1
|
Fang Y, Ding SY, Zhang M, Steinmann SN, Hu R, Mao BW, Feliu JM, Tian ZQ. Revisiting the Atomistic Structures at the Interface of Au(111) Electrode–Sulfuric Acid Solution. J Am Chem Soc 2020; 142:9439-9446. [DOI: 10.1021/jacs.0c02639] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Song-Yuan Ding
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Meng Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Stephan N. Steinmann
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie UMR 5182, 46 Allée d’Italie, F-69364 Lyon, France
| | - Ren Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bing-Wei Mao
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Juan M. Feliu
- Instituto de Electroquı́mica, Universidad de Alicante, San Vicente del Raspeig, Alicante E-03690, Spain
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces (PCOSS), Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
2
|
ITAYA K. Recent Progresses of Electrochemical Surface Science ∼Importance of Surface Imaging with Atomic Scale∼. ELECTROCHEMISTRY 2015. [DOI: 10.5796/electrochemistry.83.670] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Kingo ITAYA
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University
| |
Collapse
|
3
|
Yoshimoto S, Itaya K. Adsorption and assembly of ions and organic molecules at electrochemical interfaces: nanoscale aspects. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2013; 6:213-235. [PMID: 23772658 DOI: 10.1146/annurev-anchem-062012-092559] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We describe the history of electrochemical scanning tunneling microscopy (STM) and advances made in this field during the past 20 years. In situ STM allows one to monitor various electrode processes, such as the underpotential deposition of copper and silver ions; the specific adsorption of iodine and sulfate/bisulfate ions; electrochemical dissolution processes of silicon and gold single-crystal surfaces in electrolyte solutions; and the molecular assembly of metalloporphyrins, metallophthalocyanines, and fullerenes, at atomic and/or molecular resolution. Furthermore, a laser confocal microscope, combined with a differential interference contrast microscope, enables investigation of the dynamics of electrochemical processes at atomic resolution.
Collapse
Affiliation(s)
- Soichiro Yoshimoto
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto 860-8555, Japan
| | | |
Collapse
|
4
|
Comas-Vives A, Bandlow J, Jacob T. Ab initio study of the electrochemical H2SO4/Pt(111) interface. Phys Chem Chem Phys 2013; 15:992-7. [DOI: 10.1039/c2cp43054a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Su Z, Climent V, Leitch J, Zamlynny V, Feliu JM, Lipkowski J. Quantitative SNIFTIRS studies of (bi)sulfate adsorption at the Pt(111) electrode surface. Phys Chem Chem Phys 2010; 12:15231-9. [PMID: 21046024 DOI: 10.1039/c0cp00860e] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Subtractively normalized interfacial Fourier transform infrared reflection spectroscopy (SNIFTIRS) was applied to study (bi)sulfate adsorption on a Pt(111) surface in solutions of variable pH while maintaining a constant total bisulfate/sulfate ((bi)sulfate) concentration without the addition of an inert supporting electrolyte. The spectra were recorded for both the p- and s-polarizations of the IR radiation in order to differentiate between the IR bands of the (bi)sulfate species adsorbed on the electrode surface from those species located in the thin layer of electrolyte. The spectra recorded with p-polarized light consist of the IR bands from both the species adsorbed at the electrode surface and those present in the thin layer of electrolyte between the electrode surface and ZnSe window whereas the s-polarized spectra contain only the IR bands from the species located in the thin layer of electrolyte. A new procedure was developed to calculate the angle of incidence and thickness of the electrolyte between the Pt(111) electrode surface and the ZnSe IR transparent window. By combining these values with the knowledge of the optical constants for Pt, H(2)O and ZnSe, the mean square electric field strength (MSEFS) at the Pt(111) electrode surface and for thin layer of solution were accurately calculated. The spectra recorded using s-polarization were multiplied by the ratio of the average MSEFS for p- and s-polarizations and subtracted from the spectra recorded using p-polarization in order to remove the IR bands that arise from the species present within the thin layer cavity. In this manner, the resulting IR spectra contain only the IR bands for the anions adsorbed on the Pt(111) electrode surface. The spectra of adsorbed anions show little change with respect to the pH ranging from 1 to 5.6. This behavior indicates that the same species is predominantly adsorbed on the metal surface for this broad range of pH values and the results suggest that sulfate is the most likely candidate for this adsorbate.
Collapse
Affiliation(s)
- Zhangfei Su
- Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | | | | | |
Collapse
|
6
|
Abstract
Density Functional Theory (DFT) studies were performed on the adsorption of sulfate on Au(111). Focusing on the well-known (√3 × √7)R19.1° structure reported by various surface sensitive techniques, the coadsorption of H3O+ and/or H2O has been considered in different combinations. The calculated binding energies show that the coadsorption of a single H3O+ per sulfate is the most stable configuration, which is in agreement with experimental observations. Further, we find that in the case of coadsorption of both H3O+ and H2O along with sulfate, one of the protons of hydronium moves to sulfate, finally leading to bisulfate with two coadsorbed water molecules. Besides the morphology and energetics of the different configurations, we also discuss the nature of the surface bonds by analyzing the charge density distribution.
Collapse
|
7
|
Preparation and electrochemical characterization of low-index rhodium single crystal electrodes in sulfuric acid. Electrochim Acta 2009. [DOI: 10.1016/j.electacta.2009.04.061] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Effect of sulfuric acid concentration on the structure of sulfate adlayer on Au(111) electrode. Electrochem commun 2006. [DOI: 10.1016/j.elecom.2006.03.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
9
|
Wandlowski T, Ataka K, Pronkin S, Diesing D. Surface enhanced infrared spectroscopy—Au(1 1 1-20nm)/sulphuric acid—new aspects and challenges. Electrochim Acta 2004. [DOI: 10.1016/j.electacta.2003.06.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Molecular insights for how preferred oxoanions bind to and stabilize transition-metal nanoclusters: a tridentate, C3 symmetry, lattice size-matching binding model. Coord Chem Rev 2004. [DOI: 10.1016/j.cct.2003.08.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Zheng W, Tadjeddine A. Adsorption processes and structure of water molecules on Pt(110) electrodes in perchloric solutions. J Chem Phys 2003. [DOI: 10.1063/1.1628220] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
12
|
Rodríguez Nieto FJ, Andreasen G, Martins ME, Castez F, Salvarezza RC, Arvia AJ. Scanning Tunneling Microscopy, Voltammetry, and X-ray Photoelectron Spectroscopy Study of the Early Stages of Electrochemical Faceting of Gold (111) in Aqueous Sulfuric and Perchloric Acid. J Phys Chem B 2003. [DOI: 10.1021/jp0353542] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Felipe J. Rodríguez Nieto
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA, Universidad Nacional de La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas) Sucursal 4, Casilla de Correo 16, (1900) La Plata, Argentina
| | - Gustavo Andreasen
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA, Universidad Nacional de La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas) Sucursal 4, Casilla de Correo 16, (1900) La Plata, Argentina
| | - María E. Martins
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA, Universidad Nacional de La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas) Sucursal 4, Casilla de Correo 16, (1900) La Plata, Argentina
| | - Federico Castez
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA, Universidad Nacional de La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas) Sucursal 4, Casilla de Correo 16, (1900) La Plata, Argentina
| | - Roberto C. Salvarezza
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA, Universidad Nacional de La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas) Sucursal 4, Casilla de Correo 16, (1900) La Plata, Argentina
| | - Alejandro J. Arvia
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA, Universidad Nacional de La Plata-Consejo Nacional de Investigaciones Científicas y Técnicas) Sucursal 4, Casilla de Correo 16, (1900) La Plata, Argentina
| |
Collapse
|
13
|
Lachenwitzer A, Li N, Lipkowski J. Determination of the acid dissociation constant for bisulfate adsorbed at the Pt(111) electrode by subtractively normalized interfacial Fourier transform infrared spectroscopy. J Electroanal Chem (Lausanne) 2002. [DOI: 10.1016/s0022-0728(02)00759-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Affiliation(s)
- O M Magnussen
- Abteilung Oberflächenchemie und Katalyse, Universität Ulm, 89069 Ulm, Germany
| |
Collapse
|
15
|
In situ IRAS and STM of adsorbate structures on an Ir(111) electrode in sulfuric acid electrolyte. J Electroanal Chem (Lausanne) 2001. [DOI: 10.1016/s0022-0728(01)00567-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Shingaya Y, Ito M. Temperature dependence of adlayers on Pt(111) and Au(111) in a sulfuric acid solution studied by in situ IRAS. Chem Phys Lett 2001. [DOI: 10.1016/s0009-2614(01)00374-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Shingaya Y, Ito M. Comparison of a bisulfate anion adsorbed on M(111) (M=Pt, Rh, Au, Ag and Cu). J Electroanal Chem (Lausanne) 1999. [DOI: 10.1016/s0022-0728(99)00085-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|