1
|
Francis M, Bhaskar S, Komanduri S, Sheshadri P, Prasanna J, Kumar A. Deubiquitinase USP1 influences the dedifferentiation of mouse pancreatic β-cells. iScience 2023; 26:106771. [PMID: 37250303 PMCID: PMC10214732 DOI: 10.1016/j.isci.2023.106771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/08/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Loss of insulin-secreting β-cells in diabetes may be either due to apoptosis or dedifferentiation of β-cell mass. The ubiquitin-proteasome system comprising E3 ligase and deubiquitinases (DUBs) controls several aspects of β-cell functions. In this study, screening for key DUBs identified USP1 to be specifically involved in dedifferentiation process. Inhibition of USP1 either by genetic intervention or small-molecule inhibitor ML323 restored epithelial phenotype of β-cells, but not with inhibition of other DUBs. In absence of dedifferentiation cues, overexpression of USP1 was sufficient to induce dedifferentiation in β-cells; mechanistic insight showed USP1 to mediate its effect via modulating the expression of inhibitor of differentiation (ID) 2. In an in vivo streptozotocin (STZ)-induced dedifferentiation mouse model system, administering ML323 alleviated hyperglycemic state. Overall, this study identifies USP1 to be involved in dedifferentiation of β-cells and its inhibition may have a therapeutic application of reducing β-cell loss during diabetes.
Collapse
Affiliation(s)
- Meenal Francis
- Manipal Institute of Regenerative Medicine, Bangalore, Manipal Academy of Higher Education, Manipal, India
| | - Smitha Bhaskar
- Manipal Institute of Regenerative Medicine, Bangalore, Manipal Academy of Higher Education, Manipal, India
| | - Saarwani Komanduri
- Manipal Institute of Regenerative Medicine, Bangalore, Manipal Academy of Higher Education, Manipal, India
| | - Preethi Sheshadri
- Manipal Institute of Regenerative Medicine, Bangalore, Manipal Academy of Higher Education, Manipal, India
| | - Jyothi Prasanna
- Manipal Institute of Regenerative Medicine, Bangalore, Manipal Academy of Higher Education, Manipal, India
| | - Anujith Kumar
- Manipal Institute of Regenerative Medicine, Bangalore, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
2
|
Murugesan P, Begum H, Tangutur AD. Inhibitor of DNA binding/differentiation proteins as IDs for pancreatic cancer: Role in pancreatic cancer initiation, development and prognosis. Gene 2023; 853:147092. [PMID: 36464175 DOI: 10.1016/j.gene.2022.147092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/11/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
A family of inhibitors of cell differentiation or DNA-binding proteins, known as ID proteins (ID1-4), function as mighty transcription factors in various cellular processes, such as inhibiting differentiation, promoting cell-cycle progression, senescence, angiogenesis, tumorigenesis, and metastasis in cancer. Pancreatic cancer represents the deadliest cancer with the lowest survival rate of 10% due to the diagnosis at an advanced fatal stage and therapeutic resistance. Modestly, the only curative option for this lethal cancer is surgery but is done in less than 15-20% of patients because of the locally aggressive and early metastatic nature. Finding the earliest biomarkers and targeting the various hallmarks of pancreatic cancer can improve the treatment and survival of pancreatic cancer patients. Therefore, herein in this review, we explore in depth the potential roles of ID proteins function in hallmarks of pancreatic cancer, signaling pathways, and its oncogenic and tumor-suppressive effects. Hence, understanding the roles of dysregulated ID proteins would provide new insights into its function in pancreatic cancer tumorigenesis.
Collapse
Affiliation(s)
- Periyasamy Murugesan
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Habeebunnisa Begum
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Anjana Devi Tangutur
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
3
|
Zuniga O, Byrum S, Wolfe AR. Discovery of the inhibitor of DNA binding 1 as a novel marker for radioresistance in pancreatic cancer using genome-wide RNA-seq. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:926-938. [PMID: 36627902 PMCID: PMC9771737 DOI: 10.20517/cdr.2022.60] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/02/2022] [Accepted: 08/30/2022] [Indexed: 12/23/2022]
Abstract
Purpose/Objective(s): Discovery of genetic drivers of radioresistance is critical for developing novel therapeutic strategies to combine with radiotherapy of radioresistant PDAC. In this study, we used genome-wide RNA-seq to identify genes upregulated in generated radioresistant PDAC cell lines and discovered the Inhibitor of DNA Binding 1 (ID1) gene as a potential regulator of radioresistance in PDAC. Materials/Methods: Radioresistant clones of the PDAC cell lines MIA PaCa-2 and PANC-1 were generated by delivering daily ionizing irradiation (IR) (2 Gy/day) in vitro over two weeks (total 20 Gy) followed by standard clonogenic assays following one week from the end of IR. The generated RR and parental cell lines were submitted for RNA-seq analysis to identify differentially expressed genes. The Limma R package was used to calculate differential expression among genes. Log2 fold change values were calculated for each sample compared to the control. Genes with an absolute fold change > 1 were considered significant. RNA sequencing expression data from the Cancer Genome Atlas (TCGA) database was analyzed through the online databases GEPIA, cBioPortal, and the Human Protein Atlas. Results: Following exposure to two weeks of 2 Gy daily IR in vitro, the two PDAC cell lines showed significantly greater clonogenic cell survival than their parental cell lines, indicating enhanced RR in these cells. RNA-seq analysis comparing parental and RR cell lines found upregulated seven genes (TNS4, ZDHHC8P1, APLNR, AQP3, SPP1, ID1, ID2) and seven genes downregulated (PTX3, ITGB2, EPS8L1, ALDH1L2, KCNT2, ARHGAP9, IFI16) in both RR cell lines. Western blotting confirmed increased expression of the ID1 protein in the RR cell lines compared to their parental cell lines. We found that ID1 mRNA was significantly higher in PDAC tumors compared to matched normal and high ID1 expression correlated with significantly worse disease-free survival (DFS) in PDAC patients (HR = 2.2, log rank P = 0.009). ID1 mRNA expression was also strongly correlated in tumors with TP53 mutation, a known driver of radioresistance. Conclusion: Our analysis indicates a novel role of ID1 in PDAC radioresistance. ID1 expression is higher in tumor tissue compared to normal, and high expression correlates with both worse DFS and association with the TP53 mutation, suggesting that targeting ID1 prior to IR is an attractive strategy for overcoming radioresistance in PDAC.
Collapse
Affiliation(s)
- Oscar Zuniga
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Stephanie Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Adam R. Wolfe
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
4
|
Jaikumarr Ram A, Girija As S, Jayaseelan VP, Arumugam P. Overexpression of BASP1 Indicates a Poor Prognosis in Head and Neck Squamous Cell Carcinoma. Asian Pac J Cancer Prev 2020; 21:3435-3439. [PMID: 33247706 PMCID: PMC8033119 DOI: 10.31557/apjcp.2020.21.11.3435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Indexed: 01/04/2023] Open
Abstract
Objective: Brain abundant membrane attached signal protein 1 (BASP1) was originally identified as a membrane and cytoplasmic protein. Recent studies have shown that BASP1 highly expressed in cancer and promoted the proliferation of cancer. However, the role of BASP1 in head and neck squamous cell carcinoma (HNSCC) is largely unknown. Here, we performed a systematic data analysis to examine whether BASP1 can function as prognostic marker in HNSCC. Methods: In this study, we used Oncomine, and UALCAN, databases to analyze the expression of BASP1 in HNSCC. We used Kaplan-Meier plotter to evaluate the effect of BASP1 on clinical prognosis. In addition, we also analyzed genetic alterations, interaction network, and functional enrichment of BASP1. Results: BASP1 mRNA expression level was remarkably increased in HNSCC than in normal tissues (P=1.624e-12). Moreover, high BASP1 expression was significantly related to poor survival (p=0.00056) in HNSCC patients. In addition, BASP1 gene amplified in 5% of HNSCC patients which contributes to the overexpression of BASP1. Conclusions: These findings suggest that BASP1 was frequently amplified which contributes to the overexpression of BASP1, thereby promoting HNSCC progression. Thus, these results indicate that BASP1 might serve as a biomarker to predict the progression and prognosis of HNSCC patients.
Collapse
Affiliation(s)
- Ashwin Jaikumarr Ram
- Department of Microbiology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Smiline Girija As
- Department of Microbiology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | | | - Paramasivam Arumugam
- BRULAC-DRC, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
5
|
Single-cell transcriptomes of pancreatic preinvasive lesions and cancer reveal acinar metaplastic cells' heterogeneity. Nat Commun 2020; 11:4516. [PMID: 32908137 PMCID: PMC7481797 DOI: 10.1038/s41467-020-18207-z] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 08/09/2020] [Indexed: 12/17/2022] Open
Abstract
Acinar metaplasia is an initial step in a series of events that can lead to pancreatic cancer. Here we perform single-cell RNA-sequencing of mouse pancreas during the progression from preinvasive stages to tumor formation. Using a reporter gene, we identify metaplastic cells that originated from acinar cells and express two transcription factors, Onecut2 and Foxq1. Further analyses of metaplastic acinar cell heterogeneity define six acinar metaplastic cell types and states, including stomach-specific cell types. Localization of metaplastic cell types and mixture of different metaplastic cell types in the same pre-malignant lesion is shown. Finally, single-cell transcriptome analyses of tumor-associated stromal, immune, endothelial and fibroblast cells identify signals that may support tumor development, as well as the recruitment and education of immune cells. Our findings are consistent with the early, premalignant formation of an immunosuppressive environment mediated by interactions between acinar metaplastic cells and other cells in the microenvironment.
Collapse
|
6
|
Sarodaya N, Karapurkar J, Kim KS, Hong SH, Ramakrishna S. The Role of Deubiquitinating Enzymes in Hematopoiesis and Hematological Malignancies. Cancers (Basel) 2020; 12:E1103. [PMID: 32354135 PMCID: PMC7281754 DOI: 10.3390/cancers12051103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/11/2020] [Accepted: 04/26/2020] [Indexed: 12/24/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are responsible for the production of blood cells throughout the human lifespan. Single HSCs can give rise to at least eight distinct blood-cell lineages. Together, hematopoiesis, erythropoiesis, and angiogenesis coordinate several biological processes, i.e., cellular interactions during development and proliferation, guided migration, lineage programming, and reprogramming by transcription factors. Any dysregulation of these processes can result in hematological disorders and/or malignancies. Several studies of the molecular mechanisms governing HSC maintenance have demonstrated that protein regulation by the ubiquitin proteasomal pathway is crucial for normal HSC function. Recent studies have shown that reversal of ubiquitination by deubiquitinating enzymes (DUBs) plays an equally important role in hematopoiesis; however, information regarding the biological function of DUBs is limited. In this review, we focus on recent discoveries about the physiological roles of DUBs in hematopoiesis, erythropoiesis, and angiogenesis and discuss the DUBs associated with common hematological disorders and malignancies, which are potential therapeutic drug targets.
Collapse
Affiliation(s)
- Neha Sarodaya
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (N.S.); (J.K.); (K.-S.K.)
| | - Janardhan Karapurkar
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (N.S.); (J.K.); (K.-S.K.)
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (N.S.); (J.K.); (K.-S.K.)
- College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (N.S.); (J.K.); (K.-S.K.)
- College of Medicine, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
7
|
Zheng K, Zhao Q, Chen Q, Xiao W, Jiang Y, Jiang Y. The synergic inhibitory effects of dark tea (Camellia sinensis) extract and p38 inhibition on the growth of pancreatic cancer cells. J Cancer 2019; 10:6557-6569. [PMID: 31777585 PMCID: PMC6856886 DOI: 10.7150/jca.34637] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023] Open
Abstract
Background: Dark tea is one of the most popular types of Chinese tea, which has been reported to exhibit anti-obesity, anti-oxidation and antitumor activities in according human cell lines. In terms of tumorigenesis, the systemic study of the physiological effect of specific fraction of dark tea and the relevant molecular mechanism warrant more attention. Methods: Dark tea was firstly isolated through solvent extraction method. Dissolved ethyl acetate extract was further fractioned by elution with various concentration of ethyl alcohol. The cytotoxicity effect of dark tea on cell proliferation was evaluated by CCK8 assay in HPDE human normal pancreatic duct epithelial cells, SW1990 and PANC-1 human pancreatic cancer cells, and SW1116 human colorectal cancer cells. Immunoblotting and flow cytometry analysis were utilized to examine the status of protein and reactive oxygen species respectively. Gene expression profile was analyzed by cDNA microarray and real-time PCR. The plasmid for ID1 expression was stably transfected into SW1990 cells for relevant functional analysis. The effect of dark tea extract on tumorigenesis in vivo was studied in xenograft tumor model. Results: Water eluate fraction of the ethyl acetate extract from dark tea inhibited the growth of SW1990, PANC-1 and SW1116 cells more efficiently compared with that in HPDE cells. Meanwhile, p38 activity was increased and AKT activity was dropped in cancer cells with dark tea extract treatment. Further functional analyses indicated that water eluate fraction and p38 inhibitor treatment exerted a synergic inhibitory effect on cancer cells growth, which was related to their suppressive effect on expression level of ID1 (inhibitor of differentiation protein 1), which was highly expressed in cancer cells. The analysis utilizing xenograft tumor model further indicated water eluate fraction exhibited a significantly inhibitory effect on tumorigenesis. Conclusion: Based on the sequential extraction procedure, our results reveal the inhibitory effect of water eluate fraction of the ethyl acetate extract from dark tea and its synergistic effect with p38 inhibition on the growth of pancreatic cancer cells, in which ID1 is identified as a downstream effector. This sheds insights into the physiological relevance of specific fraction of dark tea to tumorigenesis in pancreatic cancer.
Collapse
Affiliation(s)
- Ke Zheng
- The Institute of Cell Metabolism and Disease, Shanghai Key Laboratory of Pancreatic diseases, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, P.R.China
| | - Qin Zhao
- The Institute of Cell Metabolism and Disease, Shanghai Key Laboratory of Pancreatic diseases, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, P.R.China
| | - Qing Chen
- The office of Anhua Tea Industry and Tea Culture Development Leading Group, Hunan, 413500, P.R.China
| | - Weiqun Xiao
- The office of Anhua Tea Industry and Tea Culture Development Leading Group, Hunan, 413500, P.R.China
| | - Yuedeng Jiang
- The office of Anhua Tea Industry and Tea Culture Development Leading Group, Hunan, 413500, P.R.China
| | - Yuhui Jiang
- The Institute of Cell Metabolism and Disease, Shanghai Key Laboratory of Pancreatic diseases, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200080, P.R.China
| |
Collapse
|
8
|
Zhao H, Wu S, Li H, Duan Q, Zhang Z, Shen Q, Wang C, Yin T. ROS/KRAS/AMPK Signaling Contributes to Gemcitabine-Induced Stem-like Cell Properties in Pancreatic Cancer. MOLECULAR THERAPY-ONCOLYTICS 2019; 14:299-312. [PMID: 31508487 PMCID: PMC6726755 DOI: 10.1016/j.omto.2019.07.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 07/23/2019] [Indexed: 02/07/2023]
Abstract
Poor prognosis in pancreatic cancer (PanCa) is partially due to chemoresistance to gemcitabine (GEM). Glucose metabolism has been revealed to contribute to the therapeutic resistance and pluripotent state of PanCa cells. However, few studies have focused on the effects of GEM on cancer cell metabolism, stemness of tumor cells, and molecular mechanisms that critically influence PanCa treatment. We demonstrate that GEM treatment induces metabolic reprogramming, reducing mitochondrial oxidation and upregulating aerobic glycolysis, and promotes stem-like behaviors in cancer cells. Inhibiting aerobic glycolysis suppresses cancer cell stemness and strengthens GEM's cytotoxicity. GEM-induced metabolic reprogramming is KRAS dependent, as knockdown of KRAS reverses the metabolic shift. GEM-induced metabolic reprogramming also activates AMP-activated protein kinase (AMPK), which promotes glycolytic flux and cancer stemness. In addition, GEM-induced reactive oxygen species (ROS) activate the KRAS/AMPK pathway. This effect was validated by introducing exogenous hydrogen peroxide (H2O2). Taken together, these findings reveal a counterproductive GEM effect during PanCa treatment. Regulating cellular redox, targeting KRAS/AMPK signaling, or reversing metabolic reprogramming might be effective approaches to eliminate cancer stem cells (CSCs) and enhance chemosensitivity to GEM to improve the prognosis of PanCa patients.
Collapse
Affiliation(s)
- Hengqiang Zhao
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shihong Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China
| | - Hehe Li
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China
| | - Qingke Duan
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China
| | - Zhengle Zhang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China
| | - Qiang Shen
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chunyou Wang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China
| | - Tao Yin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022 China
| |
Collapse
|
9
|
Panebianco C, Villani A, Pazienza V. High Levels of Prebiotic Resistant Starch in Diet Modulate Gene Expression and Metabolomic Profile in Pancreatic Cancer Xenograft Mice. Nutrients 2019; 11:nu11040709. [PMID: 30934731 PMCID: PMC6521226 DOI: 10.3390/nu11040709] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 12/28/2022] Open
Abstract
Cancer initiation and protection mainly derives from a systemic metabolic environment regulated by dietary patterns. Less is known about the impact of nutritional interventions in people with a diagnosis of cancer. The aim of our study was to investigate the effect of a diet rich in resistant starch (RS) on cell pathways modulation and metabolomic phenotype in pancreatic cancer xenograft mice. RNA-Seq experiments on tumor tissue showed that 25 genes resulted in dysregulated pancreatic cancer in mice fed with an RS diet, as compared to those fed with control diet. Moreover, in these two different mice groups, six serum metabolites were deregulated as detected by LC–MS analysis. A bioinformatic prediction analysis showed the involvement of the differentially expressed genes on insulin receptor signaling, circadian rhythm signaling, and cancer drug resistance among the three top canonical pathways, whilst cell death and survival, gene expression, and neurological disease were among the three top disease and biological functions. These findings shed light on the genomic and metabolic phenotype, contributing to the knowledge of the mechanisms through which RS may act as a potential supportive approach for enhancing the efficacy of existing cancer treatments.
Collapse
Affiliation(s)
- Concetta Panebianco
- Gastroenterology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy.
| | - Annacandida Villani
- Gastroenterology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy.
| | - Valerio Pazienza
- Gastroenterology Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy.
| |
Collapse
|
10
|
Jin L, Zhou Y. Crucial role of the pentose phosphate pathway in malignant tumors. Oncol Lett 2019; 17:4213-4221. [PMID: 30944616 DOI: 10.3892/ol.2019.10112] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 01/04/2019] [Indexed: 12/21/2022] Open
Abstract
Interest in cancer metabolism has increased in recent years. The pentose phosphate pathway (PPP) is a major glucose catabolism pathway that directs glucose flux to its oxidative branch and leads to the production of a reduced form of nicotinamide adenine dinucleotide phosphate and nucleic acid. The PPP serves a vital role in regulating cancer cell growth and involves many enzymes. The aim of the present review was to describe the recent discoveries associated with the deregulatory mechanisms of the PPP and glycolysis in malignant tumors, particularly in hepatocellular carcinoma, breast and lung cancer.
Collapse
Affiliation(s)
- Lin Jin
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| | - Yanhong Zhou
- The Key Laboratory of Carcinogenesis of The Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of The Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410078, P.R. China
| |
Collapse
|
11
|
Scully KM, Lahmy R, Signaevskaia L, Sasik R, Medal R, Kim H, French R, James B, Wu Y, Lowy AM, Itkin-Ansari P. E47 Governs the MYC-CDKN1B/p27 KIP1-RB Network to Growth Arrest PDA Cells Independent of CDKN2A/p16 INK4A and Wild-Type p53. Cell Mol Gastroenterol Hepatol 2018; 6:181-198. [PMID: 30003124 PMCID: PMC6039985 DOI: 10.1016/j.jcmgh.2018.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 05/08/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND & AIMS Oncogenic mutations in KRAS, coupled with inactivation of p53, CDKN2A/p16INK4A, and SMAD4, drive progression of pancreatic ductal adenocarcinoma (PDA). Overexpression of MYC and deregulation of retinoblastoma (RB) further promote cell proliferation and make identifying a means to therapeutically alter cell-cycle control pathways in PDA a significant challenge. We previously showed that the basic helix-loop-helix transcription factor E47 induced stable growth arrest in PDA cells in vitro and in vivo. Here, we identified molecular mechanisms that underlie E47-induced growth arrest in low-passage, patient-derived primary and established PDA cell lines. METHODS RNA sequencing was used to profile E47-dependent transcriptomes in 5 PDA cell lines. Gene Ontology analysis identified cell-cycle control as the most altered pathway. Small interfering RNA/short hairpin RNA knockdown, small-molecule inhibitors, and viral expression were used to examine the function of E47-dependent genes in cell-cycle arrest. Cell morphology, expression of molecular markers, and senescence-associated β-galactosidase activity assays identified cellular senescence. RESULTS E47 uniformly inhibited PDA cell-cycle progression by decreasing expression of MYC, increasing the level of CDKN1B/p27KIP1, and restoring RB tumor-suppressor function. The molecular mechanisms by which E47 elicited these changes included altering both RNA transcript levels and protein stability of MYC and CDKN1B/p27KIP1. At the cellular level, E47 elicited a senescence-like phenotype characterized by increased senescence-associated β-galactosidase activity and altered expression of senescence markers. CONCLUSIONS E47 governs a highly conserved network of cell-cycle control genes, including MYC, CDKN1B/p27KIP1, and RB, which can induce a senescence-like program in PDA cells that lack CDKN2A/p16INK4A and wild-type p53. RNA sequencing data are available at the National Center for Biotechnology Information GEO at https://www.ncbi.nlm.nih.gov/geo/; accession number: GSE100327.
Collapse
Key Words
- CDK, cyclin-dependent kinase
- CDKN1B/p27KIP1, CDKN1B/p27Kinase Inhibitory Protein 1
- CDKN2A/p16INK4A, CDKN2A/p16Inhibitor of CDK 4A
- CEBP-α, CCAAT/enhancer binding protein alpha
- CENP-A, centromere protein A
- CIP, Cyclin-Dependent Kinase Inhibitor 1
- Cell Cycle
- DDR, DNA damage response
- ERK, extracellular signal–regulated kinase
- GO, Gene Ontology
- INK, Inhibitor of CDK
- KIP, Kinase Inhibitory Protein
- MSCV, murine stem cell virus
- OIS, oncogene-induced senescence
- PCR, polymerase chain reaction
- PDA, pancreatic ductal adenocarcinoma
- Pancreatic Ductal Adenocarcinoma
- RB, retinoblastoma
- RNA-seq, RNA sequencing
- SA-βgal, senescence-associated β-galactosidase
- SKP, S-phase Kinase-associated
- Senescence
- bHLH
- bHLH, basic helix-loop-helix
- lfdr, local false discovery rate
- mRNA, messenger RNA
- shRB, short hairpin RNA directed against RB
- shRNA, short hairpin RNA
- si-p27, small interfering RNA directed against p27
Collapse
Affiliation(s)
- Kathleen M. Scully
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Reyhaneh Lahmy
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Lia Signaevskaia
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Roman Sasik
- Center for Computational Biology and Bioinformatics, School of Medicine, University of California San Diego, La Jolla, California
| | - Rachel Medal
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Heejung Kim
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Randall French
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Brian James
- Genomics Core, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Yifan Wu
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Andrew M. Lowy
- Department of Surgery, Division of Surgical Oncology, Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Pamela Itkin-Ansari
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
- Department of Pediatrics, University of California San Diego, La Jolla, California
| |
Collapse
|
12
|
Han J, Seo H, Choi Y, Lee C, Kim MI, Jeon Y, Lee J, Hong M, Hyun SH, Lee E, Ka H. Expression and regulation of inhibitor of DNA binding proteins ID1, ID2, ID3, and ID4 at the maternal-conceptus interface in pigs. Theriogenology 2018; 108:46-55. [DOI: 10.1016/j.theriogenology.2017.11.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 11/09/2017] [Accepted: 11/22/2017] [Indexed: 12/13/2022]
|
13
|
Yin X, Tang B, Li JH, Wang Y, Zhang L, Xie XY, Zhang BH, Qiu SJ, Wu WZ, Ren ZG. ID1 promotes hepatocellular carcinoma proliferation and confers chemoresistance to oxaliplatin by activating pentose phosphate pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:166. [PMID: 29169374 PMCID: PMC5701377 DOI: 10.1186/s13046-017-0637-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/15/2017] [Indexed: 12/18/2022]
Abstract
Background Drug resistance is one of the major concerns in the treatment of hepatocellular carcinoma (HCC). The aim of the present study was to determine whether aberrant high expression of the inhibitor of differentiation 1(ID1) confers oxaliplatin-resistance to HCC by activating the pentose phosphate pathway (PPP). Methods Aberrant high expression of ID1 was detected in two oxaliplatin-resistant cell lines MHCC97H–OXA(97H–OXA) and Hep3B–OXA(3B–OXA). The lentiviral shRNA or control shRNA was introduced into the two oxaliplatin-resistant cell lines. The effects of ID1 on cell proliferation, apoptosis and chemoresistance were evaluated in vitro and vivo. The molecular signaling mechanism underlying the induction of HCC proliferation and oxaliplatin resistance by ID1 was explored. The prognostic value of ID1/G6PD signaling in HCC patients was assessed using the Cancer Genome Atlas (TCGA) database. Results ID1 was upregulated in oxaliplaitin-resistant HCC cells and promoted HCC cell proliferation and oxaliplatin resistance. Silencing ID1 expression in oxaliplaitin-resistant HCC cell lines inhibited cell proliferation and sensitized oxaliplaitin-resistant cells to death. ID1 knockdown significantly decreased the expression of glucose-6-phosphate dehydrogenase (G6PD), a key enzyme of the PPP. Silencing ID1 expression blocked the activation of G6PD, decreased the production of PPP NADPH, and augmented reactive oxygen and species (ROS), thus inducing cell apoptosis. Study of the molecular mechanism showed that ID1 induced G6PD promoter transcription and activated PPP through Wnt/β-catenin/c-MYC signaling. In addition, ID1/G6PD signaling predicted unfavorable prognosis of HCC patients on the basis of TCGA. Conclusions Our study provided the first evidence that ID1 conferred oxaliplatin resistance in HCC by activating the PPP. This newly defined pathway may have important implications in the research and development of new more effective anti-cancer drugs. Electronic supplementary material The online version of this article (10.1186/s13046-017-0637-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin Yin
- Liver Cancer Institute & Zhong Shan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Bei Tang
- Liver Cancer Institute & Zhong Shan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Jing-Huan Li
- Liver Cancer Institute & Zhong Shan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Yan Wang
- Liver Cancer Institute & Zhong Shan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Lan Zhang
- Liver Cancer Institute & Zhong Shan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Xiao-Ying Xie
- Liver Cancer Institute & Zhong Shan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Bo-Heng Zhang
- Liver Cancer Institute & Zhong Shan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Shuang-Jian Qiu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Wei-Zhong Wu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Zheng-Gang Ren
- Liver Cancer Institute & Zhong Shan Hospital, Fudan University, 136 Yi Xue Yuan Road, Shanghai, 200032, China.
| |
Collapse
|
14
|
Tang H, Wang Y, Zhang B, Xiong S, Liu L, Chen W, Tan G, Li H. High brain acid soluble protein 1(BASP1) is a poor prognostic factor for cervical cancer and promotes tumor growth. Cancer Cell Int 2017; 17:97. [PMID: 29089860 PMCID: PMC5655910 DOI: 10.1186/s12935-017-0452-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/09/2017] [Indexed: 12/16/2022] Open
Abstract
Background The aim of this study was to determine whether brain abundant membrane attached signal protein 1 (BASP1) is a valuable prognostic biomarker for cervical cancer and whether BASP1 regulates the progression of cervical cancer. Methods Quantitative real-time PCR, western blotting, and immunohistochemistry were used to determined BASP1 levels. Statistical analyses were used to examine whether BASP1 was a prognostic factor for patients with cervical cancer. The MTT assay, colony formation assay, cell cycle assay, anchorage-independent growth assay, and a tumor xenograft model were used to determine the role of BASP1 in the proliferation and tumorigenicity of cervical cancer. Results Brain abundant membrane attached signal protein 1 was upregulated in cervical cancer tissues and cells, and BASP1 expression levels were higher in patients that had died during follow-up compared with those that survived. There was a positive correlation between BASP1 expression and clinical stage (p < 0.001), T classification (p < 0.001), N classification (p < 0.05), and survival or mortality (p < 0.05). Patients with higher BASP1 expression had a shorter overall survival time. Cox regression analysis shown BSAP1 was an unfavorable prognostic factor for patients with cervical cancer. Overexpression of BASP1 promoted the proliferation of cervical cancer and its colony formation ability, accelerated cell cycle progression, and enhanced tumorgenicity. BASP1 knockdown inhibited the proliferation of cervical cancer and its colony formation ability, suppressed cell cycle progression, and decreased tumorgenicity. Conclusions The results showed that BASP1 not only is a novel prognostic factor for patients with cervical cancer, but also promotes the proliferation and tumorigenicity of cervical cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12935-017-0452-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huiru Tang
- Department of Gynecology & Obstetrics, Peking University Shenzhen Hospital, Shenzhen, 518036 People's Republic of China.,Shenzhen Key Laboratory of Gynecological Diagnostic Technology Research, Shenzhen, 518036 People's Republic of China
| | - Yan Wang
- Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 People's Republic of China
| | - Bing Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 People's Republic of China
| | - Shiqiu Xiong
- Department of Biochemistry, University of Leicester, Leicester, LE1 7RH UK
| | - Liangshuai Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 People's Republic of China
| | - Wei Chen
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 People's Republic of China
| | - Guosheng Tan
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 People's Republic of China.,Department of Medical Oncology, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Yuexiu District, Guangzhou, 510080 People's Republic of China
| | - Heping Li
- Department of Interventional Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 People's Republic of China.,Department of Medical Oncology, The First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road II, Yuexiu District, Guangzhou, 510080 People's Republic of China
| |
Collapse
|
15
|
Villarino N, Signaevskaia L, van Niekerk J, Medal R, Kim H, Lahmy R, Scully K, Pinkerton A, Kim S, Lowy A, Itkin-Ansari P. A screen for inducers of bHLH activity identifies pitavastatin as a regulator of p21, Rb phosphorylation and E2F target gene expression in pancreatic cancer. Oncotarget 2017; 8:53154-53167. [PMID: 28881801 PMCID: PMC5581100 DOI: 10.18632/oncotarget.18587] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/23/2017] [Indexed: 12/18/2022] Open
Abstract
The average survival for patients with Pancreatic Ductal Adenocarcinoma (PDA) is merely 6 months, underscoring the need for new therapeutic approaches. During PDA progression, pancreatic acinar cells lose activity of the ClassI/II bHLH factors that regulate quiescence. We previously found that promoting transcriptional activity of the Class I bHLH factor E47 in highly aggressive PDA cells induced stable growth arrest in vitro and in vivo. To translate these findings for clinical utility, we developed a high throughput screening platform to identify small molecule inducers of Class I/II bHLH activity. A screen of 4,375 known drugs identified 70 bHLH activators. Prominent among the hits were members of the statin class of HMG-CoA reductase inhibitors, cholesterol lowering drugs that are also being evaluated in cancer. Studies with pitavastatin in primary patient derived tumor cells and established PDA lines, revealed dose dependent growth inhibition. At the molecular level, pitavastatin induced expression of the cyclin dependent kinase (CDK) inhibitor p21 in a cholesterol independent manner, blocked repressive phosphorylation of the Retinoblastoma tumor suppressor protein at CDK targeted sites, and reduced expression of E2F target genes required for progression through the G1/S boundary. Together, the data provide new insight into mechanisms by which statins constrain proliferation in cancer and establish the effectiveness of a novel screening platform to identify small molecules of clinical relevance in pancreatic cancer.
Collapse
Affiliation(s)
- Nicholas Villarino
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Lia Signaevskaia
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jaco van Niekerk
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Rachel Medal
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Heejung Kim
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Reyhaneh Lahmy
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Kathleen Scully
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Anthony Pinkerton
- Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Sangwun Kim
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Andrew Lowy
- Departments of Pathology and Surgery, Division of Surgical Oncology, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Pamela Itkin-Ansari
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
16
|
Antonângelo L, Tuma T, Fabro A, Acencio M, Terra R, Parra E, Vargas F, Takagaki T, Capelozzi V. Id-1, Id-2, and Id-3 co-expression correlates with prognosis in stage I and II lung adenocarcinoma patients treated with surgery and adjuvant chemotherapy. Exp Biol Med (Maywood) 2016; 241:1159-68. [PMID: 26869608 DOI: 10.1177/1535370216632623] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/22/2016] [Indexed: 12/25/2022] Open
Abstract
Inhibitors of DNA binding/inhibitors of differentiation (Id) protein family have been shown to be involved in carcinogenesis. However, the roles of Id during lung adenocarcinoma (ADC) progression remain unclear. Eighty-eight ADC samples were evaluated for Id-1,2,3 level and angiogenesis (CD 34 and VEGF microvessel density) by immunohistochemistry and morphometry. The impact of these markers was tested on follow-up until death or recurrence. A significant difference between tumor and normal tissue was found for Id-1,2,3 expression (P < 0.01). In addition, high levels of nuclear Id-1 were associated with higher angiogenesis in the tumor stroma (P < 0.01). Equally significant was the association between patients in T1-stage and low cytoplasmic Id-2, as well as patients in stage-IIb and low Id-3. High cytoplasm Id-3 expression was also directly associated to lymph nodes metastasis (P = 0.05). Patients at stages I to III, with low Id-1 and Id-3 cytoplasm histoscores showed significant long metastasis-free survival time than those with high Id-1 or Id-3 expression (P = 0.04). Furthermore, high MVD-CD34 and MVD-VEGF expression were associated with short recurrence-free survival compared to low MVD-CD34 and MVD-VEGF expressions (P = 0.04). Cox model analyses controlled for age, lymph node metastasis, and adjuvant treatments showed that nuclear Id-1, cytoplasmic Id-3, and MVD-CD34 were significantly associated with survival time. Median score for nuclear Id-1 and cytoplasmic Id-3 divided patients in two groups, being that those with increased Id-1 and Id-3 presented higher risk of death. Ids showed an independent prognostic value in patients with lung ADC, regardless of disease stage. Id-1 and Id-3 should be considered new target candidates in the development of personalized therapy in lung ADC.
Collapse
Affiliation(s)
- Leila Antonângelo
- Department of Pathology, University of Sao Paulo, Sao Paulo 01246903,Brazil
| | - Taila Tuma
- Department of Pathology, University of Sao Paulo, Sao Paulo 01246903,Brazil
| | - Alexandre Fabro
- Department of Pathology, University of Sao Paulo, Sao Paulo 01246903,Brazil
| | - Milena Acencio
- Pulmonary Division, Heart Institute Clinics Hospital, University of Sao Paulo, Sao Paulo 01246903, Brazil
| | - Ricardo Terra
- Pulmonary Division, Heart Institute Clinics Hospital, University of Sao Paulo, Sao Paulo 01246903, Brazil
| | - Edwin Parra
- Department of Pathology, University of Sao Paulo, Sao Paulo 01246903,Brazil
| | - Francisco Vargas
- Pulmonary Division, Heart Institute Clinics Hospital, University of Sao Paulo, Sao Paulo 01246903, Brazil
| | - Teresa Takagaki
- Pulmonary Division, Heart Institute Clinics Hospital, University of Sao Paulo, Sao Paulo 01246903, Brazil
| | - Vera Capelozzi
- Department of Pathology, University of Sao Paulo, Sao Paulo 01246903,Brazil
| |
Collapse
|
17
|
Garcia-Cao M, Al-Ahmadie HA, Chin Y, Bochner BH, Benezra R. Id Proteins Contribute to Tumor Development and Metastatic Colonization in a Model of Bladder Carcinogenesis. Bladder Cancer 2015; 1:159-170. [PMID: 27376116 PMCID: PMC4927902 DOI: 10.3233/blc-150023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: Bladder cancer is one of the most common malignant genitourinary diseases worldwide. Despite advances in surgical technique, medical oncology and radiation therapy, cure of invasive tumors remains elusive for patients with late stage disease. Therefore, new therapeutic strategies are needed to improve the response rates with regard to recurrence, invasion and metastasis. Objective: Inhibitor of DNA binding (Id) proteins have been proposed as therapeutic targets due to the key regulatory role they exert in multiple steps of cancer. We aimed to explore the role of Id proteins in bladder cancer development and the pattern of expression of Id proteins in bladder carcinomas. Methods: We used a well-established chemically induced model of bladder carcinogenesis. Wild type and Id-deficient mice were given N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) in the drinking water and urinary bladder lesions were analyzed histopathologically and stained for Id1. We assessed the effects of Id1 inactivation in cultured bladder cancer cells and in a model of metastatic lung colonization. We also performed Id1 staining of human urothelial carcinoma samples and matched lymph node metastases. Results: Id1 protein was overexpressed in the BBN-induced model of bladder cancer. Id1 deficiency resulted in the development of urinary bladder tumors with areas of extensive hemorrhage and decreased invasiveness when compared to wild type mice. Id1 inactivation led to decreased cell growth in vitro and lung colonization in vivo of human bladder cancer cells. Immunohistochemistry performed on human urothelial carcinoma samples showed Id1 positive staining in both primary tumors and lymph node metastases. Conclusions: In summary, our studies reveal the physiological relevance of Id1 in bladder cancer progression and suggest that targeting Id1 may be important in the development of novel therapies for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Marta Garcia-Cao
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Hikmat A Al-Ahmadie
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Yvette Chin
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Bernard H Bochner
- Department of Surgery, Urology Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Robert Benezra
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
18
|
Sharma BK, Kolhe R, Black SM, Keller JR, Mivechi NF, Satyanarayana A. Inhibitor of differentiation 1 transcription factor promotes metabolic reprogramming in hepatocellular carcinoma cells. FASEB J 2015; 30:262-75. [PMID: 26330493 DOI: 10.1096/fj.15-277749] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 08/31/2015] [Indexed: 01/23/2023]
Abstract
Reprograming of metabolism is one of the central hallmarks of cancer. The majority of cancer cells depend on high rates of glycolysis and glutaminolysis for their growth and survival. A number of oncogenes and tumor suppressors have been connected to the regulation of altered glucose and glutamine metabolism in cancer cells. For example, the oncogene c-Myc plays vital roles in cancer cell metabolic adaptation by directly regulating various genes that participate in aerobic glycolysis and glutaminolysis. Inhibitor of differentiation 1 (Id1) is a helix-loop-helix transcription factor that plays important roles in cell proliferation, differentiation, and cell fate determination. Overexpression of Id1 causes intestinal adenomas and thymic lymphomas in mice, suggesting that Id1 could function as an oncogene. Despite it being an oncogene, whether Id1 plays any prominent role in cancer cell metabolic reprograming is unknown. Here, we demonstrate that Id1 is strongly expressed in human and mouse liver tumors and in hepatocellular carcinoma (HCC) cell lines, whereas its expression is very low or undetectable in normal liver tissues. In HCC cells, Id1 expression is regulated by the MAPK/ERK pathway at the transcriptional level. Knockdown of Id1 suppressed aerobic glycolysis and glutaminolysis, suggesting that Id1 promotes a metabolic shift toward aerobic glycolysis. At the molecular level, Id1 mediates its metabolic effects by regulating the expression levels of c-Myc. Knockdown of Id1 resulted in down-regulation (∼75%) of c-Myc, whereas overexpression of Id1 strongly induced (3-fold) c-Myc levels. Interestingly, knockdown of c-Myc resulted in down-regulation (∼60%) of Id1, suggesting a positive feedback-loop regulatory mechanism between Id1 and c-Myc. Under anaerobic conditions, both Id1 and c-Myc are down-regulated (50-70%), and overexpression of oxygen-insensitive hypoxia-inducible factor 1α (Hif1α) or its downstream target Mxi1 resulted in a significant reduction of c-Myc and Id1 (∼70%), suggesting that Hif1α suppresses Id1 and c-Myc under anaerobic conditions via Mxi1. Together, our findings indicate a prominent novel role for Id1 in liver cancer cell metabolic adaptation.
Collapse
Affiliation(s)
- Bal Krishan Sharma
- *Department of Biochemistry and Molecular Biology, Molecular Oncology and Biomarkers Program, Georgia Regents University Cancer Center, Department of Pathology, and Program in Pulmonary Vascular Disease, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, USA; and Basic Science Program, Leidos Biomedical Research, Incorporated, Mouse Cancer and Genetics Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Ravindra Kolhe
- *Department of Biochemistry and Molecular Biology, Molecular Oncology and Biomarkers Program, Georgia Regents University Cancer Center, Department of Pathology, and Program in Pulmonary Vascular Disease, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, USA; and Basic Science Program, Leidos Biomedical Research, Incorporated, Mouse Cancer and Genetics Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Stephen M Black
- *Department of Biochemistry and Molecular Biology, Molecular Oncology and Biomarkers Program, Georgia Regents University Cancer Center, Department of Pathology, and Program in Pulmonary Vascular Disease, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, USA; and Basic Science Program, Leidos Biomedical Research, Incorporated, Mouse Cancer and Genetics Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jonathan R Keller
- *Department of Biochemistry and Molecular Biology, Molecular Oncology and Biomarkers Program, Georgia Regents University Cancer Center, Department of Pathology, and Program in Pulmonary Vascular Disease, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, USA; and Basic Science Program, Leidos Biomedical Research, Incorporated, Mouse Cancer and Genetics Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Nahid F Mivechi
- *Department of Biochemistry and Molecular Biology, Molecular Oncology and Biomarkers Program, Georgia Regents University Cancer Center, Department of Pathology, and Program in Pulmonary Vascular Disease, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, USA; and Basic Science Program, Leidos Biomedical Research, Incorporated, Mouse Cancer and Genetics Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Ande Satyanarayana
- *Department of Biochemistry and Molecular Biology, Molecular Oncology and Biomarkers Program, Georgia Regents University Cancer Center, Department of Pathology, and Program in Pulmonary Vascular Disease, Vascular Biology Center, Georgia Regents University, Augusta, Georgia, USA; and Basic Science Program, Leidos Biomedical Research, Incorporated, Mouse Cancer and Genetics Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| |
Collapse
|
19
|
Specific Biomarkers: Detection of Cancer Biomarkers Through High-Throughput Transcriptomics Data. Cognit Comput 2015. [DOI: 10.1007/s12559-015-9336-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
20
|
Georgiadou D, Sergentanis T, Sakellariou S, Filippakis G, Zagouri F, Vlachodimitropoulos D, Psaltopoulou T, Lazaris A, Patsouris E, Zografos G. VEGF and Id-1 in pancreatic adenocarcinoma: Prognostic significance and impact on angiogenesis. Eur J Surg Oncol 2014; 40:1331-7. [DOI: 10.1016/j.ejso.2014.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 11/29/2013] [Accepted: 01/04/2014] [Indexed: 12/15/2022] Open
|
21
|
ID proteins regulate diverse aspects of cancer progression and provide novel therapeutic opportunities. Mol Ther 2014; 22:1407-1415. [PMID: 24827908 DOI: 10.1038/mt.2014.83] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/28/2014] [Indexed: 12/12/2022] Open
Abstract
The inhibitor of differentiation (ID) proteins are helix-loop-helix transcriptional repressors with established roles in stem cell self-renewal, lineage commitment, and niche interactions. While deregulated expression of ID proteins in cancer was identified more than a decade ago, emerging evidence has revealed a central role for ID proteins in neoplastic progression of multiple tumor types that often mirrors their function in physiological stem and progenitor cells. ID proteins are required for the maintenance of cancer stem cells, self-renewal, and proliferation in a range of malignancies. Furthermore, ID proteins promote metastatic dissemination through their role in remodeling the tumor microenvironment and by promoting tumor-associated endothelial progenitor cell proliferation and mobilization. Here, we discuss the latest findings in this area and the clinical opportunities that they provide.
Collapse
|
22
|
Lasorella A, Benezra R, Iavarone A. The ID proteins: master regulators of cancer stem cells and tumour aggressiveness. Nat Rev Cancer 2014; 14:77-91. [PMID: 24442143 DOI: 10.1038/nrc3638] [Citation(s) in RCA: 281] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Inhibitor of DNA binding (ID) proteins are transcriptional regulators that control the timing of cell fate determination and differentiation in stem and progenitor cells during normal development and adult life. ID genes are frequently deregulated in many types of human neoplasms, and they endow cancer cells with biological features that are hijacked from normal stem cells. The ability of ID proteins to function as central 'hubs' for the coordination of multiple cancer hallmarks has established these transcriptional regulators as therapeutic targets and biomarkers in specific types of human tumours.
Collapse
Affiliation(s)
- Anna Lasorella
- Institute for Cancer Genetics, Department of Pathology and Pediatrics, Columbia University Medical Center, 1130 St. Nicholas Avenue, New York, 10032 New York, USA
| | - Robert Benezra
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Box 241, New York, 10065 New York, USA
| | - Antonio Iavarone
- Institute for Cancer Genetics, Department of Pathology and Neurology, Columbia University Medical Center, 1130 St. Nicholas Avenue, New York, 10032 New York, USA
| |
Collapse
|
23
|
Mistry H, Hsieh G, Buhrlage SJ, Huang M, Park E, Cuny GD, Galinsky I, Stone RM, Gray NS, D'Andrea AD, Parmar K. Small-molecule inhibitors of USP1 target ID1 degradation in leukemic cells. Mol Cancer Ther 2013; 12:2651-62. [PMID: 24130053 PMCID: PMC4089878 DOI: 10.1158/1535-7163.mct-13-0103-t] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inhibitor of DNA binding 1 (ID1) transcription factor is essential for the proliferation and progression of many cancer types, including leukemia. However, the ID1 protein has not yet been therapeutically targeted in leukemia. ID1 is normally polyubiquitinated and degraded by the proteasome. Recently, it has been shown that USP1, a ubiquitin-specific protease, deubiquitinates ID1 and rescues it from proteasome degradation. Inhibition of USP1 therefore offers a new avenue to target ID1 in cancer. Here, using a ubiquitin-rhodamine-based high-throughput screening, we identified small-molecule inhibitors of USP1 and investigated their therapeutic potential for leukemia. These inhibitors blocked the deubiquitinating enzyme activity of USP1 in vitro in a dose-dependent manner with an IC50 in the high nanomolar range. USP1 inhibitors promoted the degradation of ID1 and, concurrently, inhibited the growth of leukemic cell lines in a dose-dependent manner. A known USP1 inhibitor, pimozide, also promoted ID1 degradation and inhibited growth of leukemic cells. In addition, the growth of primary acute myelogenous leukemia (AML) patient-derived leukemic cells was inhibited by a USP1 inhibitor. Collectively, these results indicate that the novel small-molecule inhibitors of USP1 promote ID1 degradation and are cytotoxic to leukemic cells. The identification of USP1 inhibitors therefore opens up a new approach for leukemia therapy.
Collapse
Affiliation(s)
- Helena Mistry
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Grace Hsieh
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Sara J. Buhrlage
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Min Huang
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Eunmi Park
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Gregory D. Cuny
- Laboratory for Drug Discovery in Neurodegeneration, Harvard Center for Neurodegeneration and Repair, Brigham and Women's Hospital and Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, USA
| | - Ilene Galinsky
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Richard M Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Nathanael S. Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Alan D. D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Kalindi Parmar
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, USA
| |
Collapse
|
24
|
May AM, Frey AV, Bogatyreva L, Benkisser-Petersen M, Hauschke D, Lübbert M, Wäsch R, Werner M, Hasskarl J, Lassmann S. ID2 and ID3 protein expression mirrors granulopoietic maturation and discriminates between acute leukemia subtypes. Histochem Cell Biol 2013; 141:431-40. [PMID: 24292846 DOI: 10.1007/s00418-013-1169-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2013] [Indexed: 01/21/2023]
Abstract
The inhibitors of DNA binding (ID) inhibit basic helix-loop-helix transcription factors and thereby guide cellular differentiation and proliferation. To elucidate the involvement of IDs in hematopoiesis and acute leukemias (AL), we analyzed ID2 and ID3 expression in hematopoiesis and leukemic blasts in bone marrow biopsies (BMB). BMB of healthy stem cell donors (n = 19) and BMB of patients with acute myeloid leukemia (AML) with myelodysplasia-related changes (AML-MD; n = 19), de novo AML (n = 20), B-acute lymphoblastic leukemia (B-ALL) (n = 23), T-ALL (n = 19), were immunohistochemically stained for ID2 and ID3 expression. The expression patterns were evaluated and quantified for each hematopoietic lineage and each leukemia subtype. In normal BMB, immature granulopoiesis showed weak ID2 and strong ID3 expression, which was lost during maturation (p < 0.001). Erythropoiesis remained negative for ID2/3 (p < 0.001). ID2/3 expression differed between immature granulopoiesis and leukemic blasts (p < 0.001). Moreover, differential ID2/3 expression was seen between AL subgroups: AML, especially AML-MD, had more ID2- (p < 0.001) and ID3-positive (p < 0.001) blasts than ALL. We show a comprehensive in situ picture of ID2/3 expression in hematopoiesis and AL. Morphologically, ID2/3 proteins seem to be involved in the granulopoietic maturation. Importantly, the distinct ID2/3 expression patterns in AL indicate a specific deregulation of ID2/3 in the various types of AL and may support subtyping of AL.
Collapse
Affiliation(s)
- Annette M May
- Department of Pathology, University Medical Center, Breisacher Str. 115a, 79106, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sumida T, Murase R, Onishi-Ishikawa A, McAllister SD, Hamakawa H, Desprez PY. Targeting Id1 reduces proliferation and invasion in aggressive human salivary gland cancer cells. BMC Cancer 2013; 13:141. [PMID: 23517130 PMCID: PMC3639030 DOI: 10.1186/1471-2407-13-141] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 03/18/2013] [Indexed: 11/17/2022] Open
Abstract
Background Salivary gland cancer (SGC) is one of the common malignancies of the head and neck area. It develops in the minor and major salivary glands and sometimes metastasizes to other organs, particularly to the lungs. Inhibitors of differentiation (Id) proteins are negative regulators of basic helix-loop-helix transcription factors that control malignant cell behavior and tumor aggressiveness in many tissues. In this study, our goal was to determine the potential role of Id proteins, particularly Id1, during human SGC cell progression. Methods We first determined the expression levels of Id1 and Id2 in four SGC cell lines: two adenocarcinoma of the salivary gland (HSG and HSY) and two adenoid cystic carcinoma (ACC2 and ACCM) cell lines. We then used constructs that expressed antisense cDNAs to Id1 or Id2 to knockdown the expression of these proteins in cell lines where they were highly expressed, and determined the effects of the knockdown on cell proliferation, migration and invasion. Results Id1 mRNA and protein were detectable in all cell lines, and expression of Id2 was variable, from absent to high. The ACC2 and ACCM cell lines expressed both Id1 and Id2, but Id1 was expressed at a higher level in the more aggressive ACCM cell line in comparison toACC2 cells as confirmed by Id1 promoter-reporter assays. We therefore focused on the ACCM cells for the remainder of the study. We found that proliferation and invasiveness of ACCM cells were strongly reduced after Id1 knockdown whereas Id2 suppression had only a slight effect. Results of scratch and colony formation assays also confirmed that ACCM cell aggressiveness was significantly reduced upon Id1 knockdown. Finally, this knockdown resulted in reduced c-myc and enhanced cyclin-dependent kinase inhibitor p21 expression. Conclusions These results demonstrate that Id1 plays an important role in the control of human SGC cell aggressiveness and suggest a potential role as a marker of diagnosis, prognosis and progression of SGCs. Id1 suppression could represent a novel and effective approach for the treatment of salivary gland cancer.
Collapse
Affiliation(s)
- Tomoki Sumida
- Department of Oral and Maxillofacial Surgery, Ehime University School of Medicine, 454 Shitsukawa, Toon-City, Ehime 791-0295, Japan.
| | | | | | | | | | | |
Collapse
|
26
|
Tsunedomi R, Iizuka N, Harada S, Oka M. Susceptibility of hepatoma-derived cells to histone deacetylase inhibitors is associated with ID2 expression. Int J Oncol 2013; 42:1159-66. [PMID: 23403953 PMCID: PMC3622658 DOI: 10.3892/ijo.2013.1811] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 12/05/2012] [Indexed: 12/28/2022] Open
Abstract
Downregulation of inhibitor of DNA binding 2 (ID2) is associated with poor prognosis in cases of hepatocellular carcinoma (HCC). Therefore, to search for effective antitumor drugs for the treatment of HCC exhibiting poor prognostic indicators, we used two HCC-derived cell lines (HuH-7 and HLE) to alter ID2 levels. Specifically, ID2 expression was knocked down in HuH-7 cells via transfection with ID2-specific small interfering RNAs and separately ID2 was overexpressed in HLE cells via an ID2 expression plasmid vector. To assess the effect of antitumor drugs, MTS assay was performed. Annexin V staining was used to evaluate apoptosis and real-time RT-PCR was used to measure mRNA levels. ID2 knockdown cells were more susceptible to histone deacethylase (HDAC) inhibitors including sodium butyrate (NaB), sodium 4-phenyl-butyrate, tricostatin A, suberoylanilide hydroxamic acid, MS-275, apicidin and HC-toxin. Conversely, cells that overexpressed ID2 were less susceptible than control cells to HDAC inhibitors. NaB-induced apoptosis was inversely correlated with ID2 expression. Expression of the anti-apoptotic mRNA BCL2 was induced by NaB in control cells, but this induction of BCL2 was inhibited by ID2 knockdown and strengthened by ID2 overexpression. Expression of another anti-apoptotic mRNA, BCL2L1, was decreased by NaB administration and then partially recovered. However, in ID2 knockdown cells, BCL2L1 levels did not recover from NaB-induced suppression. ID2 affected the susceptibility of two HCC-derived cell lines to an HDAC inhibitor by regulating the expression of anti-apoptotic genes. Therefore, HDAC inhibitors may be effective for the treatment of HCC for which the prognosis is poor based on ID2 downregulation and ID2 could serve as a marker that is predictive of the clinical response to HDAC inhibitors.
Collapse
Affiliation(s)
- Ryouichi Tsunedomi
- Department of Digestive Surgery and Surgical Oncology, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | | | | | | |
Collapse
|
27
|
Muthu K, Panneerselvam M, Jayaraman M, Topno NS, Das AA, Ramadas K. Structural insights into interacting mechanism of ID1 protein with an antagonist ID1/3-PA7 and agonist ETS-1 in treatment of ovarian cancer: molecular docking and dynamics studies. J Mol Model 2012; 18:4865-84. [DOI: 10.1007/s00894-012-1489-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 05/28/2012] [Indexed: 11/30/2022]
|
28
|
Peng X, Wang Y, Kolli S, Deng J, Li L, Wang Z, Raj JU, Gou D. Physical and functional interaction between the ID1 and p65 for activation of NF-κB. Am J Physiol Cell Physiol 2012; 303:C267-77. [PMID: 22592405 DOI: 10.1152/ajpcell.00365.2011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Inhibitor of differentiation or DNA binding-1 (ID1) is an important helix-loop-helix (HLH) transcription factor involved in diverse biological functions including cell differentiation, proliferation, apoptosis, and senescence. Recently, it was reported that ID1 can activate the NF-κB signaling pathway in a variety of cancer cells and a T cell line, but the mechanisms involved in ID1-mediated transactivation of NF-κB are not clear. In this study, we demonstrate by both in vitro pull-down assays and a cell-based in vivo two-hybrid system that ID1-mediated NF-κB activation is due to its physical interaction with p65. We have identified that the transcriptional activation domain (TAD) in p65 and the HLH domain in ID1 are vital for their interaction. Interestingly, a single site mutation (Leu76) in the HLH domain of ID1 protein drastically decreased its ability to bind with p65. Using a dual-luciferase assay, we demonstrated that the interaction between ID1 and p65 modulates activation of the NF-κB signaling pathway in vivo. In addition, we demonstrated that, by affecting the nuclear translocation of p65, ID1 is essential in regulating TNF-α-induced p65 recruitment to its downstream target, the cellular inhibitor of apoptosis protein 2 (cIAP2) promoter.
Collapse
Affiliation(s)
- Xiao Peng
- College of Life Sciences, Shenzhen University, Shenzhen, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Sun W, Guo MM, Han P, Lin JZ, Liang FY, Tan GM, Li HB, Zeng M, Huang XM. Id-1 and the p65 subunit of NF-κB promote migration of nasopharyngeal carcinoma cells and are correlated with poor prognosis. Carcinogenesis 2012; 33:810-7. [PMID: 22301282 DOI: 10.1093/carcin/bgs027] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Inhibitor of differentiation (Id)-1 and nuclear factor-kappa B (NF-κB) have been detected in many malignant tumors, and their presence has been correlated with the metastatic potential of these tumors. This study was undertaken to investigate the prognostic significance of the expression of Id-1 and the p65 subunit of NF-κB (NF-κB/p65) and the proteins' roles in the invasion process of nasopharyngeal carcinoma (NPC) cells. The messenger RNA (mRNA) and protein levels of Id-1 and NF-κB/p65 in normal nasopharyngeal epithelial cells and NPC cell lines were examined using reverse transcription-PCR and western blot analysis, whereas the mRNA and protein levels of Id-1 and NF-κB/p65 in clinical NPC specimens were determined by reverse transcription-PCR and immunohistochemistry. Short hairpin RNA (shRNA) was used to silence Id-1 and NF-κB/p65 to allow for the examination of matrix metalloproteinase (MMP)-9 expression and migratory capacity changes in CNE-2 cells. Multivariate Cox analysis revealed that elevated Id-1 expression was a significant independent predictor of the 5 year overall survival rate (hazards ratio = 16.720, P = 0.005). Furthermore, elevated expression of both Id-1 and NF-κB/p65 was associated with poor clinical survival (P = 0.049). Targeting Id-1 and NF-κB/p65 mRNA with shRNA in CNE-2 cells inhibited MMP-9 expression and decreased the migratory capacity of CNE-2 cells. In conclusion, Id-1 expression is a novel independent prognostic marker molecule that helps identify NPC patients with a poor prognosis. Additionally, combined analysis of Id-1 and NF-κB/p65 can be useful for identifying patients at risk for unfavorable clinical outcomes. Id-1 or/and NF-κB/p65 enhanced tumor cell migration, which is associated with the secretion of MMP-9.
Collapse
Affiliation(s)
- Wei Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, Sun Yat-sen Memorial Hospital, Guangzhou, Public Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Pancreatic cancer has a dismal prognosis and is the fourth most common cause of cancer related death in Western societies. In large part this is due to its typically late presentation, usually as locally advanced or metastatic disease. Identification of the non-invasive precursor lesions to pancreatic cancer raises the possibility of surgical treatment or chemoprevention at an early stage in the evolution of this disease, when more amenable to therapeutic interventions. Precursor lesions to pancreatic ductal adenocarcinoma, in particular pancreatic intraepithelial neoplasia (PanIN), have been recognised under a variety of synonyms for over 50 years. Over the past decade our understanding of the morphology, biological significance and molecular aberrations of these lesions has grown rapidly and there is now a widely accepted progression model integrating the accumulated morphological and molecular observations. Further progress is likely to be accelerated by improved mouse models of pancreatic cancer and by insight into the cancer genome gained by the International Cancer Genome Consortium (ICGC), in which an Australian consortium is leading the pancreatic cancer initiative. This review also outlines the morphological and molecular features of the other two precursors of pancreatic ductal adenocarcinoma, i.e., intraductal papillary mucinous neoplasms and mucinous cystic neoplasms.
Collapse
|
31
|
Lee SH, Hao E, Kiselyuk A, Shapiro J, Shields DJ, Lowy A, Levine F, Itkin-Ansari P. The Id3/E47 axis mediates cell-cycle control in human pancreatic ducts and adenocarcinoma. Mol Cancer Res 2011; 9:782-90. [PMID: 21498546 DOI: 10.1158/1541-7786.mcr-10-0535] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDA) has a 5-year survival rate of less than 5%, and therapeutic advances have been hampered by gaps in our understanding of cell-cycle control in the adult pancreas. Previously, we reported that basic Helix-Loop-Helix (bHLH) transcription factors regulate cell fate specification in the pancreas. In the present study, we found that a repressor of bHLH activity, Id3, was profoundly upregulated in ductal cells in murine models of pancreatitis and pancreatic intraepithelial neoplasia (PanIN). Id3 was also pervasively expressed in neoplastic lesions in human PDA in situ. We hypothesized that an imbalance in bHLH versus Id activity controlled cell growth in PDA. Consistent with this model, cell-cycle progression in PDA cells was impeded by siRNA-mediated depletion of Id3 or overexpression of the bHLH protein E47. The precursors of human PDA are normally quiescent duct cells which do not proliferate in response to high serum or growth factors. The finding that Id3 was expressed in pancreatitis, as well as PDA, suggested that Id3 might induce cell-cycle entry in ducts. To test this hypothesis, primary human pancreatic duct cells were transduced with an adenovirus-expressing Id3. Remarkably, Id3 expression alone was sufficient to trigger efficient cell-cycle entry, as manifested by expression of the proliferation markers Ki67, phospho-cyclin E, and phospho-histone H3. Collectively, the data establish dysregulation of the Id/bHLH axis as an early and sustained feature of ductal pathogenesis and mark this axis as a potential therapeutic target for intervention in pancreatitis and PDA.
Collapse
Affiliation(s)
- Seung-Hee Lee
- Department of Pediatrics, Universityof California San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Haubold M, Weise A, Stephan H, Dünker N. Bone morphogenetic protein 4 (BMP4) signaling in retinoblastoma cells. Int J Biol Sci 2010; 6:700-15. [PMID: 21152263 PMCID: PMC2999847 DOI: 10.7150/ijbs.6.700] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 11/22/2010] [Indexed: 01/01/2023] Open
Abstract
Bone morphogenetic proteins (BMPs) - expressed in the developing retina - are known to be involved in the regulation of cell proliferation and apoptosis in several tumor entities. The objective of this study was to determine the role of the BMP4 pathway in retinoblastoma cells, which are absent in a functional retinoblastoma (RB1) gene. BMP receptors were detected in all retinoblastoma cell lines investigated. A correct transmission of BMP signaling via the Smad1/5/8 pathway could be demonstrated in WERI-Rb1 retinoblastoma cells and application of recombinant human BMP4 resulted in an increase in apoptosis, which to a large extend is caspase independent. Cell proliferation was not affected by BMP4 signaling, although the pRb-related proteins p107 and p130, contributing to the regulation of the same genes, are still expressed. WERI-Rb1 cells exhibit elevated endogenous levels of p21(CIP1) and p53, but we did not detect any increase in p53, p21(CIP1)or p27(KIP1) expression levels. Id proteins became, however, strongly up-regulated upon exogenous BMP4 treatment. Thus, RB1 loss in WERI-Rb1 cells is obviously not compensated for by pRb-independent (e.g. p53-dependent) cell cycle control mechanisms, preventing an anti-proliferative response to BMP4, which normally induces cell cycle arrest.
Collapse
Affiliation(s)
- Maike Haubold
- 1. Institute for Anatomy, Department of Neuroanatomy, University of Duisburg-Essen, Medical Faculty, 45122 Essen, Germany
| | - Andreas Weise
- 1. Institute for Anatomy, Department of Neuroanatomy, University of Duisburg-Essen, Medical Faculty, 45122 Essen, Germany
| | - Harald Stephan
- 2. Division of Haematology and Oncology, Children's Hospital, University of Duisburg-Essen, 45122 Essen, Germany
| | - Nicole Dünker
- 1. Institute for Anatomy, Department of Neuroanatomy, University of Duisburg-Essen, Medical Faculty, 45122 Essen, Germany
| |
Collapse
|
33
|
Dufresne M, Clerc P, Dieng M, Edir A, Couvelard A, Delisle MB, Fourmy D, Gigoux V. Id3 modulates cellular localization of bHLH Ptf1-p48 protein. Int J Cancer 2010; 129:295-306. [PMID: 20830706 DOI: 10.1002/ijc.25668] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 08/12/2010] [Indexed: 12/12/2022]
Abstract
Ptf1-p48 is a pancreas-specific bHLH transcriptional protein, which, in the normal adult pancreas, shows a restricted expression in acinar cells where it is predominantly localized in the nucleus and activates the transcription of exocrine-specific genes. Ptf1-p48 partners with two proteins to form the PTF1 active complex: a bHLH E-protein and suppressor of hairless RBP-J. Cytoplasmic mislocalization of Ptf1-p48 has been reported in pancreatic pathologies, suggesting its contribution in the early steps of pancreatic carcinogenesis. The aim of the our work was to elucidate the mechanisms regulating Ptf1-p48 subcellular localization. We hypothesized a role of Id proteins acting in a dominant-negative fashion by heterodimerizing with bHLH proteins. We reproduced Ptf1-p48 cytoplasmic mislocalization in acinar AR4-2J cells and demonstrated that a proliferative signal elicited by gastrin leads to increases in Id3 protein expression and levels of Id3/E47 and Id3/Ptf1-p48 interactions, and a decrease in the level of E47/Ptf1-p48 interaction. By contrast, Id3 silencing reversed the cytoplasmic mislocalization of Ptf1-p48 induced by gastrin. As E47 is responsible for the nuclear import of the PTF1 complex, disruption of this complex via Id3 interactions with both E47 and Ptf1-p48 appears to induce cytoplasmic mislocalization of Ptf1-p48. We then found that Ptf1-p48 is either absent or mislocalized in the cytoplasm and Id3 is overexpressed in human and murine pancreatic preneoplastic lesions. Our data provide novel insight into the regulation of Ptf1-p48 function and provide evidence that Ptf1-p48 cytoplasmic mislocalization and Id3 overexpression are early events in pancreatic cancer progression.
Collapse
|
34
|
Coma S, Amin DN, Shimizu A, Lasorella A, Iavarone A, Klagsbrun M. Id2 promotes tumor cell migration and invasion through transcriptional repression of semaphorin 3F. Cancer Res 2010; 70:3823-32. [PMID: 20388805 DOI: 10.1158/0008-5472.can-09-3048] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Id proteins (Id1 to Id4) are helix-loop-helix transcription factors that promote metastasis. It was found that Semaphorin 3F (SEMA3F), a potent inhibitor of metastasis, was repressed by Id2. High metastatic human tumor cell lines had relatively high amounts of Id2 and low SEMA3F levels compared with their low metastatic counterparts. No correlation between metastatic potential and expression of the other Id family members was observed. Furthermore, ectopic expression of Id2 in low metastatic tumor cells downregulated SEMA3F and, as a consequence, enhanced their ability to migrate and invade, two requisite steps of metastasis in vivo. Id2 overexpression was driven by the c-myc oncoprotein. SEMA3F was a direct target gene of the E47/Id2 pathway. Two E-box sites, which bind E protein transcription factors including E47, were identified in the promoter region of the SEMA3F gene. E47 directly activated SEMA3F promoter activity and expression and promoted SEMA3F biological activities, including filamentous actin depolymerization, inactivation of RhoA, and inhibition of cell migration. Silencing of SEMA3F inhibited the E47-induced SEMA3F expression and biological activities, confirming that these E47-induced effects were SEMA3F dependent. E47 did not induce expression of the other members of the SEMA3 family. Id2, a dominant-negative inhibitor of E proteins, abrogated the E47-induced SEMA3F expression and biological activities. Thus, high metastatic tumor cells overexpress c-myc, leading to upregulation of Id2 expression; the aberrantly elevated amount of Id2 represses SEMA3F expression and, as a consequence, enhances the ability of tumor cells to migrate and invade.
Collapse
Affiliation(s)
- Silvia Coma
- Department of Surgery, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
35
|
Maw MK, Fujimoto J, Tamaya T. Role of inhibitor of DNA binding-1 protein is related to angiogenesis in the tumor advancement of uterine endometrial cancers. Exp Ther Med 2010; 1:351-356. [PMID: 22993548 DOI: 10.3892/etm_00000055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 10/15/2009] [Indexed: 11/05/2022] Open
Abstract
The inhibitor of DNA binding (ID)-1 protein, an inhibitor of basic helix-loop-helix transcription factors, has been found to be involved in multiple cellular functions. In the present study, ID-1 histoscores and mRNA levels were both significantly (p<0.05) increased in uterine endometrial cancers according to clinical stage, histological grade and depth of myometrial invasion. Furthermore, the 60-month survival rate of the 25 patients with high ID-1 was poor (52%), while that of the other 25 patients with low ID-1 was significantly higher (80%) (p<0.05). ID-1 histoscores and mRNA levels significantly (p<0.0001) correlated with microvessel counts in uterine endometrial cancers. Therefore, ID-1 acts on tumor advancement via angiogenic activity and can be considered a candidate prognostic indicator in uterine endometrial cancers.
Collapse
Affiliation(s)
- Min Khine Maw
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Gifu University School of Medicine, Gifu 501-1194, Japan
| | | | | |
Collapse
|
36
|
Manthey C, Mern DS, Gutmann A, Zielinski AJ, Herz C, Lassmann S, Hasskarl J. Elevated endogenous expression of the dominant negative basic helix-loop-helix protein ID1 correlates with significant centrosome abnormalities in human tumor cells. BMC Cell Biol 2010; 11:2. [PMID: 20070914 PMCID: PMC2818612 DOI: 10.1186/1471-2121-11-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 01/14/2010] [Indexed: 01/20/2023] Open
Abstract
Background ID proteins are dominant negative inhibitors of basic helix-loop-helix transcription factors that have multiple functions during development and cellular differentiation. Ectopic (over-)expression of ID1 extends the lifespan of primary human epithelial cells. High expression levels of ID1 have been detected in multiple human malignancies, and in some have been correlated with unfavorable clinical prognosis. ID1 protein is localized at the centrosomes and forced (over-)expression of ID1 results in errors during centrosome duplication. Results Here we analyzed the steady state expression levels of the four ID-proteins in 18 tumor cell lines and assessed the number of centrosome abnormalities. While expression of ID1, ID2, and ID3 was detected, we failed to detect protein expression of ID4. Expression of ID1 correlated with increased supernumerary centrosomes in most cell lines analyzed. Conclusions This is the first report that shows that not only ectopic expression in tissue culture but endogenous levels of ID1 modulate centrosome numbers. Thus, our findings support the hypothesis that ID1 interferes with centrosome homeostasis, most likely contributing to genomic instability and associated tumor aggressiveness.
Collapse
Affiliation(s)
- Carolin Manthey
- Department of Hematology and Oncology, University Medical Center Freiburg, Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
37
|
Maw MK, Fujimoto J, Tamaya T. Overexpression of inhibitor of DNA-binding (ID)-1 protein related to angiogenesis in tumor advancement of ovarian cancers. BMC Cancer 2009; 9:430. [PMID: 20003244 PMCID: PMC2796680 DOI: 10.1186/1471-2407-9-430] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 12/10/2009] [Indexed: 08/30/2023] Open
Abstract
Background The inhibitor of DNA-binding (ID) has been involved in cell cycle regulation, apoptosis and angiogenesis. This prompted us to study ID functions in tumor advancement of ovarian cancers. Methods Sixty patients underwent surgery for ovarian cancers. In ovarian cancers, the levels of ID-1, ID-2 and ID-3 mRNAs were determined by real-time reverse transcription-polymerase chain reaction. The histoscore with the localization of ID-1 was determined by immunohistochemistry. Patient prognosis was analyzed with a 36-month survival rate. Microvessel counts were determined by immunohistochemistry for CD34 and factor VIII-related antigen. Results ID-1 histoscores and mRNA levels both significantly (p < 0.001) increased in ovarian cancers according to clinical stage, regardless of histopathological type. Furthermore, 30 patients with high ID-1 expression had a lower survival rate (53%) compared to patients with low ID-1 expression (80%). ID-1 histoscores and mRNA levels significantly (p < 0.0001) correlated with microvessel counts in ovarian cancers. Conclusion ID-1 increased in ovarian cancer cells during tumor progression. Moreover, ID-1 expression levels correlated with microvessel counts. Therefore, ID-1 might work on tumor advancement via angiogenesis and is considered to be a candidate for a prognostic indicator in ovarian cancers.
Collapse
Affiliation(s)
- Min Khine Maw
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Gifu University School of Medicine, 1-1 Yanagido, Gifu City 501-1194, Japan.
| | | | | |
Collapse
|
38
|
Expression and prognostic values of Id-1 and Id-3 in gastric adenocarcinoma. J Surg Res 2009; 167:258-66. [PMID: 20080245 DOI: 10.1016/j.jss.2009.08.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 07/25/2009] [Accepted: 08/05/2009] [Indexed: 01/21/2023]
Abstract
BACKGROUND Id (inhibitor of differentiation/DNA binding)-1 and -3 are involved in neoangiogenesis; they antagonize basic helix-loop-helix proteins, inhibit differentiation, and enhance cell proliferation. The aim of this study was to investigate Id-1 and -3 expression in gastric tumors and their clinical relevance in gastric cancer. MATERIALS AND METHODS We investigated Id-1 and Id-3 expression in gastric cancer samples by immunohistochemistry and Western blotting, and further analyzed the relationship between expression of Id-1 and Id-3 and clinicopathologic characteristics. RESULTS Expression of Id-1 and -3 was found significantly more often in gastric cancers than in matched adjacent nonmalignant tissues. Cancer samples with poor or moderate histologic differentiation showed significantly stronger Id-1 and -3 expression than cancer samples with high differentiation. In cancer samples, strong or moderate expression of Id-3, but not Id-1, was a strong independent predictor for shorter overall survival in multivariate analysis. CONCLUSIONS The level of Id-1 and -3 protein expression was associated with the malignant potential of gastric tumors. In cancer samples, stronger Id-1 and -3 expression is associated with poor differentiation and more aggressive behavior of tumor cells, resulting in poor clinical outcome. Consequently, Id-3 might be used to independently predict survival of patients with gastric cancer.
Collapse
|
39
|
High Id1 expression is associated with poor prognosis in 237 patients with acute myeloid leukemia. Blood 2009; 114:2993-3000. [PMID: 19643984 DOI: 10.1182/blood-2009-05-223115] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Inhibitors of differentiation (Id) are a group of dominant inhibitors of basic helix-loop-helix transcriptional factors, which promote excessive proliferation, and also protect cells against drug-induced apoptosis in mammalians. Recently, Id1 has been identified as a common downstream target of several constitutively activated oncogenic tyrosine kinase, such as FLT3 internal tandem duplication, in leukemia cells. We analyzed Id1 expression as possible prognostic factor in 237 acute myeloid leukemia (AML) patients. High Id1 expression was associated with older age (P = .009) and with FLT3 internal tandem duplication (P = .003). However, 61% of the patients in the group of FLT3(-) AML were Id1(+), suggesting that other tyrosine kinases are involved. In whole population, high Id1 expression independently predicted shorter disease-free survival (P = .05) and overall survival (P = .003). In young patients (age <OR= 60 years) with normal cytogenetics, Id1(+) was, in multivariate analysis, associated with lower complete remission rates (P = .02), shorter disease-free survival (P = .02), and overall survival (P = .006). In conclusion, our data provide a new molecular marker for refining the risk classification of AML, especially in young patients with normal cytogenetic. Id1(-) patients with normal cytogenetic should be classified as favorable-risk leukemia. Id1, as a downstream target of constitutively activated tyrosine kinase, could be a suitable candidate for targeted therapy.
Collapse
|
40
|
Iwatsuki M, Fukagawa T, Mimori K, Nakanishi H, Ito S, Ishii H, Yokobori T, Sasako M, Baba H, Mori M. Bone marrow and peripheral blood expression of ID1 in human gastric carcinoma patients is a bona fide indicator of lymph node and peritoneal metastasis. Br J Cancer 2009; 100:1937-42. [PMID: 19491902 PMCID: PMC2714249 DOI: 10.1038/sj.bjc.6605085] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Recent studies have showed that the bone marrow-derived endothelial progenitor cells play critical roles in metastasis and that ID1 is required in metastasis as regulator of angiogenesis. Therefore, we investigated the clinical significance of ID1 mRNA expression in bone marrow and peripheral samples in patients with gastric cancer. Two hundred and eighty-nine bone marrow and 196 peripheral blood samples from gastric cancer patients were collected and analysed by quantitative RT-PCR for ID1. The ID1 protein expression in one bone marrow, three metastatic lymph nodes and three peritoneal disseminated tumours was examined by immunohistochemical methods. In both bone marrow and peripheral blood samples, ID1 mRNA expression in the metastatic group was significantly higher than in any other group (P=0.003, P=0.0001, respectively) and significantly associated with lymph node metastasis and peritoneal dissemination. The cells in bone marrow with metastatic cancer stained strongly with ID1 compared with those of healthy volunteers. The expression of ID1 mRNA in bone marrow and peripheral blood was significantly associated with lymph node metastasis and peritoneal dissemination, and therefore constitutes a predictable marker for lymph node metastasis and peritoneal dissemination.
Collapse
Affiliation(s)
- M Iwatsuki
- Department of Surgical Oncology, Medical Institute of Bioregulation, Kyushu University, 4546 Tsurumihara, Beppu 874-0838, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Apigenin inhibits proliferation of ovarian cancer A2780 cells through Id1. FEBS Lett 2009; 583:1999-2003. [PMID: 19447105 DOI: 10.1016/j.febslet.2009.05.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 05/05/2009] [Accepted: 05/08/2009] [Indexed: 11/22/2022]
Abstract
Apigenin, a common dietary flavonoid, has been shown to possess anti-tumor properties. However, the mechanism by which apigenin inhibits cancer cells is not fully understood. Id1 (inhibitor of differentiation or DNA binding protein 1) contributes to tumorigenesis by stimulating cell proliferation, inhibiting cell differentiation and facilitating tumor neoangiogenesis. Elevated Id1 is found in ovarian cancers and its level correlates with the malignant potential of ovarian tumors. Therefore, Id1 is a potential target for ovarian cancer treatment. Here, we demonstrate that apigenin inhibits proliferation and tumorigenesis of human ovarian cancer A2780 cells through Id1. Apigenin suppressed the expression of Id1 through activating transcription factor 3 (ATF3). Our results may elucidate a new mechanism underlying the inhibitory effects of apigenin on cancer cells.
Collapse
|
42
|
Shuno Y, Tsuno NH, Okaji Y, Tsuchiya T, Sakurai D, Nishikawa T, Yoshikawa N, Sasaki K, Hongo K, Tsurita G, Sunami E, Kitayama J, Tokunaga K, Takahashi K, Nagawa H. Id1/Id3 knockdown inhibits metastatic potential of pancreatic cancer. J Surg Res 2008; 161:76-82. [PMID: 19515385 DOI: 10.1016/j.jss.2008.10.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 10/27/2008] [Accepted: 10/30/2008] [Indexed: 11/27/2022]
Abstract
BACKGROUND The Id (inhibitor of DNA binding/differentiation) proteins belong to the helix-loop-helix transcriptional regulatory factors, and play important roles in tumor development. Previously, we and others have shown that targeting Id in tumor cells could have important clinical implications. In the present study, we aimed to evaluate the effects of Id inhibition in human pancreatic cancer cells. MATERIALS AND METHODS Id1 and Id3 were stably double-knockdown in human pancreatic cancer cell line MIA-Paca2 by means of RNA interference. Expression of Id and integrins were analyzed by flow-cytometry. Cell proliferation was evaluated by MTS assay. Migration was measured by wound closure assay. Adhesion assay was performed to evaluate binding capacity for different extracellular matrix proteins. Finally, in vivo properties of tumor cells were observed in a mouse model of peritoneal metastasis. RESULTS Id1/Id3 double-knockdown resulted in decreased ability of pancreatic cancer cells to proliferate and migrate. In addition, Id1/Id3 double-knockdown caused decreased expression of integrins alpha3, alpha6, and beta1, and consequently reduced adhesion of tumor cells to laminin. Finally, peritoneal metastases of Id1/Id3 double-knockdown tumor cells were significantly reduced. CONCLUSIONS We concluded that the Id proteins play a pivotal role in the development of peritoneal metastasis of pancreatic cancer, and consequently, their targeting would be a novel strategy for the prevention and treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Yasutaka Shuno
- Department of Surgical Oncology, University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Expression of the inhibitor of DNA-binding (ID)-1 protein as an angiogenic mediator in tumour advancement of uterine cervical cancers. Br J Cancer 2008; 99:1557-63. [PMID: 19002177 PMCID: PMC2584935 DOI: 10.1038/sj.bjc.6604722] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The ID protein, an inhibitor of basic helix-loop-helix (HLH) transcription factors, has been involved in multiple cellular processes. To investigate the association between tumour advancement and ID expressions of uterine cervical cancers, the levels of ID-1, ID-2 and ID-3 mRNAs were determined by real-time reverse transcription-polymerase chain reaction and the histoscore with the localisation of ID-1 was determined by immunohistochemistry and patient survival in 60 patients. ID-1 histoscores and mRNA levels both significantly (P<0.05) increased in uterine cervical cancers according to clinical stage regardless of histopathological type or lymph node metastasis. Furthermore, the 36-month survival rate of the 30 patients with high ID-1 was poor (60%), whereas that of the other 30 patients with low ID-1 was significantly higher (83%). ID-1 histoscores and mRNA levels significantly (P<0.0001) correlated with microvessel counts in uterine cervical cancers. Tumour cells show mostly diffuse to strong cytoplasmic expression of ID-1 and also very faint expression in endothelial cells. Moreover, ID-1 expression not only correlated with microvessel counts but also correlated significantly with histoscore. Therefore, ID-1 might work on tumour advancement through angiogenic activity and is considered to be a candidate for a prognostic indicator in uterine cervical cancers.
Collapse
|
44
|
Kawamoto M, Ishiwata T, Cho K, Uchida E, Korc M, Naito Z, Tajiri T. Nestin expression correlates with nerve and retroperitoneal tissue invasion in pancreatic cancer. Hum Pathol 2008; 40:189-98. [PMID: 18799194 DOI: 10.1016/j.humpath.2008.02.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 02/01/2008] [Accepted: 02/05/2008] [Indexed: 10/21/2022]
Abstract
Nestin was first described as an intermediate filament protein expressed in neuroepithelial stem cells. Nestin expression has also been reported in brain tumors, schwannomas, gastrointestinal stromal tumors, and melanomas. In the pancreas, Nestin expression has been detected in exocrine and mesenchymal cells, including stellate cells, pericytes, and endothelial cells. In the present study, we examined Nestin expression in human pancreatic ductal adenocarcinoma and sought to determine its role in this malignancy. Reverse transcription-polymerase chain reaction analysis demonstrated the presence of Nestin mRNA in all 10 tested pancreatic cancer cell lines, and quantitative reverse transcription-polymerase chain reaction revealed that Nestin mRNA levels were highest in PANC-1 cells and lowest in PK-8 cells. Immunofluorescent analysis revealed that Nestin localized in the outer cytoplasm of PANC-1 cells. Nestin immunoreactivity was present in the cancer cells in 20 (33.3%) of 60 cancer cases, and its expression was confirmed by in situ hybridization. Nestin expression was also increased in peripheral nerve fibers adjacent to cancer cells and in peripheral nerve fibers invaded by cancer cells. Clinicopathologically, there was a statistically significant association between Nestin expression in pancreatic cancer cells and nerve invasion (P = .010) and the presence of cancer cells in the tumor resection margins (P = .003). Nestin-positive cases exhibited similar survival after resection by comparison with Nestin-negative cases, irrespective of whether they were given adjuvant therapy. These findings indicate that Nestin expression in pancreatic cancer cells may contribute to nerve and stromal invasion in this malignancy.
Collapse
Affiliation(s)
- Masao Kawamoto
- Surgery for Organ and Biological Regulation-Department of Surgery I, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Hawthorn L, Stein L, Varma R, Wiseman S, Loree T, Tan D. TIMP1 and SERPIN-A overexpression and TFF3 and CRABP1 underexpression as biomarkers for papillary thyroid carcinoma. Head Neck 2008; 26:1069-83. [PMID: 15515157 DOI: 10.1002/hed.20099] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND No molecular pathways or specific genes are consistently associated with sporadic cases of papillary thyroid carcinoma (PTC), despite that it is the most common thyroid malignancy. Nodular goiter is an enlargement of the thyroid that is a compensatory response to a perturbation in normal thyroid homeostasis. It has been disputed in the literature that patients presenting with goiter have a higher incidence of PTC. The identification of molecular events that are common to both goiter and PTC could explain the overlap of these two disorders. METHODS We used high-density oligonuleotide arrays to perform molecular profiling of PTC and nodular goiter with paired normal samples. RESULTS Specifically, increased expression of SERPIN-A (proteinase inhibitor-alpha antitrypsin) and TIMP 1 (tissue inhibitor of metalloproteinase 1) identified these as candidate molecular biomarkers for PTC. Decreases in the CRABP1 (cellular retinoic acid binding protein 1) and TFF3 (trefoil factor 3) expression levels identified these as candidate molecular biomarkers as well. The same analysis was performed to identify genes showing specific alterations in goiter tissues. CONCLUSIONS This is the first report to our knowledge that compares the gene expression profiles of PTC and goiter. Our results suggest that PTC and goiter share very limited overlap in transcript expression.
Collapse
Affiliation(s)
- Lesleyann Hawthorn
- Department of Cancer Genetics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York 14263, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Albores-Saavedra J, Weimersheimer-Sandoval M, Chable- Montero F, Montante-Montes de Oca D, Hruban RH, Henson DE. The foamy variant of pancreatic intraepithelial neoplasia. Ann Diagn Pathol 2008; 12:252-259. [DOI: 10.1016/j.anndiagpath.2007.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Tsunedomi R, Iizuka N, Tamesa T, Sakamoto K, Hamaguchi T, Somura H, Yamada M, Oka M. Decreased ID2 promotes metastatic potentials of hepatocellular carcinoma by altering secretion of vascular endothelial growth factor. Clin Cancer Res 2008; 14:1025-31. [PMID: 18281534 DOI: 10.1158/1078-0432.ccr-07-1116] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We aimed to explore the molecular and biological functions of Inhibitor of DNA binding/differentiation 2 (ID2), which was found to be responsible for portal vein invasion of hepatocellular carcinoma (HCC). EXPERIMENTAL DESIGN We measured ID2 mRNA levels in 92 HCC patients by real-time reverse transcription-PCR and examined the relation to clinicopathologic features. To clarify the precise roles of ID2, we did in vitro analysis with expression vectors and small interfering RNAs. Effects of ID2 on cell invasive potential and expression of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1alpha were analyzed by Matrigel-coated invasion chamber, ELISA, and Western blot analysis, respectively. RESULTS ID2 mRNA level correlated inversely with portal vein invasion (P < 0.001), tumor-node-metastasis stage (P < 0.001), tumor size (P < 0.001), and early intrahepatic recurrence (P < 0.05). When limited to a cohort of hepatitis C virus-related HCCs, patients with low levels of ID2 had significantly shorter disease-free survival time than those with high levels of ID2. Invasive potential of cells transfected with ID2 expression vector was lower than that of empty vector-transfected cells. Cells overexpressing ID2 also showed decreased VEGF secretion and hypoxia-inducible factor-1alpha protein levels. The results of ID2-knockdown experiments were opposite to those of ID2 overexpression experiments. CONCLUSIONS On the basis of our clinical and in vitro data, we suggest that ID2 plays a significant role in the metastatic process during progression of HCC. This action might be explained, at least in part, by altered cell mobility due to decreased secretion of VEGF.
Collapse
Affiliation(s)
- Ryouichi Tsunedomi
- Department of Digestive Surgery and Surgical Oncology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Kamalian L, Gosney JR, Forootan SS, Foster CS, Bao ZZ, Beesley C, Ke Y. Increased Expression of Id Family Proteins in Small Cell Lung Cancer and its Prognostic Significance. Clin Cancer Res 2008; 14:2318-25. [DOI: 10.1158/1078-0432.ccr-07-4716] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Cao D, Ashfaq R, Goggins MG, Hruban RH, Kern SE, Iacobuzio-Donahue CA. Differential expression of multiple genes in association with MADH4/DPC4/SMAD4 inactivation in pancreatic cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2008; 1:510-517. [PMID: 18787631 PMCID: PMC2480582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 04/10/2008] [Indexed: 05/26/2023]
Abstract
The Gene Logic Inc. Gene Express(R) tools and Affymetrix GeneChip(R) arrays were utilized to discover genes differentially expressed in pancreatic cancers with MADH4/DPC4/SMAD4 gene inactivation. cDNA was prepared from thirteen pancreas cancer cell lines with known MADH4 status (5 with wild-type MADH4 and 8 with inactivated MADH4) and hybridized to the complete Affymetrix Human Genome U133 GeneChip(R) set (arrays U133 A,B) for simultaneous analysis of 45,000 gene fragments corresponding to 33,000 known genes. 25 known genes were identified as down-regulated at least three fold in the MADH4 mutant cancer cell lines. 9 were decreased in expression at least 5 fold, and 1 in particular (ID3) was decreased 23 fold. Only 2 of the 25 down-regulated genes (ID1 and ID3) have been previously reported as MADH4-dependent targets, and the remaining 23 genes represent potential novel direct or indirect MADH4 downstream targets. Immunolabeling for Id1 and Id3 did not show a relationship with known MADH4 status in pancreatic cancer tissues, suggesting additional regulation of these two genes than activation by MadH4. Further investigations to validate and to determine the significance of these candidate target genes in pancreatic carcinogenesis and progression are warranted.
Collapse
Affiliation(s)
- Dengfeng Cao
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins HospitalBaltimore, MD
| | - Raheela Ashfaq
- Department of Pathology, University of Texas Southwestern Medical CenterDallas, TX
| | - Michael G. Goggins
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins HospitalBaltimore, MD
| | - Ralph H. Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins HospitalBaltimore, MD
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins HospitalBaltimore, MD
| | - Scott E. Kern
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins HospitalBaltimore, MD
| | - Christine A. Iacobuzio-Donahue
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins HospitalBaltimore, MD
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins HospitalBaltimore, MD
| |
Collapse
|
50
|
Abstract
Id protein family consists of four members namely Id-1 to Id-4. Different from other basic helix-loop-helix transcription factors, they lack the DNA binding domain. Id proteins have been shown to be dysregulated in many different cancer types and their prognostic value has also been demonstrated. Recently, Id-1 has been shown to be upregulated in oesophageal squamous cell carcinoma (ESCC). However, the prognostic implications of Id proteins in ESCC have not been reported. We examined the expression of the Id proteins in ESCC cell lines and clinical ESCC specimens and found that Id protein expressions were dysregulated in both the ESCC cell lines and specimens. By correlating the expression levels of Id proteins and the clinicopathological data of our patient cohort, we found that M1 stage tumours had significantly higher nuclear Id-1 expression (P=0.012) while high nuclear Id-1 expression could predict development of distant metastasis within 1 year of oesophagectomy (P=0.005). In addition, high levels of Id-2 expression in both cytoplasmic and nuclear regions predicted longer patient survival (P=0.041). Multivariate analysis showed that high-level expression of Id-2 in both cytoplasmic and nuclear regions and lower level of nuclear Id-1 expression were independent favourable predictors of survival in our ESCC patients. Our results suggest that Id-1 may promote distant metastasis in ESCC, and both Id-1 and Id-2 may be used for prognostication for ESCC patients.
Collapse
|