1
|
Khan R, Laumet G, Leinninger GM. Hungry for relief: Potential for neurotensin to address comorbid obesity and pain. Appetite 2024; 200:107540. [PMID: 38852785 DOI: 10.1016/j.appet.2024.107540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Chronic pain and obesity frequently occur together. An ideal therapy would alleviate pain without weight gain, and most optimally, could promote weight loss. The neuropeptide neurotensin (Nts) has been separately implicated in reducing weight and pain but could it be a common actionable target for both pain and obesity? Here we review the current knowledge of Nts signaling via its receptors in modulating body weight and pain processing. Evaluating the mechanism by which Nts impacts ingestive behavior, body weight, and analgesia has potential to identify common physiologic mechanisms underlying weight and pain comorbidities, and whether Nts may be common actionable targets for both.
Collapse
Affiliation(s)
- Rabail Khan
- Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Geoffroy Laumet
- Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA; Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Gina M Leinninger
- Neuroscience Program, Michigan State University, East Lansing, MI, 48824, USA; Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
2
|
Abalenikhina YV, Isayeva MO, Mylnikov PY, Shchulkin AV, Yakusheva EN. Mechanism of Stimulation of Myogenesis under the Action of Succinic Acid through the Succinate Receptor SUCNR1. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1325-1335. [PMID: 39218028 DOI: 10.1134/s0006297924070137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 09/04/2024]
Abstract
Effect of succinic acid on the processes of myogenesis was investigated in the study with the cells of C2C12 line. In the concentration range 10-1000 µM, succinic acid stimulated the process of myogenic differentiation, increasing the levels of myogenesis factors MyoD (at all stages of myogenesis) and myogenin (at the stage of terminal differentiation). Presence of the succinate receptors SUCNR1 was revealed in the C2C12 cells using Western blotting, level of which decreased during myogenesis. When succinic acid was added to the cells, the level of intracellular succinate did not change significantly and decreased during myogenic differentiation. Using a specific Gai protein inhibitor, pertussis toxin, it was found that stimulation of myogenesis in the C2C12 cells under the action of succinic acid is realized through SUCNR1-Gai interaction.
Collapse
|
3
|
Pearson AC, Shrestha K, Curry TE, Duffy DM. Neurotensin modulates ovarian vascular permeability via adherens junctions. FASEB J 2024; 38:e23602. [PMID: 38581236 PMCID: PMC11034770 DOI: 10.1096/fj.202302652rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
Neurotensin (NTS) is a 13-amino acid peptide which is highly expressed in the mammalian ovary in response to the luteinizing hormone surge. Antibody neutralization of NTS in the ovulatory follicle of the cynomolgus macaque impairs ovulation and induces follicular vascular dysregulation, with excessive pooling of red blood cells in the follicle antrum. We hypothesize that NTS is an essential intrafollicular regulator of vascular permeability. In the present study, follicle injection of the NTS receptor antagonist SR142948 also resulted in vascular dysregulation. To measure vascular permeability changes in vitro, primary macaque ovarian microvascular endothelial cells (mOMECs) were enriched from follicle aspirates and studied in vitro. When treated with NTS, permeability of mOMECs decreased. RNA sequencing (RNA-Seq) of mOMECs revealed high mRNA expression of the permeability-regulating adherens junction proteins N-cadherin (CDH2) and K-cadherin (CDH6). Immunofluorescent detection of CDH2 and CDH6 confirmed expression and localized these cadherins to the cell-cell boundaries, consistent with function as components of adherens junctions. mOMECs did not express detectable levels of the typical vascular endothelial cadherin, VE-cadherin (CDH5) as determined by RNA-Seq, qPCR, western blot, and immunofluorescence. Knockdown of CDH2 or CDH6 via siRNA abrogated the NTS effect on mOMEC permeability. Collectively, these data suggest that NTS plays an ovulation-critical role in vascular permeability maintenance, and that CDH2 and CDH6 are involved in the permeability modulating effect of NTS on the ovarian microvasculature. NTS can be added to a growing number of angiogenic regulators which are critical for successful ovulation.
Collapse
Affiliation(s)
- Andrew C. Pearson
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA, 23507
| | - Ketan Shrestha
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington, KY, USA, 40536
| | - Thomas E. Curry
- Department of Obstetrics and Gynecology, University of Kentucky, Lexington, KY, USA, 40536
| | - Diane M. Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA, 23507
| |
Collapse
|
4
|
Hewitt N, Ma N, Arang N, Martin SA, Prakash A, DiBerto JF, Knight KM, Ghosh S, Olsen RHJ, Roth BL, Gutkind JS, Vaidehi N, Campbell SL, Dohlman HG. Catalytic site mutations confer multiple states of G protein activation. Sci Signal 2023; 16:eabq7842. [PMID: 36787384 PMCID: PMC10021883 DOI: 10.1126/scisignal.abq7842] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023]
Abstract
Heterotrimeric guanine nucleotide-binding proteins (G proteins) that function as molecular switches for cellular growth and metabolism are activated by GTP and inactivated by GTP hydrolysis. In uveal melanoma, a conserved glutamine residue critical for GTP hydrolysis in the G protein α subunit is often mutated in Gαq or Gα11 to either leucine or proline. In contrast, other glutamine mutations or mutations in other Gα subtypes are rare. To uncover the mechanism of the genetic selection and the functional role of this glutamine residue, we analyzed all possible substitutions of this residue in multiple Gα isoforms. Through cell-based measurements of activity, we showed that some mutants were further activated and inactivated by G protein-coupled receptors. Through biochemical, molecular dynamics, and nuclear magnetic resonance-based structural studies, we showed that the Gα mutants were functionally distinct and conformationally diverse, despite their shared inability to hydrolyze GTP. Thus, the catalytic glutamine residue contributes to functions beyond GTP hydrolysis, and these functions include subtype-specific, allosteric modulation of receptor-mediated subunit dissociation. We conclude that G proteins do not function as simple on-off switches. Rather, signaling emerges from an ensemble of active states, a subset of which are favored in disease and may be uniquely responsive to receptor-directed ligands.
Collapse
Affiliation(s)
- Natalie Hewitt
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ning Ma
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Nadia Arang
- Department of Pharmacology, University of California San Diego, San Diego, CA, 92093, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Sarah A. Martin
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeffrey F. DiBerto
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kevin M. Knight
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Soumadwip Ghosh
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Current address: Illumina Inc, 5200 Illumina Way, San Diego, CA 92037, USA
| | - Reid H. J. Olsen
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Current address: GPCR Pharmacology, Discovery Biology, Exscientia Ai, Oxford, UK OX4 4GE
| | - Bryan L. Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - J. Silvio Gutkind
- Department of Pharmacology, University of California San Diego, San Diego, CA, 92093, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Sharon L. Campbell
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Henrik G. Dohlman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
5
|
Ramirez-Virella J, Leinninger GM. The Role of Central Neurotensin in Regulating Feeding and Body Weight. Endocrinology 2021; 162:6144574. [PMID: 33599716 PMCID: PMC7951050 DOI: 10.1210/endocr/bqab038] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Indexed: 12/16/2022]
Abstract
The small peptide neurotensin (Nts) is implicated in myriad processes including analgesia, thermoregulation, reward, arousal, blood pressure, and modulation of feeding and body weight. Alterations in Nts have recently been described in individuals with obesity or eating disorders, suggesting that disrupted Nts signaling may contribute to body weight disturbance. Curiously, Nts mediates seemingly opposing regulation of body weight via different tissues. Peripherally acting Nts promotes fat absorption and weight gain, whereas central Nts signaling suppresses feeding and weight gain. Thus, because Nts is pleiotropic, a location-based approach must be used to understand its contributions to disordered body weight and whether the Nts system might be leveraged to improve metabolic health. Here we review the role of Nts signaling in the brain to understand the sites, receptors, and mechanisms by which Nts can promote behaviors that modify body weight. New techniques permitting site-specific modulation of Nts and Nts receptor-expressing cells suggest that, even in the brain, not all Nts circuitry exerts the same function. Intriguingly, there may be dedicated brain regions and circuits via which Nts specifically suppresses feeding behavior and weight gain vs other Nts-attributed physiology. Defining the central mechanisms by which Nts signaling modifies body weight may suggest strategies to correct disrupted energy balance, as needed to address overweight, obesity, and eating disorders.
Collapse
Affiliation(s)
- Jariel Ramirez-Virella
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Gina M Leinninger
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
- Department of Physiology, Michigan State University, East Lansing, Michigan, USA
- Correspondence: Gina M. Leinninger, PhD, Department of Physiology, Michigan State University, 5400 ISTB, 766 Service Rd, East Lansing, MI 48824, USA.
| |
Collapse
|
6
|
Dijkman PM, Muñoz-García JC, Lavington SR, Kumagai PS, dos Reis RI, Yin D, Stansfeld PJ, Costa-Filho AJ, Watts A. Conformational dynamics of a G protein-coupled receptor helix 8 in lipid membranes. SCIENCE ADVANCES 2020; 6:eaav8207. [PMID: 32851152 PMCID: PMC7428336 DOI: 10.1126/sciadv.aav8207] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 07/02/2020] [Indexed: 05/21/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest and pharmaceutically most important class of membrane proteins encoded in the human genome, characterized by a seven-transmembrane helix architecture and a C-terminal amphipathic helix 8 (H8). In a minority of GPCR structures solved to date, H8 either is absent or adopts an unusual conformation. The controversial existence of H8 of the class A GPCR neurotensin receptor 1 (NTS1) has been examined here for the nonthermostabilized receptor in a functionally supporting membrane environment using electron paramagnetic resonance, molecular dynamics simulations, and circular dichroism. Lipid-protein interactions with phosphatidylserine and phosphatidylethanolamine lipids, in particular, stabilize the residues 374 to 390 of NTS1 into forming a helix. Furthermore, introduction of a helix-breaking proline residue in H8 elicited an increase in ß-arrestin-NTS1 interactions observed in pull-down assays, suggesting that the structure and/or dynamics of H8 might play an important role in GPCR signaling.
Collapse
Affiliation(s)
- Patricia M. Dijkman
- Biomembrane Structure Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Juan C. Muñoz-García
- Biomembrane Structure Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Steven R. Lavington
- Biomembrane Structure Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Patricia Suemy Kumagai
- Biomembrane Structure Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São-Carlense 400, C.P. 369, São Carlos SP 13560-970, Brazil
| | - Rosana I. dos Reis
- Biomembrane Structure Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Daniel Yin
- Biomembrane Structure Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Phillip J. Stansfeld
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- School of Life Sciences & Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Antonio José Costa-Filho
- Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto SP 14040-901, Brazil
| | - Anthony Watts
- Biomembrane Structure Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- Corresponding author.
| |
Collapse
|
7
|
Besserer-Offroy É, Brouillette RL, Lavenus S, Froehlich U, Brumwell A, Murza A, Longpré JM, Marsault É, Grandbois M, Sarret P, Leduc R. The signaling signature of the neurotensin type 1 receptor with endogenous ligands. Eur J Pharmacol 2017; 805:1-13. [DOI: 10.1016/j.ejphar.2017.03.046] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/15/2017] [Accepted: 03/21/2017] [Indexed: 12/17/2022]
|
8
|
Bolivar JH, Muñoz-García JC, Castro-Dopico T, Dijkman PM, Stansfeld PJ, Watts A. Interaction of lipids with the neurotensin receptor 1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1278-87. [DOI: 10.1016/j.bbamem.2016.02.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 02/02/2016] [Accepted: 02/24/2016] [Indexed: 10/22/2022]
|
9
|
Dijkman PM, Watts A. Lipid modulation of early G protein-coupled receptor signalling events. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2889-97. [DOI: 10.1016/j.bbamem.2015.08.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/20/2015] [Accepted: 08/10/2015] [Indexed: 11/29/2022]
|
10
|
Furutani N, Hondo M, Kageyama H, Tsujino N, Mieda M, Yanagisawa M, Shioda S, Sakurai T. Neurotensin co-expressed in orexin-producing neurons in the lateral hypothalamus plays an important role in regulation of sleep/wakefulness states. PLoS One 2013; 8:e62391. [PMID: 23620827 PMCID: PMC3631195 DOI: 10.1371/journal.pone.0062391] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 03/24/2013] [Indexed: 02/03/2023] Open
Abstract
Both orexin and neurotensin are expressed in the lateral hypothalamic area (LHA) and have been implicated in the regulation of feeding, motor activity and the reward system. A double label immunofluorescence and in situ hybridization studies showed that neurotensin colocalizes with orexin in neurons of the LHA. Pharmacological studies suggested that neurotensin excites orexin-producing neurons (orexin neurons) through activation of neurotensin receptor-2 (NTSR-2) and non-selective cation channels. In situ hybridization study showed that most orexin neurons express neurotensin receptor-2 mRNA but not neurotensin receptor-1 (Ntsr-1) mRNA. Immunohistochemical studies showed that neurotensin-immunoreactive fibers make appositions to orexin neurons. A neurotensin receptor antagonist decreased Fos expression in orexin neurons and wakefulness time in wild type mice when administered intraperitoneally. However, the antagonist did not evoke any effect on these parameters in orexin neuron-ablated mice. These observations suggest the importance of neurotensin in maintaining activity of orexin neurons. The evidence presented here expands our understanding of the regulatory mechanism of orexin neurons.
Collapse
Affiliation(s)
- Naoki Furutani
- Department of Molecular Neuroscience and Integrative Physiology, Faculty of Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Mari Hondo
- Department of Molecular Neuroscience and Integrative Physiology, Faculty of Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
- Center for Behavioral Molecular Genetics, University of Tsukuba, Tsukuba, Japan
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
| | - Haruaki Kageyama
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | - Natsuko Tsujino
- Department of Molecular Neuroscience and Integrative Physiology, Faculty of Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Michihiro Mieda
- Department of Molecular Neuroscience and Integrative Physiology, Faculty of Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Masashi Yanagisawa
- Center for Behavioral Molecular Genetics, University of Tsukuba, Tsukuba, Japan
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Seiji Shioda
- Department of Anatomy, Showa University School of Medicine, Tokyo, Japan
| | - Takeshi Sakurai
- Department of Molecular Neuroscience and Integrative Physiology, Faculty of Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
- * E-mail:
| |
Collapse
|
11
|
Nimitvilai S, Arora DS, McElvain MA, Brodie MS. Suppression of Gq Function Using Intra-Pipette Delivery of shRNA during Extracellular Recording in the Ventral Tegmental Area. Front Cell Neurosci 2013; 7:7. [PMID: 23408114 PMCID: PMC3569574 DOI: 10.3389/fncel.2013.00007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/16/2013] [Indexed: 11/13/2022] Open
Abstract
Selective suppression of protein function in the brain can be achieved using specific silencing RNAs administered in vivo. A viral delivery system is often employed to transfect neurons with small hairpin RNA (shRNA) directed against specific proteins, and intervals of several days are allowed between microinjection of the shRNA-containing virus into the brain and experiments to assess suppression of gene function. Here we report studies using extracellular recording of dopaminergic neurons of the ventral tegmental area (DA VTA neurons) recorded in brain slices in which lentivirus containing shRNA directed against Gq was included in the recording pipette, and suppression of Gq-related function was observed within the time frame of the recording. The action of neurotensin (NT) is associated with activation of Gq, and the firing rate of DA VTA neurons is increased by NT. With shRNA directed against Gq in the pipette, there was a significant reduction of NT excitation within 2 h. Likewise, time-dependent dopamine desensitization, which we have hypothesized to be Gq-dependent, was not observed when shRNA directed against Gq was present in the pipette and dopamine was tested 2 h after initiation of recording. As the time interval (2 h) is relatively short, we tested whether blockade of protein synthesis with cycloheximide delivered via the recording pipette would alter Gq-linked responses similarly. Both NT-induced excitation and dopamine desensitization were inhibited in the presence of cycloheximide. Inclusion of shRNA in the recording pipette may be an efficient and selective way to dampen responses linked to Gq, and, more generally, the use of lentiviral-packaged shRNA in the recording pipette is a means to produce selective inhibition of the function of specific proteins in experiments.
Collapse
Affiliation(s)
- Sudarat Nimitvilai
- Department of Physiology and Biophysics, University of Illinois at Chicago Chicago, IL, USA
| | | | | | | |
Collapse
|
12
|
Almeida TA, Rodriguez Y, Hernández M, Reyes R, Bello AR. Differential expression of new splice variants of the neurotensin receptor 1 gene in human prostate cancer cell lines. Peptides 2010; 31:242-7. [PMID: 20018219 DOI: 10.1016/j.peptides.2009.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 12/04/2009] [Accepted: 12/04/2009] [Indexed: 11/18/2022]
Abstract
Neurotensin is a neuroendocrine peptide acting as a trophic factor in a variety of cells in vivo but it can also function as an autocrine growth factor in human prostate cancer cells in vitro. In addition, the high-affinity G protein-coupled NT receptor (NTS1) is overexpressed in prostate cancer cell lines. Increasing evidence argues for a direct correlation between specific alternative splice variants and cancer. We detected four splice variants of the NTS1 receptor in human prostate cancer cell lines. These isoforms include one or more exons skipping as well as an alternative 5' splice donor site and are expressed in the late-stage androgen independent prostate cancer cell lines PC3 and DU145, but not in the early-stage androgen-sensitive LNCaP or in normal prostate tissue, which only express the normal transcript. This result shows new splice variants of NTS1 for the first time. The differential expression observed among prostate cancer cell lines and normal prostate tissue opens the interesting possibility of a new role of NT/NTS1 pathway in prostate cancer.
Collapse
Affiliation(s)
- Teresa A Almeida
- Laboratorio de Genética, Instituto Universitario de Enfermedades Tropicales de Canarias, Universidad de La Laguna, Avda. Astrofísico Francisco Sánchez s/n, 38206 La Laguna, Canarias, Spain.
| | | | | | | | | |
Collapse
|
13
|
Li S, Geiger JD, Lei S. Neurotensin Enhances GABAergic Activity in Rat Hippocampus CA1 Region by Modulating L-Type Calcium Channels. J Neurophysiol 2008; 99:2134-43. [DOI: 10.1152/jn.00890.2007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Neurotensin (NT) is a tridecapeptide that interacts with three NT receptors; NTS1, NTS2, and NTS3. Although NT has been reported to modulate GABAergic activity in the brain, the underlying cellular and molecular mechanisms of NT are elusive. Here, we examined the effects of NT on GABAergic transmission and the involved cellular and signaling mechanisms of NT in the hippocampus. Application of NT dose-dependently increased the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) recorded from CA1 pyramidal neurons with no effects on the amplitude of sIPSCs. NT did not change either the frequency or the amplitude of miniature (m)IPSCs recorded in the presence of tetrodotoxin. Triple immunofluorescent staining of recorded interneurons demonstrated the expression of NTS1 on GABAergic interneurons. NT increased the action potential firing rate but decreased the afterhyperpolarization (AHP) amplitude in identified CA1 interneurons. Application of L-type calcium channel blockers (nimodipine and nifedipine) abolished NT-induced increases in action potential firing rate and sIPSC frequency and reduction in AHP amplitude, suggesting that the effects of NT are mediated by interaction with L-type Ca2+channels. NT-induced increase in sIPSC frequency was blocked by application of the specific NTS1 antagonist SR48692, the phospholipase C (PLC) inhibitor U73122, the IP3receptor antagonist 2-APB, and the protein kinase C inhibitor GF109203X, suggesting that NT increases γ-aminobutyric acid release via a PLC pathway. Our results provide a cellular mechanism by which NT controls GABAergic neuronal activity in hippocampus.
Collapse
|
14
|
Wu EHT, Wu KKH, Wong YH. Tuberin: a stimulus-regulated tumor suppressor protein controlled by a diverse array of receptor tyrosine kinases and G protein-coupled receptors. Neurosignals 2007; 15:217-27. [PMID: 17389815 DOI: 10.1159/000101333] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 02/09/2007] [Indexed: 02/02/2023] Open
Abstract
Tuberin, a tumor suppressor protein, is involved in various cellular functions including survival, proliferation, and growth. It has emerged as an important effector regulated by receptor tyrosine kinases (RTKs) and G protein-coupled receptors (GPCRs). Regulation of tuberin by RTKs and GPCRs is highly complex and dependent on the type of receptors and their associated signaling molecules. Apart from Akt, the first kinase recognized to phosphorylate and inactivate tuberin upon growth factor stimulation, an increasing number of kinases upstream of tuberin have been identified. Furthermore, recruitment of different scaffolding adaptor components to the activated receptors appears to play an important role in the regulation of tuberin activity. More recently, the differential regulation of tuberin by various G protein family members have also been intensively studied, it appears that G proteins can both facilitate (e.g., G(i/o)) as well as inhibit (e.g., G(q)) tuberin phosphorylation. In the present review, we attempt to summarize our emerging understandings of the roles of RTKs, GPCRs, and their cross-talk on the regulation of tuberin.
Collapse
Affiliation(s)
- Eddy H T Wu
- Department of Biochemistry, Molecular Neuroscience Center, and Biotechnology Research Institute, Hong Kong University of Science and Technology, Hong Kong, SAR, China
| | | | | |
Collapse
|
15
|
Abstract
Three neurotensin (NT) receptors have been cloned to date, two of which, NTS1 and NTS2, belong to the family of seven transmembrane domain receptors coupled to G proteins (GPCRs). NTS1 and NTS2 may activate multiple signal transduction pathways, involving several G proteins. However, whereas NT acts as an agonist towards all NTS1-mediated pathways, this peptide may exert either agonist or antagonist activities, depending on the NTS2-mediated pathway in question. Studies on these receptors reinforce the concept of independence between multiple signals potentially mediated through a single GPCR, generating a wide diversity of functional responses depending on the host cell and the ligand.
Collapse
Affiliation(s)
- Didier Pelaprat
- INSERM, U.773, CRB3, EA 3512, Faculté de Médecine Xavier Bichat, 16 rue Henri Huchard, BP416, 75870 Paris Cedex 18, France.
| |
Collapse
|
16
|
Abstract
The subtype 1 neurotensin receptor (NTS1) belongs to the family of G protein coupled receptors with seven transmembrane domains and mediates most of the known effects of neurotensin. In the past years, mutagenesis studies have allowed to delineate functional regions of the receptor involved in agonist and antagonist binding, G protein coupling, sodium sensitivity of agonist binding, and agonist-induced receptor internalization. These data are reviewed and discussed in the present paper.
Collapse
Affiliation(s)
- Patrick Kitabgi
- INSERM, UMR S 732, Université Pierre et Marie Curie-Paris 6, Hopital St-Antoine, 184 rue du Faubourg St-Antoine, 75571 Paris Cedex 12, France.
| |
Collapse
|
17
|
Najimi M, Maloteaux JM, Hermans E. Pertussis toxin-sensitive modulation of glutamate transport by endothelin-1 type A receptors in glioma cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1668:195-202. [PMID: 15737330 DOI: 10.1016/j.bbamem.2004.12.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Revised: 11/24/2004] [Accepted: 12/15/2004] [Indexed: 11/15/2022]
Abstract
Endothelin-1 (ET-1) is a 21 amino acids peptide that exerts several biological activities through interaction with specific G-protein coupled receptors. Increased ET-1 expression is frequently associated with pathological situations involving alterations in glutamate levels. In the present study, a brief exposure to ET-1 was found to increase aspartate uptake in C6 glioma cells, which endogenously express the neuronal glutamate transporter EAAC1 (pEC50 of 9.89). The stimulatory effect of ET-1 mediated by ETA receptors corresponds to a 62% increase in the Vmax with no modification of the affinity for the substrate. While protein kinase C activity is known to participate in the regulation of EAAC1, the effect of ET-1 on the glutamate uptake was found to be independent of this kinase activation. In contrast, the inactivation of Go/i type G-protein dependent signaling with pertussis toxin was found to impair ET-1-mediated regulation of EAAC1. An examination of the cell surface expression of EAAC1 by protein biotinylation studies or by confocal analysis of immuno-fluorescence staining demonstrated that ET-1 stimulates EAAC1 translocation to the cell surface. Hence, the disruption of the cytoskeleton with cytochalasin D prevented ET-1-stimulated aspartate uptake. Together, the data presented in the current study suggest that ET-1 participates in the acute regulation of glutamate transport in glioma cells. Considering the documented role of glutamate excitotoxicity in the development of brain tumors, endothelinergic system constitutes a putative target for the pharmacological control of glutamate transmission at the vicinity of glioma cells.
Collapse
Affiliation(s)
- Mustapha Najimi
- Laboratoire de Pharmacologie Expérimentale, Université Catholique de Louvain, 54.10, Avenue Hippocrate 54, 1200 Bruxelles, Belgium.
| | | | | |
Collapse
|
18
|
Pereyra-Alfonso S, López Ordieres MG, del V Armanino M, de Lores Arnaiz GR. High-affinity neurotensin receptor is involved in phosphoinositide hydrolysis stimulation by carbachol in neonatal rat brain. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 154:247-54. [PMID: 15707678 DOI: 10.1016/j.devbrainres.2004.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Revised: 11/15/2004] [Accepted: 11/17/2004] [Indexed: 11/30/2022]
Abstract
Ontogenetic studies indicate that inositol phosphate accumulation in rodent brain tissue by cholinergic muscarinic agonists as well as expression of high-affinity neurotensin receptor (NTS1) peak at 7 days after birth. Herein, potential participation of this receptor in such effect was investigated. Cerebral cortex prisms of 7-day-old rats were preloaded with [3H]myoinositol and later incubated during 60 or 20 min in the presence of muscarinic agonist carbachol plus neurotensin and SR 48692, a non-peptide NTS1 antagonist. In 60-min incubation experiments, inositol phosphate accumulation by 10(-3) M carbachol was roughly 320%, an effect which remained unaltered plus 10(-6) M to 10(-4) M neurotensin but partially decreased with equimolar SR 48692 concentration. In 20-min incubation experiments, inositol phosphate accumulation by 10(-3) M carbachol was circa 240%, a value which attained 320-360% plus 10(-7) M neurotensin; this effect was totally blocked by 10(-7) M SR 48692. It was concluded that in inositol phosphate accumulation by carbachol, besides the cholinergic muscarinic receptor, the NTS1 receptor is likewise involved; findings at 60 min are attributable to the effect of endogenous neurotensin whereas those at 20 min most likely involve both endogenous and exogenously added peptide.
Collapse
Affiliation(s)
- S Pereyra-Alfonso
- Instituto de Biología Celular y Neurociencias Prof. E. De Robertis, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, (1121) Buenos Aires, Argentina
| | | | | | | |
Collapse
|
19
|
Liu F, Yang P, Baez M, Ni B. Neurotensin negatively modulates Akt activity in neurotensin receptor-1-transfected AV12 cells. J Cell Biochem 2004; 92:603-11. [PMID: 15156571 DOI: 10.1002/jcb.20098] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neurotensin (NT) regulates a variety of biological processes primarily through interaction with neurotensin receptor-1 (NTR1), a heterotrimeric G-protein-coupled receptor (GPCR). Stimulation of NTR1 has been linked to activation of multiple signaling transduction pathways via specific coupling to G(q), G(i/o), or G(s), in various cell systems. However, the function of NT/NTR1 in the regulation of the Akt pathway remains unknown. Here, we report that activation of NTR1 by NT inhibits Akt activity as determined by the dephosphorylation of Akt at both Ser473 and Thr308 in AV12 cells constitutively expressing human NTR1 (NTR1/AV12). The inactivation of Akt by NT was rapid and dose-dependent. This effect of NT was completely blocked by the specific NTR1 antagonist, (S)-(+)-[1-(7-chloro-4-quinolinyl)-5-(2,6-dimethoxyphenyl)pyrazol-3-yl)-carbonylamino] cyclohexylacetic acid (SR 48527), but unaffected by the less active enantiomer ((R)-(-)-[1-(7-chloro-4-quinolinyl)-5-(2,6-dimethoxyphenyl)pyrazol-3-yl)-carbonylamino] cyclohexylacetic acid (SR 49711)), indicating the stereospecificity of NTR1 in the negative regulation of Akt. In addition, NT prevented insulin- and epidermal growth factor (EGF)-mediated Akt activation. Our results provide insight into the role of NT in the modulation of Akt signaling and the potential physiological significance of Akt regulation by NT.
Collapse
Affiliation(s)
- Feng Liu
- Lilly Research Laboratories, Indianapolis, Indiana 46225, USA.
| | | | | | | |
Collapse
|
20
|
Skrzydelski D, Lhiaubet AM, Lebeau A, Forgez P, Yamada M, Hermans E, Rostene W, Pelaprat D. Differential involvement of intracellular domains of the rat NTS1 neurotensin receptor in coupling to G proteins: a molecular basis for agonist-directed trafficking of receptor stimulus. Mol Pharmacol 2003; 64:421-9. [PMID: 12869647 DOI: 10.1124/mol.64.2.421] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this work, we evidenced characteristic features of agonist-induced trafficking of receptor stimulus for the rat neurotensin receptor 1 (NTS1). Thus, reverse potency orders between two agonists, EISAI-1 and neuromedin N, were observed in inositol 1,4,5-trisphosphate and cAMP assays in Chinese hamster ovary cells transfected with this receptor. Indeed, compared with other agonists, EISAI-1 presented lower relative potency toward inositol 1,4,5-trisphosphate production than toward cAMP accumulation, guanosine 5'-O -(3-[35 S]thio)triphosphate binding, and [3H]arachidonic acid production. These results indicated pathway-dependent differences in EISAI-1 intrinsic efficacies, favoring activations of Gs- and Gi/o-related pathways over the Gq/11-related pathway. Moreover, although coupling to Gq/11 and Gi/o involved the third intracellular loop and the C-terminal domain of the NTS1 receptor, respectively, we demonstrated that deletion of the latter domain suppressed agonist-induced cAMP accumulation, suggesting that this domain also mediated coupling to Gs. Together, these results indicated that, unlike other agonists, EISAI-1 discriminated between the pathways involving the receptor C-terminal domain and that involving the third intracellular loop. These properties of EISAI-1 were also observed in cortical neurons endogenously expressing the NTS1 receptor. They were further attributed to the functionalization of its COOH end by an ethyl group, because the unesterified analog EISAI-2 presented normal behavior on inositol 1,4,5-trisphosphate production. These findings support the hypothesis of agonist-selective receptor states with distinct conformations or accessibilities of intracellular domains. They also suggest that the differential involvement of these domains in coupling to G proteins might represent a molecular basis for agonist-selective responses through G protein-coupled receptors.
Collapse
Affiliation(s)
- Delphine Skrzydelski
- Institut National de la Santé et de la Recherche Médicale, Unité 339, Hôpital Saint-Antoine, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Hermans E. Biochemical and pharmacological control of the multiplicity of coupling at G-protein-coupled receptors. Pharmacol Ther 2003; 99:25-44. [PMID: 12804697 DOI: 10.1016/s0163-7258(03)00051-2] [Citation(s) in RCA: 222] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
For decades, it has been generally proposed that a given receptor always interacts with a particular GTP-binding protein (G-protein) or with multiple G-proteins within one family. However, for several G-protein-coupled receptors (GPCR), it now becomes generally accepted that simultaneous functional coupling with distinct unrelated G-proteins can be observed, leading to the activation of multiple intracellular effectors with distinct efficacies and/or potencies. Multiplicity in G-protein coupling is frequently observed in artificial expression systems where high densities of receptors are obtained, raising the question of whether such complex signalling reveals artefactual promiscuous coupling or is a genuine property of GPCRs. Multiple biochemical and pharmacological evidence in favour of an intrinsic property of GPCRs were obtained in recent studies. Thus, there are now many examples showing that the coupling to multiple signalling pathways is dependent on the agonist used (agonist trafficking of receptor signals). In addition, the different couplings were demonstrated to involve distinct molecular determinants of the receptor and to show distinct desensitisation kinetics. Such multiplicity of signalling at the level of G-protein coupling leads to a further complexity in the functional response to agonist stimulation of one of the most elaborate cellular transmission systems. Indeed, the physiological relevance of such versatility in signalling associated with a single receptor requires the existence of critical mechanisms of dynamic regulation of the expression, the compartmentalisation, and the activity of the signalling partners. This review aims at summarising the different studies that support the concept of multiplicity of G-protein coupling. The physiological and pharmacological relevance of this coupling promiscuity will be discussed.
Collapse
Affiliation(s)
- Emmanuel Hermans
- Laboratoire de Pharmacologie Expérimentale, Université Catholique de Louvain, FARL 54.10, Avenue Hippocrate 54, B-1200 Brussels, Belgium.
| |
Collapse
|
22
|
Najimi M, Maloteaux JM, Hermans E. Cytoskeleton-related trafficking of the EAAC1 glutamate transporter after activation of the G(q/11)-coupled neurotensin receptor NTS1. FEBS Lett 2002; 523:224-8. [PMID: 12123836 DOI: 10.1016/s0014-5793(02)02981-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The possible modulation of the glutamate transporter EAAC1 by a class A G protein-coupled receptor was studied in transfected C6 glioma cells stably expressing the high-affinity neurotensin receptor NTS1. Brief exposure (5 min) to neurotensin increased Na(+)-dependent D-[(3)H]aspartate uptake by about 70%. The effect of neurotensin was found to result from an increase in cell surface expression of EAAC1 and accordingly, cytochalasin D and colchicine were shown to block the effect of neurotensin on aspartate uptake, suggesting that the cytoskeleton participates in this regulation. Neither protein kinase C nor phosphatidylinositol 3-kinase activities, two intracellular signaling pathways known to modulate EAAC1, was required for EAAC1-mediated aspartate transport regulation by neurotensin. Together, these results provide evidence for an acute regulation of EAAC1 trafficking after activation of a G protein-coupled receptor.
Collapse
Affiliation(s)
- Mustapha Najimi
- Laboratoire de Pharmacologie Expérimentale, Université Catholique de Louvain, Avenue Hippocrate 54, 1200, Brussels, Belgium.
| | | | | |
Collapse
|
23
|
Chapter VI Neurotensin receptors in the central nervous system. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0924-8196(02)80008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|