1
|
Weng J, Shan Y, Chang Q, Cao C, Liu X. Research progress on N 6-Methyladenosine modification in angiogenesis, vasculogenic mimicry, and therapeutic implications in breast cancer. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:57-70. [PMID: 39710080 DOI: 10.1016/j.pbiomolbio.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
N6-methyladenosine (m6A) modification is the most common epitranscriptomic modification in eukaryotic RNA and has garnered extensive attention in the context of breast cancer research. The m6A modification significantly impacts tumorigenesis and tumor progression by regulating RNA stability, splicing, translation, and degradation. In this review we summarize recent advances in understanding the roles of m6A modification in the mechanisms underlying angiogenesis and vasculogenic mimicry in breast cancer. We review how m6A modification and associated transcripts influence relevant factors by affecting key factors and signaling pathways, highlighting the interactions among m6A "writers," "erasers," and "readers," and their overall impact on tumor angiogenesis and vasculogenic mimicry, as well as potential new therapeutic targets.
Collapse
Affiliation(s)
- Jiachen Weng
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou City, Jiangsu, 215600, China
| | - Yisi Shan
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou City, Jiangsu, 215600, China
| | - Qingyu Chang
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou City, Jiangsu, 215600, China
| | - Chenyan Cao
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou City, Jiangsu, 215600, China
| | - Xuemin Liu
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou City, Jiangsu, 215600, China.
| |
Collapse
|
2
|
Zhang Z, Wang D, Xu R, Li X, Wang Z, Zhang Y. The Physiological Functions and Therapeutic Potential of Hypoxia-Inducible Factor-1α in Vascular Calcification. Biomolecules 2024; 14:1592. [PMID: 39766299 PMCID: PMC11674127 DOI: 10.3390/biom14121592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
HIF-1α plays a crucial regulatory role in vascular calcification (VC), primarily influencing the osteogenic differentiation of VSMCs through oxygen-sensing mechanisms. Under hypoxic conditions, the stability of HIF-1α increases, avoiding PHD and VHL protein-mediated degradation, which promotes its accumulation in cells and then activates gene expressions related to calcification. Additionally, HIF-1α modulates the metabolic state of VSMCs by regulating the pathways that govern the switch between glycolysis and oxidative phosphorylation, thereby further advancing the calcification process. The interaction between HIF-1α and other signaling pathways, such as nuclear factor-κB, Notch, and Wnt/β-catenin, creates a complex regulatory network that serves as a critical driving force in VC. Therefore, a deeper understanding of the role and regulatory mechanism of the HIF-1α signaling during the development and progression of VC is of great significance, as it is not only a key molecular marker for understanding the pathological mechanisms of VC but also represents a promising target for future anti-calcification therapies.
Collapse
Affiliation(s)
- Zhenghong Zhang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China; (Z.Z.); (R.X.)
| | - Defan Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen 361102, China;
| | - Renfeng Xu
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China; (Z.Z.); (R.X.)
| | - Xiang Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA;
| | - Zhengchao Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou 350007, China; (Z.Z.); (R.X.)
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA;
| | - Yang Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA;
| |
Collapse
|
3
|
González-Buenfil R, Vieyra-Sánchez S, Quinto-Cortés CD, Oppenheimer SJ, Pomat W, Laman M, Cervantes-Hernández MC, Barberena-Jonas C, Auckland K, Allen A, Allen S, Phipps ME, Huerta-Sanchez E, Ioannidis AG, Mentzer AJ, Moreno-Estrada A. Genetic Signatures of Positive Selection in Human Populations Adapted to High Altitude in Papua New Guinea. Genome Biol Evol 2024; 16:evae161. [PMID: 39173139 PMCID: PMC11339866 DOI: 10.1093/gbe/evae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 08/24/2024] Open
Abstract
Papua New Guinea (PNG) hosts distinct environments mainly represented by the ecoregions of the Highlands and Lowlands that display increased altitude and a predominance of pathogens, respectively. Since its initial peopling approximately 50,000 years ago, inhabitants of these ecoregions might have differentially adapted to the environmental pressures exerted by each of them. However, the genetic basis of adaptation in populations from these areas remains understudied. Here, we investigated signals of positive selection in 62 highlanders and 43 lowlanders across 14 locations in the main island of PNG using whole-genome genotype data from the Oceanian Genome Variation Project (OGVP) and searched for signals of positive selection through population differentiation and haplotype-based selection scans. Additionally, we performed archaic ancestry estimation to detect selection signals in highlanders within introgressed regions of the genome. Among highland populations we identified candidate genes representing known biomarkers for mountain sickness (SAA4, SAA1, PRDX1, LDHA) as well as candidate genes of the Notch signaling pathway (PSEN1, NUMB, RBPJ, MAML3), a novel proposed pathway for high altitude adaptation in multiple organisms. We also identified candidate genes involved in oxidative stress, inflammation, and angiogenesis, processes inducible by hypoxia, as well as in components of the eye lens and the immune response. In contrast, candidate genes in the lowlands are mainly related to the immune response (HLA-DQB1, HLA-DQA2, TAAR6, TAAR9, TAAR8, RNASE4, RNASE6, ANG). Moreover, we find two candidate regions to be also enriched with archaic introgressed segments, suggesting that archaic admixture has played a role in the local adaptation of PNG populations.
Collapse
Affiliation(s)
- Ram González-Buenfil
- Advanced Genomics Unit (UGA), Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Irapuato, Guanajuato, Mexico
| | - Sofía Vieyra-Sánchez
- Advanced Genomics Unit (UGA), Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Irapuato, Guanajuato, Mexico
| | - Consuelo D Quinto-Cortés
- Advanced Genomics Unit (UGA), Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Irapuato, Guanajuato, Mexico
| | | | - William Pomat
- Vector-Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Moses Laman
- Vector-Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Mayté C Cervantes-Hernández
- Advanced Genomics Unit (UGA), Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Irapuato, Guanajuato, Mexico
| | - Carmina Barberena-Jonas
- Advanced Genomics Unit (UGA), Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Irapuato, Guanajuato, Mexico
| | | | - Angela Allen
- Department of Molecular Haematology, MRC Weatherall Institute of Molecular Medicine, Headley Way, Headington, Oxford, OX3 9DS, UK
| | - Stephen Allen
- Department of Clinical Sciences,Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Maude E Phipps
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya 47500, Selangor, Malaysia
| | - Emilia Huerta-Sanchez
- Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, RI 02912, USA
| | - Alexander G Ioannidis
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
- Department of Biomedical Data Science, Stanford Medical School, Stanford, CA, USA
| | | | - Andrés Moreno-Estrada
- Advanced Genomics Unit (UGA), Center for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav), Irapuato, Guanajuato, Mexico
| |
Collapse
|
4
|
Zhao Y, Xing C, Deng Y, Ye C, Peng H. HIF-1α signaling: Essential roles in tumorigenesis and implications in targeted therapies. Genes Dis 2024; 11:234-251. [PMID: 37588219 PMCID: PMC10425810 DOI: 10.1016/j.gendis.2023.02.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/24/2022] [Accepted: 02/12/2023] [Indexed: 08/18/2023] Open
Abstract
The hypoxic microenvironment is an essential characteristic of most malignant tumors. Notably, hypoxia-inducible factor-1 alpha (HIF-1α) is a key regulatory factor of cellular adaptation to hypoxia, and many critical pathways are correlated with the biological activity of organisms via HIF-1α. In the intra-tumoral hypoxic environment, HIF-1α is highly expressed and contributes to the malignant progression of tumors, which in turn results in a poor prognosis in patients. Recently, it has been indicated that HIF-1α involves in various critical processes of life events and tumor development via regulating the expression of HIF-1α target genes, such as cell proliferation and apoptosis, angiogenesis, glucose metabolism, immune response, therapeutic resistance, etc. Apart from solid tumors, accumulating evidence has revealed that HIF-1α is also closely associated with the development and progression of hematological malignancies, such as leukemia, lymphoma, and multiple myeloma. Targeted inhibition of HIF-1α can facilitate an increased sensitivity of patients with malignancies to relevant therapeutic agents. In the review, we elaborated on the basic structure and biological functions of HIF-1α and summarized their current role in various malignancies. It is expected that they will have future potential for targeted therapy.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Cheng Xing
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yating Deng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Can Ye
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
5
|
Paniri A, Hosseini MM, Amjadi-Moheb F, Tabaripour R, Soleimani E, Langroudi MP, Zafari P, Akhavan-Niaki H. The epigenetics orchestra of Notch signaling: a symphony for cancer therapy. Epigenomics 2023; 15:1337-1358. [PMID: 38112013 DOI: 10.2217/epi-2023-0270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023] Open
Abstract
The aberrant regulation of the Notch signaling pathway, which is a fundamental developmental pathway, has been implicated in a wide range of human cancers. The Notch pathway can be activated by both canonical and noncanonical Notch ligands, and its role can switch between acting as an oncogene or a tumor suppressor depending on the context. Epigenetic modifications have the potential to modulate Notch and its ligands, thereby influencing Notch signal transduction. Consequently, the utilization of epigenetic regulatory mechanisms may present novel therapeutic opportunities for both single and combined therapeutics targeted at the Notch signaling pathway. This review offers insights into the mechanisms governing the regulation of Notch signaling and explores their therapeutic potential.
Collapse
Affiliation(s)
- Alireza Paniri
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, 4717647745,Iran
- Zoonoses Research Center, Pasteur Institute of Iran, 4619332976, Amol, Iran
| | | | - Fatemeh Amjadi-Moheb
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, 4717647745,Iran
| | - Reza Tabaripour
- Department of Cellular and Molecular Biology, Babol Branch, Islamic Azad University, Babol, 4747137381, Iran
| | - Elnaz Soleimani
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, 4717647745,Iran
| | | | - Parisa Zafari
- Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, 4691786953, Iran
| | - Haleh Akhavan-Niaki
- Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, 4717647745,Iran
- Zoonoses Research Center, Pasteur Institute of Iran, 4619332976, Amol, Iran
| |
Collapse
|
6
|
Peng Y, Jiang H, Zuo HD. Factors affecting osteogenesis and chondrogenic differentiation of mesenchymal stem cells in osteoarthritis. World J Stem Cells 2023; 15:548-560. [PMID: 37424946 PMCID: PMC10324504 DOI: 10.4252/wjsc.v15.i6.548] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/21/2023] [Accepted: 05/05/2023] [Indexed: 06/26/2023] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease that often involves progressive cartilage degeneration and bone destruction of subchondral bone. At present, clinical treatment is mainly for pain relief, and there are no effective methods to delay the progression of the disease. When this disease progresses to the advanced stage, the only treatment option for most patients is total knee replacement surgery, which causes patients great pain and anxiety. As a type of stem cell, mesenchymal stem cells (MSCs) have multidirectional differentiation potential. The osteogenic differentiation and chondrogenic differentiation of MSCs can play vital roles in the treatment of OA, as they can relieve pain in patients and improve joint function. The differentiation direction of MSCs is accurately controlled by a variety of signaling pathways, so there are many factors that can affect the differentiation direction of MSCs by acting on these signaling pathways. When MSCs are applied to OA treatment, the microenvironment of the joints, injected drugs, scaffold materials, source of MSCs and other factors exert specific impacts on the differentiation direction of MSCs. This review aims to summarize the mechanisms by which these factors influence MSC differentiation to produce better curative effects when MSCs are applied clinically in the future.
Collapse
Affiliation(s)
- Yi Peng
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Hai Jiang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
| | - Hou-Dong Zuo
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan Province, China
- Department of Radiology, Chengdu Xinhua Hospital, Chengdu 610067, Sichuan Province, China
| |
Collapse
|
7
|
Lu H, Wu C, Jiang XW, Zhao Q. ZLDI-8 suppresses angiogenesis and vasculogenic mimicry in drug-resistant NSCLC in vitro and in vivo. Lung Cancer 2023; 182:107279. [PMID: 37364397 DOI: 10.1016/j.lungcan.2023.107279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023]
Abstract
AIMS The chemotherapy drugs for NSCLC often face the consequences of treatment failure due to acquired drug resistance. Tumor chemotherapy resistance is often accompanied by angiogenesis. Here, we aimed to investigate the effect and underlying mechanisms of ADAM-17 inhibitor ZLDI-8 we found before on angiogenesis and vasculogenic mimicry(VM) in drug-resistant NSCLC. MAIN METHODS The tube formation assay was used to evaluate angiogenesis and VM. Migration and invasion were assessed with transwell assays in the co-culture condition. To explore the underlying mechanisms of how ZLDI-8 inhibited tubes formation, ELISA assay and western blot assay were preformed. The effects of ZLDI-8 on angiogenesis in vivo were investigated in Matrigel plug, CAM and Rat aortic ring assays. KEY FINDINGS In the present study, ZLDI-8 significantly inhibited the tube formation of human umbilical vein endothelial cells (HUVECs) in either normal medium or in tumor supernatants. Furthermore, ZLDI-8 also inhibited VM tubes formation of A549/Taxol cells. In the co-culture assay, the interaction between lung cancer cells and HUVECs promotes increased cell migration and invasion, while ZLDI-8 eliminates this promotion. Moreover, the VEGF secretion were decreased by ZLDI-8 and the expression of Notch1, Dll4, HIF1α and VEGF were inhibited by ZLDI-8. In addition, ZLDI-8 can inhibit blood vessel formation in the Matrigel plug, CAM and Rat aortic ring assays. SIGNIFICANCE ZLDI-8 inhibits angiogenesis and VM in drug-resistant NSCLC through suppressing Notch1-HIF1α-VEGF signaling pathway. This study lays the foundation for the discovery of drugs that inhibit angiogenesis and VM in drug resistant NSCLC.
Collapse
Affiliation(s)
- Hongyuan Lu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, People's Republic of China.
| | - Cen Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, People's Republic of China
| | - Xiao-Wen Jiang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Qingchun Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, People's Republic of China; Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, People's Republic of China.
| |
Collapse
|
8
|
Arzate DM, Valencia C, Dimas MA, Antonio-Cabrera E, Domínguez-Salazar E, Guerrero-Flores G, Gutiérrez-Mariscal M, Covarrubias L. Dll1 haploinsufficiency causes brain abnormalities with functional relevance. Front Neurosci 2022; 16:951418. [PMID: 36590296 PMCID: PMC9794864 DOI: 10.3389/fnins.2022.951418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction The Notch pathway is fundamental for the generation of neurons during development. We previously reported that adult mice heterozygous for the null allele of the gene encoding the Delta-like ligand 1 for Notch (Dll1lacZ ) have a reduced neuronal density in the substantia nigra pars compacta. The aim of the present work was to evaluate whether this alteration extends to other brain structures and the behavioral consequences of affected subjects. Methods Brains of Dll1 +/lacZ embryos and mice at different ages were phenotypically compared against their wild type (WT) counterpart. Afterwards, brain histological analyses were performed followed by determinations of neural cell markers in tissue slices. Neurological deficits were diagnosed by applying different behavioral tests to Dll1 +/lacZ and WT mice. Results Brain weight and size of Dll1 +/lacZ mice was significantly decreased compared with WT littermates (i.e., microcephaly), a phenotype detected early after birth. Interestingly, enlarged ventricles (i.e., hydrocephalus) was a common characteristic of brains of Dll1 haploinsufficient mice since early ages. At the cell level, general cell density and number of neurons in several brain regions, including the cortex and hippocampus, of Dll1 +/lacZ mice were reduced as compared with those regions of WT mice. Also, fewer neural stem cells were particularly found in the adult dentate gyrus of Dll1 +/lacZ mice but not in the subventricular zone. High myelination levels detected at early postnatal ages (P7-P24) were an additional penetrant phenotype in Dll1 +/lacZ mice, observation that was consistent with premature oligodendrocyte differentiation. After applying a set of behavioral tests, mild neurological alterations were detected that caused changes in motor behaviors and a deficit in object categorization. Discussion Our observations suggest that Dll1 haploinsufficiency limits Notch signaling during brain development which, on one hand, leads to reduced brain cell density and causes microcephaly and hydrocephalus phenotypes and, on the other, alters the myelination process after birth. The severity of these defects could reach levels that affect normal brain function. Therefore, Dll1 haploinsufficiency is a risk factor that predisposes the brain to develop abnormalities with functional consequences.
Collapse
Affiliation(s)
- Dulce-María Arzate
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Concepción Valencia
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Marco-Antonio Dimas
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Edwards Antonio-Cabrera
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana Unidad Iztapalapa, Ciudad de México, Mexico
| | - Emilio Domínguez-Salazar
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana Unidad Iztapalapa, Ciudad de México, Mexico
| | - Gilda Guerrero-Flores
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | | | - Luis Covarrubias
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico,*Correspondence: Luis Covarrubias,
| |
Collapse
|
9
|
Wang S, Zhao L, Liu H, Han R, Liu Y, Gao J, Bu R, Li B, Sun L, Hao J, Zhao J, Li G. Lanthanum hydroxide inhibits vascular calcification by regulating the HIF-1 pathway. Cell Biol Int 2022; 46:1275-1287. [PMID: 35544947 DOI: 10.1002/cbin.11811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 11/07/2022]
Abstract
The main reason for the high incidence of cardiovascular disease in chronic kidney disease (CKD) patients with vascular calcification (VC) is also the main cause of death in CKD patients. Lanthanum hydroxide (LH) has an inhibitory effect on VC in chronic renal failure; however, the mechanism of its inhibition is poorly defined. Here, we used network pharmacology analysis and found that hypoxia-inducible factor (HIF) is related to VC. In a CKD rat model induced by adenine combined with high phosphorus (1.2%), LH improved the survival rate and inhibited the occurrence and development of VC. In an in vitro study, we found that lanthanum chloride inhibited the occurrence of VC induced by high phosphorus and reduced the production of reactive oxygen species. This study thus revealed that LH can inhibit the occurrence and development of VC by inhibiting the activation of HIF-1.
Collapse
Affiliation(s)
- Shengnan Wang
- Department of Pharmacology, College of Pharmacy, Inner Mongolian Medical University, Hohhot, P.R. China.,Department of Pharmacy, The Affiliated Hospital of Chifeng University, Chifeng, P.R. China
| | - Lulu Zhao
- Department of Pharmacology, College of Pharmacy, Inner Mongolian Medical University, Hohhot, P.R. China
| | - Hong Liu
- Department of Pharmacology, College of Pharmacy, Inner Mongolian Medical University, Hohhot, P.R. China
| | - Ruilan Han
- Department of Pharmacology, College of Pharmacy, Inner Mongolian Medical University, Hohhot, P.R. China
| | - Yang Liu
- Department of Pharmacology, College of Pharmacy, Inner Mongolian Medical University, Hohhot, P.R. China
| | - Jie Gao
- Department of Pharmacology, College of Pharmacy, Inner Mongolian Medical University, Hohhot, P.R. China
| | - Ren Bu
- Department of Pharmacology, College of Pharmacy, Inner Mongolian Medical University, Hohhot, P.R. China
| | - Bing Li
- Department of Pharmacology, College of Pharmacy, Inner Mongolian Medical University, Hohhot, P.R. China
| | - Lijun Sun
- Department of Pharmacology, College of Pharmacy, Inner Mongolian Medical University, Hohhot, P.R. China
| | - Jian Hao
- Department of Nephrology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, P.R. China
| | - Jianrong Zhao
- Department of Nephrology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, P.R. China
| | - Gang Li
- Department of Pharmacology, College of Pharmacy, Inner Mongolian Medical University, Hohhot, P.R. China
| |
Collapse
|
10
|
Regulatory Crosstalk between Physiological Low O 2 Concentration and Notch Pathway in Early Erythropoiesis. Biomolecules 2022; 12:biom12040540. [PMID: 35454129 PMCID: PMC9028139 DOI: 10.3390/biom12040540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 12/04/2022] Open
Abstract
Physiological low oxygen (O2) concentration (<5%) favors erythroid development ex vivo. It is known that low O2 concentration, via the stabilization of hypoxia-induced transcription factors (HIFs), intervenes with Notch signaling in the control of cell fate. In addition, Notch activation is implicated in the regulation of erythroid differentiation. We test here if the favorable effects of a physiological O2 concentration (3%) on the amplification of erythroid progenitors implies a cooperation between HIFs and the Notch pathway. To this end, we utilized a model of early erythropoiesis ex vivo generated from cord blood CD34+ cells transduced with shHIF1α and shHIF2α at 3% O2 and 20% O2 in the presence or absence of the Notch pathway inhibitor. We observed that Notch signalization was activated by Notch2R−Jagged1 ligand interaction among progenitors. The inhibition of the Notch pathway provoked a modest reduction in erythroid cell expansion and promoted erythroid differentiation. ShHIF1α and particularly shHIF2α strongly impaired erythroid progenitors’ amplification and differentiation. Additionally, HIF/NOTCH signaling intersects at the level of multipotent progenitor erythroid commitment and amplification of BFU-E. In that, both HIFs contribute to the expression of Notch2R and Notch target gene HES1. Our study shows that HIF, particularly HIF2, has a determining role in the early erythroid development program, which includes Notch signaling.
Collapse
|
11
|
O’Brien KA, Murray AJ, Simonson TS. Notch Signaling and Cross-Talk in Hypoxia: A Candidate Pathway for High-Altitude Adaptation. Life (Basel) 2022; 12:437. [PMID: 35330188 PMCID: PMC8954738 DOI: 10.3390/life12030437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 12/17/2022] Open
Abstract
Hypoxia triggers complex inter- and intracellular signals that regulate tissue oxygen (O2) homeostasis, adjusting convective O2 delivery and utilization (i.e., metabolism). Human populations have been exposed to high-altitude hypoxia for thousands of years and, in doing so, have undergone natural selection of multiple gene regions supporting adaptive traits. Some of the strongest selection signals identified in highland populations emanate from hypoxia-inducible factor (HIF) pathway genes. The HIF pathway is a master regulator of the cellular hypoxic response, but it is not the only regulatory pathway under positive selection. For instance, regions linked to the highly conserved Notch signaling pathway are also top targets, and this pathway is likely to play essential roles that confer hypoxia tolerance. Here, we explored the importance of the Notch pathway in mediating the cellular hypoxic response. We assessed transcriptional regulation of the Notch pathway, including close cross-talk with HIF signaling, and its involvement in the mediation of angiogenesis, cellular metabolism, inflammation, and oxidative stress, relating these functions to generational hypoxia adaptation.
Collapse
Affiliation(s)
- Katie A. O’Brien
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK;
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Andrew J. Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK;
| | - Tatum S. Simonson
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| |
Collapse
|
12
|
Pietras A. What (H)IF isoform matters? A deubiquitinase can tune the hypoxic response. EMBO J 2022; 41:e110819. [PMID: 35199359 PMCID: PMC8982620 DOI: 10.15252/embj.2022110819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 11/09/2022] Open
Abstract
Context-specific control mechanisms of hypoxia-inducible transcription factors HIF-1alpha and HIF-2alpha in tumors exposed to oxygen shortage remain incompletely understood. In this issue, Zhang et al (2022) identify a deubiquitinase that differentially stabilizes HIF-2alpha in stem-like glioblastoma cells, suggesting potential implications for regulation of the hypoxic response in a wide array of tissues and cancers.
Collapse
Affiliation(s)
- Alexander Pietras
- Division of Translational Cancer ResearchDepartment of Laboratory MedicineLund UniversityLundSweden
| |
Collapse
|
13
|
Li X, Cao X, Zhao H, Guo M, Fang X, Li K, Qin L, He Y, Liu X. Hypoxia Activates Notch4 via ERK/JNK/P38 MAPK Signaling Pathways to Promote Lung Adenocarcinoma Progression and Metastasis. Front Cell Dev Biol 2022; 9:780121. [PMID: 34988077 PMCID: PMC8721100 DOI: 10.3389/fcell.2021.780121] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Hypoxia contributes to the progression and metastasis of lung adenocarcinoma (LUAD). However, the specific underlying molecular mechanisms have not been fully elucidated. Here we report that Notch4 is upregulated in lung tissue from lung cancer patients. Functionally, Hypoxia activates the expressions of Delta-like 4 and Notch4, resulting in the excessive proliferation and migration of LUAD cells as well as apoptotic resistance. Notch4 silencing reduced ERK, JNK, and P38 activation. Meanwhile, Notch4 overexpression enhanced ERK, JNK, and P38 activation in LUAD cells. Furthermore, Notch4 exerted pro-proliferation, anti-apoptosis and pro-migration effects on LUAD cells that were partly reversed by the inhibitors of ERK, JNK, and p38. The binding interaction between Notch4 and ERK/JNK/P38 were confirmed by the co-immunoprecipitation assay. In vivo study revealed that Notch4 played a key role in the growth and metastasis of LUAD using two xenograft models. This study demonstrates that hypoxia activates Notch4-ERK/JNK/P38 MAPK signaling pathways to promote LUAD cell progression and metastasis.
Collapse
Affiliation(s)
- Xiaochen Li
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Ministry of Health of the People's Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, China
| | - Xiaopei Cao
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanqiu Zhao
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Ministry of Health of the People's Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, China
| | - Mingzhou Guo
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Ministry of Health of the People's Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, China
| | - Xiaoyu Fang
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Ministry of Health of the People's Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, China
| | - Ke Li
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Ministry of Health of the People's Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, China
| | - Lu Qin
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Ministry of Health of the People's Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, China
| | - Yuanzhou He
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Ministry of Health of the People's Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, China
| | - Xiansheng Liu
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Respiratory Diseases, National Ministry of Health of the People's Republic of China and National Clinical Research Center for Respiratory Disease, Wuhan, China
| |
Collapse
|
14
|
Zhang Y, Liu Q, Yang S, Liao Q. Knockdown of LRRN1 inhibits malignant phenotypes through the regulation of HIF-1α/Notch pathway in pancreatic ductal adenocarcinoma. Mol Ther Oncolytics 2021; 23:51-64. [PMID: 34632050 PMCID: PMC8479295 DOI: 10.1016/j.omto.2021.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/24/2021] [Indexed: 11/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most refractory and fatal human malignancies. Leucine-rich repeat neuronal protein-1 (LRRN1) plays a crucial role in the development of the nervous system. However, the clinical implications and biological functions of LRRN1 in PDAC remain unclear. We found that LRRN1 expression was upregulated in PDAC tissues compared with paracancerous tissues and normal pancreatic tissues through the different public databases, tissue microarray-based immunohistochemistry, and dimethylbenzanthracene-induced PDAC murine model. The expression level of LRRN1 was closely related to the overall survival and disease-free survival of PDAC patients. Cox multivariate analysis indicated that LRRN1 was an independent adverse prognostic factor. The small hairpin RNA (shRNA)-mediated LRRN1 knockdown remarkably restrained the proliferative, migratory, and invasive capacities, as well as promoted cell apoptosis and increased G0/G1 arrest in PDAC cells. The xenograft murine subcutaneous bearing model and metastasis model verified that silencing of LRRN1 effectively dampened tumor growth and metastasis in vivo. Specifically, LRRN1 exerted its biological functions through the HIF-1α/Notch signaling pathway, and LRRN1 knockdown could dampen Jagged 1-mediated Notch pathway activation. Therefore, LRRN1 could serve as the potential therapeutic or prognostic target for PDAC.
Collapse
Affiliation(s)
- Yalu Zhang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Shuaifuyuan 1, Dongcheng District, Beijing 100730, China
| | - Qiaofei Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Shuaifuyuan 1, Dongcheng District, Beijing 100730, China
| | - Sen Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Shuaifuyuan 1, Dongcheng District, Beijing 100730, China
| | - Quan Liao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Shuaifuyuan 1, Dongcheng District, Beijing 100730, China
| |
Collapse
|
15
|
Araki D, Fu JF, Huntsman H, Cordes S, Seifuddin F, Alvarado LJ, Cheruku PS, Cash A, Traba J, Li Y, Pirooznia M, Smith RH, Larochelle A. NOTCH-mediated ex vivo expansion of human hematopoietic stem and progenitor cells by culture under hypoxia. Stem Cell Reports 2021; 16:2336-2350. [PMID: 34450041 PMCID: PMC8452537 DOI: 10.1016/j.stemcr.2021.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 02/07/2023] Open
Abstract
Activation of NOTCH signaling in human hematopoietic stem/progenitor cells (HSPCs) by treatment with an engineered Delta-like ligand (DELTA1ext-IgG [DXI]) has enabled ex vivo expansion of short-term HSPCs, but the effect on long-term repopulating hematopoietic stem cells (LTR-HSCs) remains uncertain. Here, we demonstrate that ex vivo culture of human adult HSPCs with DXI under low oxygen tension limits ER stress in LTR-HSCs and lineage-committed progenitors compared with normoxic cultures. A distinct HSC gene signature was upregulated in cells cultured with DXI in hypoxia and, after 21 days of culture, the frequency of LTR-HSCs increased 4.9-fold relative to uncultured cells and 4.2-fold compared with the normoxia + DXI group. NOTCH and hypoxia pathways intersected to maintain undifferentiated phenotypes in cultured HSPCs. Our work underscores the importance of mitigating ER stress perturbations to preserve functional LTR-HSCs in extended cultures and offers a clinically feasible platform for the expansion of human HSPCs.
Collapse
Affiliation(s)
- Daisuke Araki
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Jian Fei Fu
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Heather Huntsman
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Stefan Cordes
- Translational Stem Cell Biology Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Fayaz Seifuddin
- Bioinformatics and Computational Biology Laboratory, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Luigi J Alvarado
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Patali S Cheruku
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Ayla Cash
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Javier Traba
- Cardiovascular Branch, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Yuesheng Li
- DNA Sequencing and Genomics Core Facility, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Mehdi Pirooznia
- Bioinformatics and Computational Biology Laboratory, NHLBI, NIH, Bethesda, MD 20892, USA
| | - Richard H Smith
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Andre Larochelle
- Cellular and Molecular Therapeutics Branch, National Heart, Lung and Blood Institute (NHLBI), National Institutes of Health (NIH), 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
16
|
Chen L, Zhang X, Yu Z, Song Y, Wang T, Yang K, Li S, Wang J, Su Y, Song B. Inhibition of Notch Intracellular Domain Suppresses Cell Activation and Fibrotic Factors Production in Hypertrophic Scar Fibroblasts Versus Normal Skin Fibroblasts. Ann Plast Surg 2021; 86:400-405. [PMID: 32881749 DOI: 10.1097/sap.0000000000002540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Hypertrophic scar (HS) is the most common complication after skin injury with unknown etiopathogenesis. There is increasing evidence to suggest that aberrant Notch signaling contributes directly to skin pathogenesis and altered expression of the Notch intracellular domain (NICD) identified in HS. Therefore, the aim of this study was to investigate the effects of Notch signaling pathway in HS pathogenesis. METHODS Hypertrophic scar and normal skin samples were collected. Notch intracellular domain expression was detected by immunohistochemistry staining and fibroblasts were separated from the samples. We compared fibrotic factors production, cell viability, migration and apoptosis of HS fibroblasts (HFB) versus normal skin fibroblasts (NFB) by real time quantitative polymerase chain reaction, MTS, cell scratch assay and flow cytometry respectively under the impact of inhibition of Notch signaling by NICD-small-interfering RNA (SiRNA). RESULTS The results showed that NICD was overexpressed in the dermis of HS tissues. Inhibition of Notch signaling by NICD-SiRNA suppressed the production of the fibrotic factors including collagen 1, collagen 3, α-SMA, and TGF-β1 by HFB and NFB. Cell viability and migration were reduced in NICD-SiRNA-treated NFB and HFB, whereas cell apoptosis was enhanced by NICD-SiRNA. CONCLUSIONS Conclusively, the study demonstrates a potential role for Notch signaling in HS progression, and targeting this pathway may provide a novel strategy for treatment of HS.
Collapse
Affiliation(s)
- Lin Chen
- From the Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Xin J, Zhang H, He Y, Duren Z, Bai C, Chen L, Luo X, Yan DS, Zhang C, Zhu X, Yuan Q, Feng Z, Cui C, Qi X, Ouzhuluobu, Wong WH, Wang Y, Su B. Chromatin accessibility landscape and regulatory network of high-altitude hypoxia adaptation. Nat Commun 2020; 11:4928. [PMID: 33004791 PMCID: PMC7529806 DOI: 10.1038/s41467-020-18638-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/03/2020] [Indexed: 12/27/2022] Open
Abstract
High-altitude adaptation of Tibetans represents a remarkable case of natural selection during recent human evolution. Previous genome-wide scans found many non-coding variants under selection, suggesting a pressing need to understand the functional role of non-coding regulatory elements (REs). Here, we generate time courses of paired ATAC-seq and RNA-seq data on cultured HUVECs under hypoxic and normoxic conditions. We further develop a variant interpretation methodology (vPECA) to identify active selected REs (ASREs) and associated regulatory network. We discover three causal SNPs of EPAS1, the key adaptive gene for Tibetans. These SNPs decrease the accessibility of ASREs with weakened binding strength of relevant TFs, and cooperatively down-regulate EPAS1 expression. We further construct the downstream network of EPAS1, elucidating its roles in hypoxic response and angiogenesis. Collectively, we provide a systematic approach to interpret phenotype-associated noncoding variants in proper cell types and relevant dynamic conditions, to model their impact on gene regulation.
Collapse
Affiliation(s)
- Jingxue Xin
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
- CEMS, NCMIS, MDIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 100190, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223, Kunming, China
- Bio-X Program, Stanford University, Stanford, CA, 94305, USA
- University of Chinese Academy of Sciences, 100101, Beijing, China
| | - Hui Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223, Kunming, China
| | - Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223, Kunming, China
- University of Chinese Academy of Sciences, 100101, Beijing, China
| | - Zhana Duren
- Departments of Statistics, Stanford University, Stanford, CA, 94305, USA
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, Greenwood, SC, 29646, USA
| | - Caijuan Bai
- High Altitude Medical Research Center, School of Medicine, Tibetan University, 850000, Lhasa, China
| | - Lang Chen
- CEMS, NCMIS, MDIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100101, Beijing, China
| | - Xin Luo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223, Kunming, China
- University of Chinese Academy of Sciences, 100101, Beijing, China
| | - Dong-Sheng Yan
- School of Mathematical Science, Inner Mongolia University, 010021, Huhhot, China
| | - Chaoyu Zhang
- CEMS, NCMIS, MDIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100101, Beijing, China
| | - Xiang Zhu
- Departments of Statistics, Stanford University, Stanford, CA, 94305, USA
| | - Qiuyue Yuan
- CEMS, NCMIS, MDIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100101, Beijing, China
| | - Zhanying Feng
- CEMS, NCMIS, MDIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100101, Beijing, China
| | - Chaoying Cui
- High Altitude Medical Research Center, School of Medicine, Tibetan University, 850000, Lhasa, China
| | - Xuebin Qi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223, Kunming, China
| | - Ouzhuluobu
- High Altitude Medical Research Center, School of Medicine, Tibetan University, 850000, Lhasa, China
| | - Wing Hung Wong
- Bio-X Program, Stanford University, Stanford, CA, 94305, USA.
- Departments of Statistics, Stanford University, Stanford, CA, 94305, USA.
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Yong Wang
- CEMS, NCMIS, MDIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 100190, Beijing, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223, Kunming, China.
- University of Chinese Academy of Sciences, 100101, Beijing, China.
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 330106, Hangzhou, China.
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223, Kunming, China.
| |
Collapse
|
18
|
Tian H, Zhu X, Lv Y, Jiao Y, Wang G. Glucometabolic Reprogramming in the Hepatocellular Carcinoma Microenvironment: Cause and Effect. Cancer Manag Res 2020; 12:5957-5974. [PMID: 32765096 PMCID: PMC7381782 DOI: 10.2147/cmar.s258196] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/30/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a tumor that exhibits glucometabolic reprogramming, with a high incidence and poor prognosis. Usually, HCC is not discovered until an advanced stage. Sorafenib is almost the only drug that is effective at treating advanced HCC, and promising metabolism-related therapeutic targets of HCC are urgently needed. The “Warburg effect” illustrates that tumor cells tend to choose aerobic glycolysis over oxidative phosphorylation (OXPHOS), which is closely related to the features of the tumor microenvironment (TME). The HCC microenvironment consists of hypoxia, acidosis and immune suppression, and contributes to tumor glycolysis. In turn, the glycolysis of the tumor aggravates hypoxia, acidosis and immune suppression, and leads to tumor proliferation, angiogenesis, epithelial–mesenchymal transition (EMT), invasion and metastasis. In 2017, a mechanism underlying the effects of gluconeogenesis on inhibiting glycolysis and blockading HCC progression was proposed. Treating HCC by increasing gluconeogenesis has attracted increasing attention from scientists, but few articles have summarized it. In this review, we discuss the mechanisms associated with the TME, glycolysis and gluconeogenesis and the current treatments for HCC. We believe that a treatment combination of sorafenib with TME improvement and/or anti-Warburg therapies will set the trend of advanced HCC therapy in the future.
Collapse
Affiliation(s)
- Huining Tian
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, Jilin, People's Republic of China
| | - Xiaoyu Zhu
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, Jilin, People's Republic of China
| | - You Lv
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, Jilin, People's Republic of China
| | - Yan Jiao
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun 130021, Jilin, People's Republic of China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, Jilin, People's Republic of China
| |
Collapse
|
19
|
Chapman G, Moreau JLM, I P E, Szot JO, Iyer KR, Shi H, Yam MX, O’Reilly VC, Enriquez A, Greasby JA, Alankarage D, Martin EMMA, Hanna BC, Edwards M, Monger S, Blue GM, Winlaw DS, Ritchie HE, Grieve SM, Giannoulatou E, Sparrow DB, Dunwoodie SL. Functional genomics and gene-environment interaction highlight the complexity of congenital heart disease caused by Notch pathway variants. Hum Mol Genet 2020; 29:566-579. [PMID: 31813956 PMCID: PMC7068028 DOI: 10.1093/hmg/ddz270] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/05/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
Congenital heart disease (CHD) is the most common birth defect and brings with it significant mortality and morbidity. The application of exome and genome sequencing has greatly improved the rate of genetic diagnosis for CHD but the cause in the majority of cases remains uncertain. It is clear that genetics, as well as environmental influences, play roles in the aetiology of CHD. Here we address both these aspects of causation with respect to the Notch signalling pathway. In our CHD cohort, variants in core Notch pathway genes account for 20% of those that cause disease, a rate that did not increase with the inclusion of genes of the broader Notch pathway and its regulators. This is reinforced by case-control burden analysis where variants in Notch pathway genes are enriched in CHD patients. This enrichment is due to variation in NOTCH1. Functional analysis of some novel missense NOTCH1 and DLL4 variants in cultured cells demonstrate reduced signalling activity, allowing variant reclassification. Although loss-of-function variants in DLL4 are known to cause Adams-Oliver syndrome, this is the first report of a hypomorphic DLL4 allele as a cause of isolated CHD. Finally, we demonstrate a gene-environment interaction in mouse embryos between Notch1 heterozygosity and low oxygen- or anti-arrhythmic drug-induced gestational hypoxia, resulting in an increased incidence of heart defects. This implies that exposure to environmental insults such as hypoxia could explain variable expressivity and penetrance of observed CHD in families carrying Notch pathway variants.
Collapse
Affiliation(s)
- Gavin Chapman
- Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Julie L M Moreau
- Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia
| | - Eddie I P
- Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia
| | - Justin O Szot
- Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia
| | - Kavitha R Iyer
- Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia
| | - Hongjun Shi
- Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia
- Institute for Basic Medical Sciences, Westlake University, Hangzhou, China
| | - Michelle X Yam
- Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia
| | | | - Annabelle Enriquez
- Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
- Department of Clinical Genetics, The Children’s Hospital at Westmead, Sydney, NSW, 2145, Australia
- Discipline of Genomic Medicine, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Joelene A Greasby
- Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia
| | | | - Ella M M A Martin
- Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia
| | | | - Matthew Edwards
- Hunter Genetics, John Hunter Hospital, Newcastle, NSW, 2298, Australia
- Department of Paediatrics, School of Medicine, Western Sydney University, Sydney, NSW, 2560, Australia
| | - Steven Monger
- Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia
| | - Gillian M Blue
- Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia
- Kids Heart Research, Heart Centre for Children, The Children’s Hospital at Westmead, Sydney, NSW, 2145, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
| | - David S Winlaw
- Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia
- Kids Heart Research, Heart Centre for Children, The Children’s Hospital at Westmead, Sydney, NSW, 2145, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
| | - Helen E Ritchie
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Stuart M Grieve
- Sydney Translational Imaging Laboratory, Sydney Medical School, University of Sydney, Sydney, NSW, 2006, Australia
- Department of Radiology, Royal Prince Alfred Hospital, Sydney, NSW, 2050, Australia
| | - Eleni Giannoulatou
- Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia
- Faculty of Science, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Duncan B Sparrow
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Sally L Dunwoodie
- Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia
- Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
- Faculty of Science, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
20
|
Three-dimensional culture models mimic colon cancer heterogeneity induced by different microenvironments. Sci Rep 2020; 10:3156. [PMID: 32081957 PMCID: PMC7035265 DOI: 10.1038/s41598-020-60145-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 02/07/2020] [Indexed: 11/09/2022] Open
Abstract
Colorectal cancer demonstrates intra-tumour heterogeneity formed by a hierarchical structure comprised of cancer stem cells (CSCs) and their differentiated progenies. The mechanism by which CSCs are maintained and differentiated needs to be further elucidated, and there is evidence that the tumour microenvironment governs cancer stemness. Using PLR123, a colon cancer cell line with CSC properties, we determined the culture conditions necessary to establish a pair of three-dimensional (3D) culture models grown in Matrigel, designated stemCO and diffCO. The conditions were determined by comparing the phenotypes in the models with PLR123 mouse xenografts colonising lung and liver. StemCO resembled LGR5-positive undifferentiated tumours in the lung, and diffCO had lumen structures composed of polarised cells that were similar to the ductal structures found in differentiated tumours in the liver. In a case using the models for biomedical research, treatment with JAG-1 peptide or a γ-secretase inhibitor modified the Notch signaling and induced changes indicating that the signal participates in lumen formation in the models. Our results demonstrate that culture conditions affect the stemness of 3D culture models generated from CSCs and show that comparing models with different phenotypes is useful for studying how the tumour environment regulates cancer.
Collapse
|
21
|
Yamaguchi K, Yisireyili M, Goto S, Kato K, Cheng XW, Nakayama T, Matsushita T, Niwa T, Murohara T, Takeshita K. Indoxyl Sulfate-induced Vascular Calcification is mediated through Altered Notch Signaling Pathway in Vascular Smooth Muscle Cells. Int J Med Sci 2020; 17:2703-2717. [PMID: 33162798 PMCID: PMC7645353 DOI: 10.7150/ijms.43184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 08/31/2020] [Indexed: 01/06/2023] Open
Abstract
Introduction: The aim of this study was to determine the role of Notch in indoxyl sulfate (IS)-induced vascular calcification (VC). Materials and methods: VC and expression of Notch-related and osteogenic molecules were examined in Dahl salt-sensitive (DS), DS hypertensive (DH), and DH IS-treated rats (DH+IS). The effects of IS on expression of Notch receptors, apoptotic activity, and calcification were examined in cultured aortic smooth muscle cells (SMCs). Results: Medial calcification was noted only in aortas and coronary arteries of DH+IS rats. Notch1, Notch3, and Hes-1 were expressed in aortic SMCs of all rats, but only weakly in the central areas of the media and around the calcified lesions in DH+IS rats. RT-PCR and western blotting of DH+IS rat aortas showed downregulation of Notch ligands, Notch1 and Notch3, downstream transcriptional factors, and SM22, and conversely, overexpression of osteogenic markers. Expression of Notch1 and Notch3 in aortic SMCs was highest in incubation under 500 μM IS for 24hrs, and then decreased time- and dose-dependently. Coupled with this decrease, IS increased caspase 3/7 activity and TUNEL-positive aortic SMCs. In addition, pharmacological Notch signal inhibition with DAPT induced apoptosis in aortic SMCs. ZVAD, a caspase inhibitor abrogated IS-induced and DAPT-induced in vitro vascular calcification. Knockdown of Notch1 and Notch3 cooperatively increased expression of osteogenic transcriptional factors and decreased expression of SM22. Conclusion: Our results suggested that IS-induced VC is mediated through suppression of Notch activity in aortic SMCs, induction of osteogenic differentiation and apoptosis.
Collapse
Affiliation(s)
- Kazutoshi Yamaguchi
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Maimaiti Yisireyili
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sumie Goto
- Biomedical Research Laboratories, Kureha Co., Tokyo, Japan
| | - Katsuhiro Kato
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Xian Wu Cheng
- Department of Cardiology/Hypertension and Heart Center, Yanbian University Hospital, Yanji, Jilin, China.,Department of Community Health and Geriatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takayuki Nakayama
- Department of Blood Transfusion, Aichi Medical University Hospital, Nagakute, Japan
| | - Tadashi Matsushita
- Department of Clinical Laboratory, Nagoya University Hospital, Nagoya, Japan.,Department of Blood Transfusion, Nagoya University Hospital, Nagoya, Japan
| | | | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kyosuke Takeshita
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Department of Clinical Laboratory, Nagoya University Hospital, Nagoya, Japan.,Department of Clinical Laboratory, Saitama Medical Centre, Saitama Medical University, Kawagoe, Japan
| |
Collapse
|
22
|
Affiliation(s)
- Aleksandra Babicheva
- From the Division of Translational and Regenerative Medicine, Department of Medicine and Department of Physiology, The University of Arizona College of Medicine, Tucson
| | - Jason X-J Yuan
- From the Division of Translational and Regenerative Medicine, Department of Medicine and Department of Physiology, The University of Arizona College of Medicine, Tucson
| |
Collapse
|
23
|
Chen Z, Su X, Shen Y, Jin Y, Luo T, Kim IM, Weintraub NL, Tang Y. MiR322 mediates cardioprotection against ischemia/reperfusion injury via FBXW7/notch pathway. J Mol Cell Cardiol 2019; 133:67-74. [PMID: 31150734 DOI: 10.1016/j.yjmcc.2019.05.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 04/04/2019] [Accepted: 05/25/2019] [Indexed: 12/26/2022]
Abstract
Myocardial ischemia/reperfusion (MI/R) causes loss of cardiomyocytes via oxidative stress-induced cardiomyocyte apoptosis. miR322, orthologous to human miR-424, was identified as an ischemia-induced angiogenic miRNA, but its cellular source and function in the setting of acute MI/R remains largely unknown. Using LacZ-tagged miR322 cluster reporter mice, we observed that vascular endothelial cells are the major cellular source of the miR322 cluster in adult hearts. Moreover, miR322 levels were significantly reduced in the heart at 24 h after MI/R injury. Intramyocardial injection of mimic-miR322 significantly diminished cardiac apoptosis (as determined by expression levels of active caspase 3 by Western blot analysis and immunostaining for TUNEL) and reduced infarct size by about 40%, in association with reduced FBXW7 and increased active Notch 1 levels in the ischemic hearts. FBXW7, which is an ubiquitin ligase that is crucial for activated Notch1 turnover, was identified as a direct target of miR322 via FBXW7 3'UTR reporter assay. Co-injection of FBXW7 plasmid with mimic-miR322 in ischemic hearts abolished the effect of mimic-miR322 to reduce apoptosis and infarct size in MI/R hearts. These data identify FBXW7 as a direct target of miR322 and suggest that miR322 could have potential therapeutic application for cardioprotection against ischemia/reperfusion-induced injury.
Collapse
Affiliation(s)
- Zixin Chen
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Xuan Su
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yan Shen
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yue Jin
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Tong Luo
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Il-Man Kim
- Department of Cellular & Integrative Physiology, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Neal L Weintraub
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Yaoliang Tang
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
24
|
Chen Y, Zhao Q, Yang X, Yu X, Yu D, Zhao W. Effects of cobalt chloride on the stem cell marker expression and osteogenic differentiation of stem cells from human exfoliated deciduous teeth. Cell Stress Chaperones 2019; 24:527-538. [PMID: 30806897 PMCID: PMC6527733 DOI: 10.1007/s12192-019-00981-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/23/2019] [Accepted: 02/07/2019] [Indexed: 12/19/2022] Open
Abstract
Stem cells from human exfoliated deciduous teeth (SHEDs) are a promising source for tissue engineering and stem cell transplantation. However, long-term in vitro culture and expansion lead to the loss of stemness of SHEDs, compromising their therapeutic benefits. Hypoxia plays an essential role in controlling the stem cell behavior of mesenchymal stem cells (MSCs). Thus, this study aimed to investigate the effects of cobalt chloride (CoCl2), a hypoxia-mimetic agent, on the stem cell marker expression and osteogenic differentiation of SHEDs. SHEDs were cultured with or without 50 or 100 μM CoCl2. Their proliferation, apoptosis, stem cell marker expression, migration ability, and osteogenic differentiation were examined. Culture with 50 and 100 μM CoCl2 increased the hypoxia-inducible factor-1 alpha (HIF-1α) protein levels in a dose-dependent manner in SHEDs without inducing significant cytotoxicity. This effect was accompanied by an increase in the proportion of STRO-1+ cells. CoCl2 significantly increased the expression of stem cell markers (OCT4, NANOG, SOX2, and c-Myc) in a dose-dependent manner. The migration ability was also promoted by CoCl2 treatment. Furthermore, SHEDs cultured in osteogenic medium with CoCl2 showed a dose-dependent reduction in alkaline phosphatase (ALP) activity and calcium deposition. The expression of osteogenic-related genes was also suppressed by CoCl2, especially in the 100-μM CoCl2 group. In conclusion, CoCl2 increased the expression of stem cell markers and inhibited the osteogenic differentiation of SHEDs. These findings may provide evidence supporting the use of in vitro hypoxic environments mimicked by CoCl2 in assisting the clinical application of SHEDs.
Collapse
Affiliation(s)
- Yijing Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, No. 56 Lingyuan West Road, Guangzhou, 510055, China
| | - Qi Zhao
- Xianning Central Hospital, The First Affiliated Hospital Of Hubei University of Science and Technology, Xianning, 437000, China
| | - Xin Yang
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, No. 56 Lingyuan West Road, Guangzhou, 510055, China
| | - Xinlin Yu
- International Department, The Affiliated High School of SCNU, Guangzhou, 510630, China
| | - Dongsheng Yu
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, No. 56 Lingyuan West Road, Guangzhou, 510055, China.
| | - Wei Zhao
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, No. 56 Lingyuan West Road, Guangzhou, 510055, China.
| |
Collapse
|
25
|
Notch and Wnt Dysregulation and Its Relevance for Breast Cancer and Tumor Initiation. Biomedicines 2018; 6:biomedicines6040101. [PMID: 30388742 PMCID: PMC6315509 DOI: 10.3390/biomedicines6040101] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is the second leading cause of cancer deaths among women in the world. Treatment has been improved and, in combination with early detection, this has resulted in reduced mortality rates. Further improvement in therapy development is however warranted. This will be particularly important for certain sub-classes of breast cancer, such as triple-negative breast cancer, where currently no specific therapies are available. An important therapy development focus emerges from the notion that dysregulation of two major signaling pathways, Notch and Wnt signaling, are major drivers for breast cancer development. In this review, we discuss recent insights into the Notch and Wnt signaling pathways and into how they act synergistically both in normal development and cancer. We also discuss how dysregulation of the two pathways contributes to breast cancer and strategies to develop novel breast cancer therapies starting from a Notch and Wnt dysregulation perspective.
Collapse
|
26
|
Li Y, Wu L, Yu M, Yang F, Wu B, Lu S, Tu M, Xu H. HIF-1α is Critical for the Activation of Notch Signaling in Neurogenesis During Acute Epilepsy. Neuroscience 2018; 394:206-219. [PMID: 30394322 DOI: 10.1016/j.neuroscience.2018.10.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 09/30/2018] [Accepted: 10/22/2018] [Indexed: 01/01/2023]
Abstract
Emerging evidence suggests that hypoxia-inducible factors (specifically, HIF-1α) and Notch signaling are involved in epileptogenesis and that cross-coupling exists between HIF-1α and Notch signaling in other diseases, including tumors and ischemia. However, the exact molecular mechanisms by which HIF-1α and Notch signaling affect the development of epilepsy, especially regarding neurogenesis, remain unclear. In the present study, we investigated the role of HIF-1α in neurogenesis and whether Notch signaling is involved in this process during epileptogenesis by assessing hippocampal apoptosis, neuronal injury, and the proliferation and differentiation of neural stem cells (NSCs) in four groups, including control, epilepsy, epilepsy+2-methoxyestradiol (2ME2) and epilepsy+GSI-IX (DAPT) groups. Our data demonstrated that HIF-1α mediated neurogenesis during acute epilepsy, which required the participation of Notch signaling. The immunoprecipitation data illustrated that HIF-1α activated Notch signaling by physically interacting with the Notch intracellular domain (NICD) in epilepsy. In conclusion, our results suggested that HIF-1α-Notch signaling enhanced neurogenesis in acute epilepsy and that neurogenesis during epileptogenesis was reduced once this pathway was blocked; thus, members of this pathway might be potential therapeutic targets for epilepsy.
Collapse
Affiliation(s)
- Yushuang Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, PR China
| | - Lei Wu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, PR China
| | - Minhua Yu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, PR China
| | - Fei Yang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, PR China
| | - Bo Wu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, PR China
| | - Shuting Lu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, PR China
| | - Mengqi Tu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, PR China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, PR China.
| |
Collapse
|
27
|
Araos J, Sleeman JP, Garvalov BK. The role of hypoxic signalling in metastasis: towards translating knowledge of basic biology into novel anti-tumour strategies. Clin Exp Metastasis 2018; 35:563-599. [DOI: 10.1007/s10585-018-9930-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/13/2018] [Indexed: 02/06/2023]
|
28
|
Notch signaling promotes a HIF2α-driven hypoxic response in multiple tumor cell types. Oncogene 2018; 37:6083-6095. [PMID: 29993038 PMCID: PMC6237764 DOI: 10.1038/s41388-018-0400-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 05/07/2018] [Accepted: 06/12/2018] [Indexed: 01/16/2023]
Abstract
Hyperactivation of Notch signaling and the cellular hypoxic response are frequently observed in cancers, with increasing reports of connections to tumor initiation and progression. The two signaling mechanisms are known to intersect, but while it is well established that hypoxia regulates Notch signaling, less is known about whether Notch can regulate the cellular hypoxic response. We now report that Notch signaling specifically controls expression of HIF2α, a key mediator of the cellular hypoxic response. Transcriptional upregulation of HIF2α by Notch under normoxic conditions leads to elevated HIF2α protein levels in primary breast cancer cells as well as in human breast cancer, medulloblastoma, and renal cell carcinoma cell lines. The elevated level of HIF2α protein was in certain tumor cell types accompanied by downregulation of HIF1α protein levels, indicating that high Notch signaling may drive a HIF1α-to-HIF2α switch. At the transcriptome level, the presence of HIF2α was required for approximately 21% of all Notch-induced genes: among the 1062 genes that were upregulated by Notch in medulloblastoma cells during normoxia, upregulation was abrogated in 227 genes when HIF2α expression was knocked down by HIF2α siRNA. In conclusion, our data show that Notch signaling affects the hypoxic response via regulation of HIF2α, which may be important for future cancer therapies.
Collapse
|
29
|
Crosstalk between Notch, HIF-1α and GPER in Breast Cancer EMT. Int J Mol Sci 2018; 19:ijms19072011. [PMID: 29996493 PMCID: PMC6073901 DOI: 10.3390/ijms19072011] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 12/15/2022] Open
Abstract
The Notch signaling pathway acts in both physiological and pathological conditions, including embryonic development and tumorigenesis. In cancer progression, diverse mechanisms are involved in Notch-mediated biological responses, including angiogenesis and epithelial-mesenchymal-transition (EMT). During EMT, the activation of cellular programs facilitated by transcriptional repressors results in epithelial cells losing their differentiated features, like cell–cell adhesion and apical–basal polarity, whereas they gain motility. As it concerns cancer epithelial cells, EMT may be consequent to the evolution of genetic/epigenetic instability, or triggered by factors that can act within the tumor microenvironment. Following a description of the Notch signaling pathway and its major regulatory nodes, we focus on studies that have given insights into the functional interaction between Notch signaling and either hypoxia or estrogen in breast cancer cells, with a particular focus on EMT. Furthermore, we describe the role of hypoxia signaling in breast cancer cells and discuss recent evidence regarding a functional interaction between HIF-1α and GPER in both breast cancer cells and cancer-associated fibroblasts (CAFs). On the basis of these studies, we propose that a functional network between HIF-1α, GPER and Notch may integrate tumor microenvironmental cues to induce robust EMT in cancer cells. Further investigations are required in order to better understand how hypoxia and estrogen signaling may converge on Notch-mediated EMT within the context of the stroma and tumor cells interaction. However, the data discussed here may anticipate the potential benefits of further pharmacological strategies targeting breast cancer progression.
Collapse
|