mesenchyme of the urorectal septum and hindgut. The levels of CDX2 and CDX4 immunoreactivity were lower compared to CDX1. During weeks 8 and 9, the anorectal epithelium stained positive for CDX1 and CDX4, and the anal epithelium was positive for CDX2. Conclusions. The CDX proteins are constantly distributed during development of the hindgut and anorectum and exhibit overlapping distribution patterns in the cloaca/hindgut, suggesting they are important in the morphogenesis of the human hindgut and anorectum. CDX genes might be involved in development of the anorectal epithelium after the rectum has separated from the urorectal septum.
Collapse
Affiliation(s)
- Xiao Bing Tang
- Department of Pediatric Surgery, Shengjing Hospital , Shenyang, Liaoning , China
| | - Tao Zhang
- Department of General Surgery, Affiliated Hospital of Hebei University , Baoding, Hebei , China
| | - Wei Lin Wang
- Department of Pediatric Surgery, Shengjing Hospital , Shenyang, Liaoning , China
| | - Zheng Wei Yuan
- The Key Laboratory of Health Ministry for Congenital Malformation , Shenyang, Liaoning , China
| | - Yu Zuo Bai
- Department of Pediatric Surgery, Shengjing Hospital , Shenyang, Liaoning , China
| |
Collapse
|
31
|
Treffy RW, Collins D, Hoshino N, Ton S, Katsevman GA, Oleksiak M, Runge EM, Cho D, Russo M, Spec A, Gomulka J, Henkemeyer M, Rochlin MW. Ephrin-B/EphB Signaling Is Required for Normal Innervation of Lingual Gustatory Papillae. Dev Neurosci 2016; 38:124-38. [PMID: 27035151 PMCID: PMC4927353 DOI: 10.1159/000444748] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/17/2015] [Accepted: 02/17/2016] [Indexed: 02/02/2023] Open
Abstract
The innervation of taste buds is an excellent model system for studying the guidance of axons during targeting because of their discrete nature and the high fidelity of innervation. The pregustatory epithelium of fungiform papillae is known to secrete diffusible axon guidance cues such as BDNF and Sema3A that attract and repel, respectively, geniculate ganglion axons during targeting, but diffusible factors alone are unlikely to explain how taste axon terminals are restricted to their territories within the taste bud. Nondiffusible cell surface proteins such as Ephs and ephrins can act as receptors and/or ligands for one another and are known to control axon terminal positioning in several parts of the nervous system, but they have not been studied in the gustatory system. We report that ephrin-B2 linked β-galactosidase staining and immunostaining was present along the dorsal epithelium of the mouse tongue as early as embryonic day 15.5 (E15.5), but was not detected at E14.5, when axons first enter the epithelium. Ephrin-B1 immunolabeling was barely detected in the epithelium and found at a somewhat higher concentration in the mesenchyme subjacent to the epithelium. EphB1 and EphB2 were detected in lingual sensory afferents in vivo and geniculate neurites in vitro. Ephrin-B1 and ephrin-B2 were similarly effective in repelling or suppressing outgrowth by geniculate neurites in vitro. These in vitro effects were independent of the neurotrophin used to promote outgrowth, but were reduced by elevated levels of laminin. In vivo, mice null for EphB1 and EphB2 exhibited decreased gustatory innervation of fungiform papillae. These data provide evidence that ephrin-B forward signaling is necessary for normal gustatory innervation of the mammalian tongue.
Collapse
|
32
|
Investigation of sexual dimorphisms through mouse models and hormone/hormone-disruptor treatments. Differentiation 2016; 91:78-89. [DOI: 10.1016/j.diff.2015.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/08/2015] [Accepted: 11/11/2015] [Indexed: 01/23/2023]
|
33
|
Abstract
During the fourth week of human embryo development, a transient common channel known as a cloaca is formed from which three cavities with three external orifices arises. Cloaca anomalies occur when there is failure of separation of the rectum, vagina, and urethra channel resulting in a single drain into the perineum. In our previous institutional studies, Runck et al. compared human and mouse cloaca development and found early mis-patterning of the embryonic cloaca deranged hedgehog and bone morphogenetic proteins (BMP) signaling. Also, our group reported the embryological correlation of the epithelial and stromal histology found in step sections of the common channel in 14 cloaca malformations in humans. In this review, we present the pathology of a 4-year-old female with a cloaca and VACTERL complex, and summarize our current knowledge of cloaca pathology. Furthermore, we suggest that careful pathological examination of cloaca specimens in conjunction with surgical orientation may result in a better understanding of the etiology of this condition.
Collapse
Affiliation(s)
- Anita Gupta
- Division of Pathology, Cincinnati Children's Hospital Medical Center, MLC 1035, 3333 Burnet Ave, Cincinnati, Ohio 45229.
| | - Andrea Bischoff
- International Center for Colorectal Care, Children's Hospital Colorado, 13123 East 16th Avenue, Box 323, Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
34
|
Eph/ephrin signaling in the kidney and lower urinary tract. Pediatr Nephrol 2016; 31:359-71. [PMID: 25903642 DOI: 10.1007/s00467-015-3112-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 02/23/2015] [Revised: 03/30/2015] [Accepted: 03/31/2015] [Indexed: 02/06/2023]
Abstract
Development and homeostasis of the highly specialized cell types and tissues that constitute the organs of the urinary system, the kidneys and ureters, the bladder, and the urethra, require the tightly regulated exchange of signals in and between these tissues. Eph/ephrin signaling is a bidirectional signaling pathway that has been functionally implicated in many developmental and homeostatic contexts, most prominently in the vascular and neural system. Expression and knockout analyses have now provided evidence that Eph/ephrin signaling is of crucial relevance for cell and tissue interactions in the urinary system as well. A clear requirement has emerged in the formation of the vesicoureteric junction, in urorectal septation and glomerulogenesis during embryonic development, in maintenance of medullary tubular cells and podocytes in homeostasis, and in podocyte and glomerular injury responses. Deregulation of Eph/ephrin signaling may also contribute to the formation and progression of tumors in the urinary system, most prominently bladder and renal cell carcinoma. While in the embryonic contexts Eph/ephrin signaling regulates adhesion of epithelial cells, in the adult setting, cell-shape changes and cell survival seem to be the primary cellular processes mediated by this signaling module. With progression of the genetic analyses of mice conditionally mutant for compound alleles of Eph receptor and ephrin ligand genes, additional essential functions are likely to arise in the urinary system.
Collapse
|
35
|
Hashimoto T, Tsuneki M, Foster TR, Santana JM, Bai H, Wang M, Hu H, Hanisch JJ, Dardik A. Membrane-mediated regulation of vascular identity. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2016; 108:65-84. [PMID: 26992081 PMCID: PMC5310768 DOI: 10.1002/bdrc.21123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/13/2016] [Accepted: 02/22/2016] [Indexed: 02/06/2023]
Abstract
Vascular diseases span diverse pathology, but frequently arise from aberrant signaling attributed to specific membrane-associated molecules, particularly the Eph-ephrin family. Originally recognized as markers of embryonic vessel identity, Eph receptors and their membrane-associated ligands, ephrins, are now known to have a range of vital functions in vascular physiology. Interactions of Ephs with ephrins at cell-to-cell interfaces promote a variety of cellular responses such as repulsion, adhesion, attraction, and migration, and frequently occur during organ development, including vessel formation. Elaborate coordination of Eph- and ephrin-related signaling among different cell populations is required for proper formation of the embryonic vessel network. There is growing evidence supporting the idea that Eph and ephrin proteins also have postnatal interactions with a number of other membrane-associated signal transduction pathways, coordinating translation of environmental signals into cells. This article provides an overview of membrane-bound signaling mechanisms that define vascular identity in both the embryo and the adult, focusing on Eph- and ephrin-related signaling. We also discuss the role and clinical significance of this signaling system in normal organ development, neoplasms, and vascular pathologies.
Collapse
Affiliation(s)
- Takuya Hashimoto
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
- Department of Surgery, VA Connecticut Healthcare Systems, West Haven, Connecticut
- Department of Vascular Surgery, The University of Tokyo, Tokyo, Japan
| | - Masayuki Tsuneki
- Division of Cancer Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Trenton R. Foster
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
| | - Jeans M. Santana
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
| | - Hualong Bai
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
- Department of Vascular Surgery, The 1st Affiliated Hospital of Zhengzhou University, Henan, China
| | - Mo Wang
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
| | - Haidi Hu
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
| | - Jesse J. Hanisch
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
| | - Alan Dardik
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
- Department of Surgery, VA Connecticut Healthcare Systems, West Haven, Connecticut
| |
Collapse
|
36
|
Wallace MM, Harris JA, Brubaker DQ, Klotz CA, Gabriele ML. Graded and discontinuous EphA-ephrinB expression patterns in the developing auditory brainstem. Hear Res 2016; 335:64-75. [PMID: 26906676 DOI: 10.1016/j.heares.2016.02.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 12/27/2015] [Revised: 02/02/2016] [Accepted: 02/18/2016] [Indexed: 01/06/2023]
Abstract
Eph-ephrin interactions guide topographic mapping and pattern formation in a variety of systems. In contrast to other sensory pathways, their precise role in the assembly of central auditory circuits remains poorly understood. The auditory midbrain, or inferior colliculus (IC) is an intriguing structure for exploring guidance of patterned projections as adjacent subdivisions exhibit distinct organizational features. The central nucleus of the IC (CNIC) and deep aspects of its neighboring lateral cortex (LCIC, Layer 3) are tonotopically-organized and receive layered inputs from primarily downstream auditory sources. While less is known about more superficial aspects of the LCIC, its inputs are multimodal, lack a clear tonotopic order, and appear discontinuous, terminating in modular, patch/matrix-like distributions. Here we utilize X-Gal staining approaches in lacZ mutant mice (ephrin-B2, -B3, and EphA4) to reveal EphA-ephrinB expression patterns in the nascent IC during the period of projection shaping that precedes hearing onset. We also report early postnatal protein expression in the cochlear nuclei, the superior olivary complex, the nuclei of the lateral lemniscus, and relevant midline structures. Continuous ephrin-B2 and EphA4 expression gradients exist along frequency axes of the CNIC and LCIC Layer 3. In contrast, more superficial LCIC localization is not graded, but confined to a series of discrete ephrin-B2 and EphA4-positive Layer 2 modules. While heavily expressed in the midline, much of the auditory brainstem is devoid of ephrin-B3, including the CNIC, LCIC Layer 2 modular fields, the dorsal nucleus of the lateral lemniscus (DNLL), as well as much of the superior olivary complex and cochlear nuclei. Ephrin-B3 LCIC expression appears complementary to that of ephrin-B2 and EphA4, with protein most concentrated in presumptive extramodular zones. Described tonotopic gradients and seemingly complementary modular/extramodular patterns suggest Eph-ephrin guidance in establishing juxtaposed continuous and discrete neural maps in the developing IC prior to experience.
Collapse
Affiliation(s)
- Matthew M Wallace
- James Madison University, Department of Biology, Harrisonburg, VA 22807, USA
| | - J Aaron Harris
- James Madison University, Department of Biology, Harrisonburg, VA 22807, USA
| | - Donald Q Brubaker
- James Madison University, Department of Biology, Harrisonburg, VA 22807, USA
| | - Caitlyn A Klotz
- James Madison University, Department of Biology, Harrisonburg, VA 22807, USA
| | - Mark L Gabriele
- James Madison University, Department of Biology, Harrisonburg, VA 22807, USA.
| |
Collapse
|
37
|
Bouty A, Ayers KL, Pask A, Heloury Y, Sinclair AH. The Genetic and Environmental Factors Underlying Hypospadias. Sex Dev 2015; 9:239-259. [PMID: 26613581 DOI: 10.1159/000441988] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 09/24/2015] [Indexed: 12/22/2022] Open
Abstract
Hypospadias results from a failure of urethral closure in the male phallus and affects 1 in 200-300 boys. It is thought to be due to a combination of genetic and environmental factors. The development of the penis progresses in 2 stages: an initial hormone-independent phase and a secondary hormone-dependent phase. Here, we review the molecular pathways that contribute to each of these stages, drawing on studies from both human and mouse models. Hypospadias can occur when normal development of the phallus is disrupted, and we provide evidence that mutations in genes underlying this developmental process are causative. Finally, we discuss the environmental factors that may contribute to hypospadias and their potential immediate and transgenerational epigenetic impacts.
Collapse
Affiliation(s)
- Aurore Bouty
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Vic., Australia.,Department of Surgery, Royal Children's Hospital, University of Melbourne, Melbourne, Vic., Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Vic., Australia
| | - Katie L Ayers
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Vic., Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Vic., Australia
| | - Andrew Pask
- Department of Zoology, University of Melbourne, Melbourne, Vic., Australia
| | - Yves Heloury
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Vic., Australia.,Department of Surgery, Royal Children's Hospital, University of Melbourne, Melbourne, Vic., Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Vic., Australia
| | - Andrew H Sinclair
- Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Melbourne, Vic., Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
38
|
Lewis AE, Hwa J, Wang R, Soriano P, Bush JO. Neural crest defects in ephrin-B2 mutant mice are non-autonomous and originate from defects in the vasculature. Dev Biol 2015; 406:186-95. [PMID: 26385750 DOI: 10.1016/j.ydbio.2015.08.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/20/2015] [Revised: 08/28/2015] [Accepted: 08/29/2015] [Indexed: 10/23/2022]
Abstract
Ephrin-B2, a member of the Eph/ephrin family of cell signaling molecules, has been implicated in the guidance of cranial and trunk neural crest cells (NCC) and development of the branchial arches(BA), but detailed examination in mice has been hindered by embryonic lethality of Efnb2 null loss of function due to a requirement in angiogenic remodeling. To elucidate the developmental roles for Efnb2, we generated a conditional rescue knock-in allele that allows rescue of ephrin-B2 specifically in the vascular endothelium (VE), but is otherwise ephrin-B2 deficient. Restoration of ephrin-B2 expression specifically to the VE completely circumvents angiogenic phenotypes, indicating that the requirement of ephrin-B2 in angiogenesis is limited to the VE. Surprisingly, we find that expression of ephrin-B2 specifically in the VE is also sufficient for normal NCC migration and that conversely, embryos in which ephrin-B2 is absent specifically from the VE exhibit NCC migration and survival defects. Disruption of vascular development independent of loss of ephrin-B2 function also leads to defects in NCC and BA development. Together, these data indicate that direct ephrin-B2 signaling to NCCs is not required for NCC guidance, which instead depends on proper organization of the embryonic vasculature.
Collapse
Affiliation(s)
- Ace E Lewis
- Department of Cell and Tissue Biology, Program in Craniofacial Biology and Institute for Human Genetics, University of California, San Francisco, CA 94143, United States
| | - Jennifer Hwa
- Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery, University of California, San Francisco, CA 94143, United States
| | - Rong Wang
- Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery, University of California, San Francisco, CA 94143, United States
| | - Philippe Soriano
- Department of Developmental and Regenerative Biology, Mt. Sinai School of Medicine, New York, NY 10029, United States
| | - Jeffrey O Bush
- Department of Cell and Tissue Biology, Program in Craniofacial Biology and Institute for Human Genetics, University of California, San Francisco, CA 94143, United States.
| |
Collapse
|
39
|
Systematic stereoscopic analyses for cloacal development: The origin of anorectal malformations. Sci Rep 2015; 5:13943. [PMID: 26354024 PMCID: PMC4564729 DOI: 10.1038/srep13943] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/12/2015] [Accepted: 08/05/2015] [Indexed: 12/28/2022] Open
Abstract
The division of the embryonic cloaca is the most essential event for the formation of digestive and urinary tracts. The defective development of the cloaca results in anorectal malformations (ARMs; 2–5 per 10,000 live births). However, the developmental and pathogenic mechanisms of ARMs are unclear. In the current study, we visualized the epithelia in the developing cloaca and nephric ducts (NDs). Systemic stereoscopic analyses revealed that the ND-cloaca connection sites shifted from the lateral-middle to dorsal-anterior part of the cloaca during cloacal division from E10.5 to E11.5 in mouse embryos. Genetic cell labeling analyses revealed that the cells in the ventral cloacal epithelium in the early stages rarely contributed to the dorsal part. Moreover, we revealed the possible morphogenetic movement of endodermal cells within the anterior part of the urogenital sinus and hindgut. These results provide the basis for understanding both cloacal development and the ARM pathogenesis.
Collapse
|
40
|
Abstract
PURPOSE Experience with male cloaca (MC), a single opening in perineum for passage of urine and meconeum is described. METHODS Cases of MC were ambispectively studied, prospectively from July 2007 to April 2015 and retrospectively for last three decades. RESULTS Seven cases of MC were identified, between the ages of newborn-4 years (median 10 days). Two missed cases underwent a colostomy, posterior sagittal anorectoplasty, and urethroplasty. Two cases underwent perineal urethrostomy and anoplasty followed by urethroplasty. In one case, part of the rectal wall was used to form urethral tube and urethrostomy. For three recent cases, posterior sagittal anorectourethroplasty was done with mobilization of rectal pouch and common channel, separation of common wall between the urethra and rectum, urethroplasty varying from 1.5 to 3 cm, perineal body reconstruction, perineal urethrostomy and anoplasty. Follow-up of 6 patients varied from 3 months to 23 years. One case is lost to follow-up. Three patients have completed repair. Complications included a discharging sinus and a urethral fistula in one case each. One patient died while awaiting urethroplasty. Two patients are awaiting formal urethroplasty. CONCLUSION With familiarity of varying anatomy of MC, early recognition can avoid a neonatal colostomy in selected patients.
Collapse
|
41
|
Phillips TR, Wright DK, Gradie PE, Johnston LA, Pask AJ. A Comprehensive Atlas of the Adult Mouse Penis. Sex Dev 2015; 9:162-72. [PMID: 26112156 DOI: 10.1159/000431010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 03/02/2015] [Indexed: 11/19/2022] Open
Abstract
Mice are routinely used to study the development of the external genitalia and, in particular, the process of male urethral closure. This is because misplacement of the male penile urethra, or hypospadias, is amongst the most common birth defects reported in humans. While mice present a tractable model to study penile development, several structures differ between mice and humans, and there is a lack of consensus in the literature on their annotation and developmental origins. Defining the ontology of the mouse prepuce is especially important for the relevance and interpretation of mouse models of hypospadias to human conditions. We have developed a detailed annotation of the adult mouse penis that addresses these differences and enables an accurate comparison of murine and human hypospadias phenotypes. Through MRI data, gross morphology and section histology, we define the origin of the mouse external and internal prepuces, their relationship to the single human foreskin as well as provide a comprehensive view of the various structures of the mouse penis and their associated muscle attachments within the body. These data are combined to annotate structures in a novel 3D adult penis atlas that can be downloaded, viewed at any angle, and manipulated to examine the relationship of various structures.
Collapse
Affiliation(s)
- Tiffany R Phillips
- School of BioSciences, The University of Melbourne, Melbourne, Vic., Australia
| | | | | | | | | |
Collapse
|
42
|
Abstract
Bidirectional signalling is regarded as a notable hallmark of the Eph-ephrin signalling system: Eph-dependent forward signalling in Eph-expressing cells and ephrin-dependent reverse signalling in Ephrin-expressing cells. The notion of ephrin-dependent reverse signalling derives from genetic experiments utilizing mice carrying mutations in the intracellular region of ephrinBs. Here we show that EphB4-dependent forward signalling regulates lymphatic valve development, a process previously thought to be regulated by ephrinB2-dependent reverse signalling. We develop antibodies that selectively target EphB4 and ephrinB2. We find that mice bearing genetically altered cytoplasmic region of ephrinB2 have significantly altered EphB4-dependent forward signalling. Selective inhibition of EphB4 using a functional blocking antibody results in defective lymphatic valve development. Furthermore, a chemical genetic approach is used to unequivocally show that the kinase activity of EphB4 is essential for lymphatic valve development.
Collapse
|
43
|
Cunha GR, Sinclair A, Risbridger G, Hutson J, Baskin LS. Current understanding of hypospadias: relevance of animal models. Nat Rev Urol 2015; 12:271-80. [DOI: 10.1038/nrurol.2015.57] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/09/2022]
|
44
|
Choe CP, Crump JG. Eph-Pak2a signaling regulates branching of the pharyngeal endoderm by inhibiting late-stage epithelial dynamics. Development 2015; 142:1089-94. [PMID: 25725065 DOI: 10.1242/dev.115774] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/03/2023]
Abstract
Branching morphogenesis depends on the precise temporal and spatial control of epithelial dynamics. In the vertebrate head, endodermal branches, called pharyngeal pouches, form through the transient stratification, collective migration and reorganization of epithelial cells into bilayers. Here, we report novel requirements for the EphrinB ligands B2a and B3b, the Ephb4a receptor and the Pak2a kinase in the development of pouches and the posterior facial skeleton that depends on pouches for its segmentation. Time-lapse imaging in zebrafish shows that EphB-Pak2a signaling is required to stabilize pouch epithelial cells at the end of branching morphogenesis. Transgenic rescue experiments further demonstrate that endodermal Eph-ephrin signaling promotes pouch integrity by targeting Pak2a to the plasma membrane, where subsequent activation by Wnt4a-Cdc42 signaling increases junctional E-cadherin in maturing pouches. Integration of Eph-ephrin and Wnt4a signaling through Pak2a thus signals the end of branching morphogenesis by increasing intercellular adhesion that blocks further epithelial rearrangements.
Collapse
Affiliation(s)
- Chong Pyo Choe
- Broad CIRM Center, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - J Gage Crump
- Broad CIRM Center, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
45
|
Billmyre KK, Hutson M, Klingensmith J. One shall become two: Separation of the esophagus and trachea from the common foregut tube. Dev Dyn 2014; 244:277-88. [PMID: 25329576 DOI: 10.1002/dvdy.24219] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/03/2014] [Revised: 10/14/2014] [Accepted: 10/14/2014] [Indexed: 12/23/2022] Open
Abstract
The alimentary and respiratory organ systems arise from a common endodermal origin, the anterior foregut tube. Formation of the esophagus from the dorsal region and the trachea from the ventral region of the foregut primordium occurs by means of a poorly understood compartmentalization process. Disruption of this process can result in severe birth defects, such as esophageal atresia and tracheo-esphageal fistula (EA/TEF), in which the lumina of the trachea and esophagus remain connected. Here we summarize the signaling networks known to be necessary for regulating dorsoventral patterning within the common foregut tube and cellular behaviors that may occur during normal foregut compartmentalization. We propose that dorsoventral patterning serves to establish a lateral region of the foregut tube that is capable of undergoing specialized cellular rearrangements, culminating in compartmentalization. We review established as well as new rodent models that may be useful in addressing this hypothesis. Finally, we discuss new experimental models that could help elucidate the mechanism behind foregut compartmentalization. An integrated approach to future foregut morphogenesis research will allow for a better understanding of this complex process.
Collapse
|
46
|
Ma B, Kolb S, Diprima M, Karna M, Tosato G, Yang Q, Huang Q, Nussinov R. Investigation of the interactions between the EphB2 receptor and SNEW peptide variants. Growth Factors 2014; 32:236-46. [PMID: 25410963 PMCID: PMC4627370 DOI: 10.3109/08977194.2014.985786] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/21/2022]
Abstract
EphB2 interacts with cell surface-bound ephrin ligands to relay bidirectional signals. Overexpression of the EphB2 receptor protein has been linked to different types of cancer. The SNEW (SNEWIQPRLPQH) peptide binds with high selectivity and moderate affinity to EphB2, inhibiting Eph-ephrin interactions by competing with ephrin ligands for the EphB2 high-affinity pocket. We used rigorous free energy perturbation (FEP) calculations to re-evaluate the binding interactions of SNEW peptide with the EphB2 receptor, followed by experimental testing of the computational results. Our results provide insight into dynamic interactions of EphB2 with SNEW peptide. While the first four residues of the SNEW peptide are already highly optimized, change of the C-terminal end of the peptide has the potential to improve SNEW-binding affinity. We identified a PXSPY motif that can be similarly aligned with several other EphB2-binding peptides.
Collapse
Affiliation(s)
- Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Stephanie Kolb
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Michael Diprima
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Molleshree Karna
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Giovanna Tosato
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Qiqi Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Qiang Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA
- Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
47
|
Cayuso J, Xu Q, Wilkinson DG. Mechanisms of boundary formation by Eph receptor and ephrin signaling. Dev Biol 2014; 401:122-31. [PMID: 25448699 DOI: 10.1016/j.ydbio.2014.11.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/14/2014] [Revised: 11/11/2014] [Accepted: 11/12/2014] [Indexed: 12/21/2022]
Abstract
The formation of sharp borders, across which cell intermingling is restricted, has a crucial role in the establishment and maintenance of organized tissues. Signaling of Eph receptors and ephrins underlies formation of a number of boundaries between and within tissues during vertebrate development. Eph-ephrin signaling can regulate several types of cell response-adhesion, repulsion and tension-that can in principle underlie the segregation of cells and formation of sharp borders. Recent studies have implicated each of these cell responses as having important roles at different boundaries: repulsion at the mesoderm-ectoderm border, decreased adhesion at the notochord-presomitic mesoderm border, and tension at boundaries within the hindbrain and forebrain. These distinct responses to Eph receptor and ephrin activation may in part be due to the adhesive properties of the tissue.
Collapse
Affiliation(s)
- Jordi Cayuso
- Division of Developmental Neurobiology, MRC National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - Qiling Xu
- Division of Developmental Neurobiology, MRC National Institute for Medical Research, London NW7 1AA, United Kingdom
| | - David G Wilkinson
- Division of Developmental Neurobiology, MRC National Institute for Medical Research, London NW7 1AA, United Kingdom.
| |
Collapse
|
48
|
Abstract
The anorectal and urogenital systems arise from a common embryonic structure termed cloaca. Subsequent development leads to the division/septation of the cloaca into the urethra, urinary bladder, vagina, anal canal, and rectum. Defective cloacal development and the resulting anorectal and urogenital malformations are some of the most severe congenital anomalies encountered in children. In the most severe form in females, the rectum, vagina, and urethra fail to develop separately and drain via a single common channel known as a cloaca into the perineum. In this review, we summarize our current knowledge of embryonic cloaca development and malformation, and compare them to what has already been described in the literature. We describe the use of mouse models of cloaca malformation to understand which signaling pathways and cellular mechanisms are involved in the process of normal cloaca development. We also discuss the embryological correlation of the epithelial and stromal histology found in step sections of the common channel in 14 human cloaca malformations. Finally, we highlight the significance of these findings, compare them to prior studies, and discuss their implications for the pediatric surgeons. Understanding and identifying the molecular basis for cloaca malformation could provide foundation for tissue engineering efforts that in the future would reflect better surgical reconstruction and improved quality of life for patients.
Collapse
|
49
|
Sexually dimorphic expression of Mafb regulates masculinization of the embryonic urethral formation. Proc Natl Acad Sci U S A 2014; 111:16407-12. [PMID: 25362053 DOI: 10.1073/pnas.1413273111] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/28/2022] Open
Abstract
Masculinization of external genitalia is an essential process in the formation of the male reproductive system. Prominent characteristics of this masculinization are the organ size and the sexual differentiation of the urethra. Although androgen is a pivotal inducer of the masculinization, the regulatory mechanism under the control of androgen is still unknown. Here, we address this longstanding question about how androgen induces masculinization of the embryonic external genitalia through the identification of the v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog B (Mafb) gene. Mafb is expressed prominently in the mesenchyme of male genital tubercle (GT), the anlage of external genitalia. MAFB expression is rarely detected in the mesenchyme of female GTs. However, exposure to exogenous androgen induces its mesenchymal expression in female GTs. Furthermore, MAFB expression is prominently down-regulated in male GTs of androgen receptor (Ar) KO mice, indicating that AR signaling is necessary for its expression. It is revealed that Mafb KO male GTs exhibit defective embryonic urethral formation, giving insight into the common human congenital anomaly hypospadias. However, the size of Mafb KO male GTs is similar with that of wild-type males. Moreover, androgen treatment fails to induce urethral masculinization of the GTs in Mafb KO mice. The current results provide evidence that Mafb is an androgen-inducible, sexually dimorphic regulator of embryonic urethral masculinization.
Collapse
|
50
|
Raft S, Coate TM, Kelley MW, Crenshaw EB, Wu DK. Pou3f4-mediated regulation of ephrin-b2 controls temporal bone development in the mouse. PLoS One 2014; 9:e109043. [PMID: 25299585 PMCID: PMC4192298 DOI: 10.1371/journal.pone.0109043] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/02/2014] [Accepted: 09/01/2014] [Indexed: 12/25/2022] Open
Abstract
The temporal bone encases conductive and sensorineural elements of the ear. Mutations of POU3F4 are associated with unique temporal bone abnormalities and X-linked mixed deafness (DFNX2/DFN3). However, the target genes and developmental processes controlled by POU3F4 transcription factor activity have remained largely uncharacterized. Ephrin-B2 (Efnb2) is a signaling molecule with well-documented effects on cell adhesion, proliferation, and migration. Our analyses of targeted mouse mutants revealed that Efnb2 loss-of-function phenocopies temporal bone abnormalities of Pou3f4 hemizygous null neonates: qualitatively identical malformations of the stapes, styloid process, internal auditory canal, and cochlear capsule were present in both mutants. Using failed/insufficient separation of the stapes and styloid process as a quantitative trait, we found that single gene Efnb2 loss-of-function and compound Pou3f4/Efnb2 loss-of-function caused a more severe phenotype than single gene Pou3f4 loss-of-function. Pou3f4 and Efnb2 gene expression domains overlapped at the site of impending stapes-styloid process separation and at subcapsular mesenchyme surrounding the cochlea; at both these sites, Efnb2 expression was attenuated in Pou3f4 hemizygous null mutants relative to control. Results of immunoprecipitation experiments using chromatin isolated from nascent middle ear mesenchyme supported the hypothesis of a physical association between Pou3f4 and specific non-coding sequence of Efnb2. We propose that Efnb2 is a target of Pou3f4 transcription factor activity and an effector of mesenchymal patterning during temporal bone development.
Collapse
Affiliation(s)
- Steven Raft
- Section on Sensory Cell Regeneration and Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thomas M. Coate
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Matthew W. Kelley
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States of America
| | - E. Bryan Crenshaw
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Doris K. Wu
- Section on Sensory Cell Regeneration and Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|