1
|
Herman MA, Birnbaum MJ. Molecular aspects of fructose metabolism and metabolic disease. Cell Metab 2021; 33:2329-2354. [PMID: 34619074 PMCID: PMC8665132 DOI: 10.1016/j.cmet.2021.09.010] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/02/2021] [Accepted: 09/13/2021] [Indexed: 02/06/2023]
Abstract
Excessive sugar consumption is increasingly considered as a contributor to the emerging epidemics of obesity and the associated cardiometabolic disease. Sugar is added to the diet in the form of sucrose or high-fructose corn syrup, both of which comprise nearly equal amounts of glucose and fructose. The unique aspects of fructose metabolism and properties of fructose-derived metabolites allow for fructose to serve as a physiological signal of normal dietary sugar consumption. However, when fructose is consumed in excess, these unique properties may contribute to the pathogenesis of cardiometabolic disease. Here, we review the biochemistry, genetics, and physiology of fructose metabolism and consider mechanisms by which excessive fructose consumption may contribute to metabolic disease. Lastly, we consider new therapeutic options for the treatment of metabolic disease based upon this knowledge.
Collapse
Affiliation(s)
- Mark A Herman
- Division of Endocrinology, Metabolism, and Nutrition, Duke University, Durham, NC, USA; Duke Molecular Physiology Institute, Duke University, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| | | |
Collapse
|
2
|
Griffin MJ, Wong RHF, Pandya N, Sul HS. Direct interaction between USF and SREBP-1c mediates synergistic activation of the fatty-acid synthase promoter. J Biol Chem 2006; 282:5453-67. [PMID: 17197698 DOI: 10.1074/jbc.m610566200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
To understand the molecular mechanisms underlying transcriptional activation of fatty-acid synthase (FAS), we examined the relationship between upstream stimulatory factor (USF) and SREBP-1c, two transcription factors that we have shown previously to be critical for FAS induction by feeding/insulin. Here, by using a combination of tandem affinity purification and coimmunoprecipitation, we demonstrate, for the first time, that USF and SREBP-1 interact in vitro and in vivo. Glutathione S-transferase pulldown experiments with various USF and sterol regulatory element-binding protein (SREBP) deletion constructs indicate that the basic helix-loop-helix domain of USF interacts directly with the basic helix-loop-helix and an N-terminal region of SREBP-1c. Furthermore, cotransfection of USF and SREBP-1c with an FAS promoter-luciferase reporter construct in Drosophila SL2 cells results in highly synergistic activation of the FAS promoter. We also show similar cooperative activation of the mitochondrial glycerol-3-phosphate acyltransferase promoter by USF and SREBP-1c. Chromatin immunoprecipitation analysis of mouse liver demonstrates that USF binds constitutively to the mitochondrial glycerol 3-phosphate acyltransferase promoter during fasting/refeeding in vivo, whereas binding of SREBP-1 is observed only during refeeding, in a manner identical to that of the FAS promoter. In addition, we show that the synergy we have observed depends on the activation domains of both proteins and that mutated USF or SREBP lacking the N-terminal activation domain could inhibit the transactivation of the other. Closely positioned E-boxes and sterol regulatory elements found in the promoters of several lipogenic genes suggest a common mechanism of induction by feeding/insulin.
Collapse
Affiliation(s)
- Michael J Griffin
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
3
|
Batenburg JJ, Elfring RH. Pre-translational regulation by glucocorticoid of fatty acid and phosphatidylcholine synthesis in type II cells from fetal rat lung. FEBS Lett 2001; 307:164-8. [PMID: 1353728 DOI: 10.1016/0014-5793(92)80759-a] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Exposure to fibroblast-conditioned cortisol-containing medium increased fatty acid synthase activity and fatty acid synthase, acetyl-CoA carboxylase and ATP citrate lyase mRNA abundance in fetal type II alveolar epithelial cells. Both fibroblast conditioning and cortisol in the medium were required for maximal effect on the mRNA levels, indicating involvement of mesenchymal-epithelial interaction in the cortisol effects. The observed effects provide evidence for an earlier hypothesis that increased activity of CTP:phosphocholine cytidylyltransferase in lung tissue caused by glucocorticoid is due to increased fatty acid synthesis. However, evidence suggesting pre-translational regulation of this enzyme by glucocorticoid was also found.
Collapse
Affiliation(s)
- J J Batenburg
- Laboratory of Veterinary Biochemistry, Utrecht University, The Netherlands
| | | |
Collapse
|
4
|
|
5
|
Sul HS, Wang D. Nutritional and hormonal regulation of enzymes in fat synthesis: studies of fatty acid synthase and mitochondrial glycerol-3-phosphate acyltransferase gene transcription. Annu Rev Nutr 1998; 18:331-51. [PMID: 9706228 DOI: 10.1146/annurev.nutr.18.1.331] [Citation(s) in RCA: 193] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The activities of critical enzymes in fatty acid and triacylglycerol biosynthesis are tightly controlled by different nutritional, hormonal, and developmental conditions. Feeding previously fasted animals high-carbohydrate, low-fat diets causes a dramatic induction of enzymes-such as fatty acid synthase (FAS) and mitochondrial glycerol-3-phosphate acyltransferase (GPAT)-involved in fatty acid and triacylglycerol synthesis. During fasting and refeeding, transcription of these two enzymes is coordinately regulated by nutrients and hormones, such as glucose, insulin, glucagon, glucocorticoids, and thyroid hormone. Insulin stimulates transcription of the FAS and mitochondrial GPAT genes, and glucagon antagonizes the insulin effect through the cis-acting elements within the promoters and their bound trans-acting factors. This review discusses advances made in the understanding of the transcriptional regulation of FAS and mitochondrial GPAT genes, with emphasis on elucidation of the mechanisms by which multiple nutrients and hormones achieve their effects.
Collapse
Affiliation(s)
- H S Sul
- Department of Nutritional Sciences, University of California, Berkeley 94720, USA.
| | | |
Collapse
|
6
|
Sul HS, Smas CM, Wang D, Chen L. Regulation of fat synthesis and adipose differentiation. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1998; 60:317-45. [PMID: 9594578 DOI: 10.1016/s0079-6603(08)60896-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adipocytes have highly specialized function of accumulating fat as stored energy that can be used during periods of food deprivation. The process of fat synthesis and development of adipose tissue are under hormonal and nutritional control. This review first describes transcription of the two critical enzymes involved in fat synthesis, fatty acid synthase and mitochondrial glycerol-3-phosphate acyltransferase, is decreased to an undetectable level during fasting. Food intake, especially a high carbohydrate, fat-free diet, subsequent to fasting causes dramatic increase in transcription of these genes. Insulin secretion is increased during feeding, having a positive effect, whereas cAMP, which mediates the effect of glucagon which increases during fasting, has a negative effect on transcription of these genes. Using adipocytes in culture and in transgenic mice that express liciferase driven by the fatty acid synthase promoter, cis-acting and trans-acting factors that may mediate the transcriptional regulation were examined. Upstream stimulatory factors (USFs) that bind to -65 E-box are required for insulin-mediated transcriptional activation of the fatty acid synthase gene. This review next describes how pref-1 is a novel inhibitor of adipose differentiation and is a plasma membrane protein containing six EGF-repeats in the extracellular domain. Pref-1 is highly expressed in 3T3-L1 preadipocytes, but is not detectable in mature fat cells. Down regulation of pref-1 is required for adipose differentiation, and constitutive expression of pref-1 inhibits adipogenesis. Moreover, the ectodomain of pref-1 is cleaved to generate a biologically active 50 kDa soluble form. There are four major forms of membrane pref-1 resulting from alternate splicing, but two of the forms with a larger deletion do not produce biologically active soluble form, indicating that alternate splicing determines the range of action, juxtacrine or paracrine, of the pref-1.
Collapse
Affiliation(s)
- H S Sul
- Department of Nutritional Sciences, University of California, Berkeley 94720-3104, USA
| | | | | | | |
Collapse
|
7
|
Park S, Moon Y, Kim K, Ahn Y, Kim Y. Cloning and characterization of the 5' flanking region of human ATP-citrate lyase gene. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1353:236-40. [PMID: 9349719 DOI: 10.1016/s0167-4781(97)00094-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Two phage clones, lambda hgACL21 and lambda hgACL28, harboring the 5' flanking region of human ATP-citrate lyase (ACL) gene were identified by screening about 1.5 X 10(6) recombinant plaques from the lambdaEMBL3-human placental genomic DNA library. The 5' flanking region of ACL had the CAAT box on -92 bp from the transcription initiation site (+1), however, the TATA box was not found. The primer extension and rapid amplification of cDNA end showed that mRNA is transcribed at a thymine extending 12 bp upstream of the reported cDNA end. The sequences of 5' flanking region in 1.5 kb size of human ACL showed 60% homology with those of rat; however, no homology was found in the exon 1 and intron 1 region. Several consensus sequences, including four Sp1 binding sites, were found in the 5' flanking region of this gene. The promoter activity was assayed by transfecting the 3' or 5' deletion clones of ACL-chloramphenicol acetyl transferase (CAT) plasmid into PLC/PRF5 cells. The clone that contains the part of the first intron sequences from -659 to +440 bp showed the highest CAT activity in the transient transfection assay. High promoter activities were maintained until the transcription initiation site was removed. It is suggested that the sequences from -213 to +12 which contain three Sp1-binding sequences, CAAT box, and the transcription initiation site were necessary as a mean of for exerting the basal promoter activity of ACL gene.
Collapse
Affiliation(s)
- S Park
- Department of Biochemistry and Molecular Biology, the Institute of Genetic Science, Yonsei University College of Medicine, Seoul, South Korea
| | | | | | | | | |
Collapse
|
8
|
Lin RY, Moss SB, Rubin CS. Characterization of S-AKAP84, a novel developmentally regulated A kinase anchor protein of male germ cells. J Biol Chem 1995; 270:27804-11. [PMID: 7499250 DOI: 10.1074/jbc.270.46.27804] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In mammalian spermatozoa, most of the type II alpha isoform of cAMP-dependent protein kinase (PKAII alpha) is anchored at the cytoplasmic surface of a specialized array of mitochondria in the flagellar cytoskeleton. This places the catalytic subunits of PKAII alpha in proximity with potential target substrates in the cytoskeleton. The mechanism by which PKAII alpha is anchored at the outer surface of germ cell mitochondria has not been elucidated. We now report the cloning of a cDNA that encodes a novel, germ cell A kinase anchor protein (AKAP) designated S-AKAP84. S-AKAP84 comprises 593 amino acids and contains a centrally located domain that avidly binds regulatory subunits (RII alpha and RII beta) of PKAII alpha and PKAII beta. The 3.2-kilobase S-AKAP84 mRNA and the cognate S-AKAP84 RII binding protein are expressed principally in the male germ cell lineage. Expression of S-AKAP84 is tightly regulated during development. The protein accumulates as spermatids undergo nuclear condensation and tail elongation. The timing of S-AKAP84 expression is correlated with the de novo accumulation of RII alpha and RII beta subunits and the migration of mitochondria from the cytoplasm (round spermatids) to the cytoskeleton (midpiece in elongating spermatids). Residues 1-30 at the NH2 terminus of S-AKAP84 constitute a putative signal/anchor sequence that may target the protein to the outer mitochondrial membrane. Immunofluorescence analysis demonstrated that S-AKAP84 is co-localized with mitochondria in the flagellum.
Collapse
Affiliation(s)
- R Y Lin
- Department of Molecular Pharmacology, Atran Laboratories, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
9
|
Ross LH, Freedman JH, Rubin CS. Structure and expression of novel spliced leader RNA genes in Caenorhabditis elegans. J Biol Chem 1995; 270:22066-75. [PMID: 7665629 DOI: 10.1074/jbc.270.37.22066] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Approximately 25% of Caenorhabditis elegans genes are organized as operons. Polycistronic transcripts are converted to monocistronic mRNAs by 3' cleavage/polyadenylation and 5' trans-splicing with untranslated, 5' termini of mRNAs encoded by downstream genes in operons are acceptors for > or = 7 recently discovered "novel" SLs and a classical SL (SL2). Diversity in SL exons is now partly explained by the discovery and characterization of five novel genes that encode C. elegans SL RNAs. These novel SL RNAs contain a 22- or 23-nucleotide SL followed by conserved splice donor and downstream sequences that are essential for catalysis of trans-splicing reactions. The SL3 alpha, SL4, and SL5 RNA genes are tightly clustered on chromosome III; their 114-nucleotide transcripts deliver three distinct SLs to mRNAs. The SL3 beta and SL3 gamma RNA genes are on chromosome I, but are not tightly linked. SL RNAs 3 alpha, 3 beta, and 3 gamma provide identical 5' leader exons, although their 3' sequences diverge. Transcription of SL 3-5 RNA genes appears to be driven by flanking DNA elements that are homologous with segments of promoters for the C. elegans SL2 RNA and small nuclear RNA genes. RNase protection assays demonstrated that novel SL RNAs are transcribed in vivo and accumulate in the poly(A-) RNA pool. SL3 exons are transferred to mRNAs as frequently as SL2 exons. In contrast, SL4 is appended to mRNAs 10% as frequently as SL3. The abundance of SL4 RNA increased 6-fold during postembryonic development, and the SL4 RNA gene promoter is active principally in hypodermal cells.
Collapse
Affiliation(s)
- L H Ross
- Department of Molecular Pharmacology, Atran Laboratories, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
10
|
Pentyala SN, Benjamin WB. Effect of oxaloacetate and phosphorylation on ATP-citrate lyase activity. Biochemistry 1995; 34:10961-9. [PMID: 7669753 DOI: 10.1021/bi00035a001] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
ATP-citrate lyase (CL) catalyzes the conversion of citrate and CoA to oxaloacetate (OA) and acetyl-CoA. As the coupled malic dehydrogenase (MDH) assay is not able either to study the effect of oxaloacetate (OA) on CL activity or to measure accurately CL activity in biological samples, a new assay was developed. The CL-citrate coupled CAT assay measures the amount of acetyl-CoA formed by transferring radiolabeled acetyl-CoA synthesized from [14C]citrate to chloramphenicol with chloramphenicol acetyltransferase (CAT). Employing this assay, the rate of increase in acetyl-CoA synthesis from citrate is linear with respect to added CL. Kinetic values for ATP, CoA and citrate are similar to those obtained using the MDH assay. The effect of CL phosphorylation on enzyme activity was determined. CL phosphorylated by cAMP-dependent protein kinase or by this kinase and glycogen synthase kinase-3 (GSK-3) decreases the apparent Vmax without changing the apparent Km. The effect of OA, a product of the enzyme reaction, on CL activity was also determined. Computational analysis of the data obtained without added OA and at three concentrations of OA indicate that the apparent Km for the substrate is not altered even though the apparent Vmax is decreased. The effect of OA on the activity of phosphorylated enzyme was also determined. OA decreases the apparent Vmax of the phosphorylated enzyme to the same extent as in control CL. This assay is able to measure CL activity in cytosol from 3T3-L1 adipocytes.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S N Pentyala
- Department of Physiology and Biophysics, State University of New York at Stony Brook 11794-8661, USA
| | | |
Collapse
|
11
|
Structure and expression of a novel, neuronal protein kinase C (PKC1B) from Caenorhabditis elegans. PKC1B is expressed selectively in neurons that receive, transmit, and process environmental signals. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37099-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
12
|
Fraslon C, Batenburg JJ. Pre-translational regulation of lipid synthesizing enzymes and surfactant proteins in fetal rat lung in explant culture. FEBS Lett 1993; 325:285-90. [PMID: 8391484 DOI: 10.1016/0014-5793(93)81090-m] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In hormone-free explant cultures of 18-day fetal rat lung the levels of the mRNAs for fatty acid synthase, ATP citrate lyase and surfactant proteins A, B, and C, increased as they do in vivo. Also CTP:phosphocholine cytidylyltransferase mRNA increased spontaneously. Unlike in vivo, malic enzyme mRNA increased drastically in cultured explants. Culture with dexamethasone increased the abundance of fatty acid synthase and surfactant protein mRNAs, but considerably depressed that of malic enzyme mRNA. Dexamethasone had little effect on CTP:phosphocholine cytidylyltransferase mRNA, supporting the concept that the increased activity of this enzyme caused by glucocorticoid is due to increased fatty acid synthesis.
Collapse
Affiliation(s)
- C Fraslon
- Laboratory of Veterinary Biochemistry, Utrecht University, The Netherlands
| | | |
Collapse
|
13
|
The novel metallothionein genes of Caenorhabditis elegans. Structural organization and inducible, cell-specific expression. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53810-2] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
14
|
Kim KS, Park SW, Kim YS. Regulation of ATP-citrate lyase at transcriptional and post-transcriptional levels in rat liver. Biochem Biophys Res Commun 1992; 189:264-71. [PMID: 1449481 DOI: 10.1016/0006-291x(92)91553-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The amounts of ATP-citrate lyase in liver cytosol began to increase at 12 hours after refeeding a high-carbohydrate diet and further increased until 48 hours. The amounts of the ATP-citrate lyase mRNA began to increase at 6 hours and reached to a maximum level at 12 hours, followed by decrease to a very low level until 48 hours. The elevated amount of the ATP-citrate lyase mRNA reflected on the increase of ATP-citrate lyase content in the first 24 hours, but these two parameters were not paralleled thereafter. The transcriptional activity of ATP-citrate lyase gene in nuclei of rat liver began to increase at 4 hours and further increased to reach a maximum level of 24 fold at 12 hours, maintaining a high level of 17 fold until 48 hours. The elevation of transcriptional activity of ATP-citrate lyase gene preceded the increase of ATP-citrate lyase mRNA content in the liver cytosol by 2 hours, and its increasing pattern was similar to changes of mRNA content until 12 hours. However, while the transcriptional activity remained at a high level until 48 hours, the ATP-citrate lyase mRNA concentration in the cytosol decreased after 12 hours.
Collapse
Affiliation(s)
- K S Kim
- Department of Biochemistry, Yonsei University College of Medicine, Seoul, Korea
| | | | | |
Collapse
|
15
|
Weiner F, Smith P, Wertheimer S, Rubin C. Regulation of gene expression by insulin and tumor necrosis factor alpha in 3T3-L1 cells. Modulation of the transcription of genes encoding acyl-CoA synthetase and stearoyl-CoA desaturase-1. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54313-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
16
|
Casein kinase II from Caenorhabditis elegans. Cloning, characterization, and developmental regulation of the gene encoding the beta subunit. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)55062-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
17
|
Gross RE, Lu XY, Rubin CS. Regulation of the expression of the regulatory subunit of cAMP-dependent protein kinase II beta in Friend erythroleukemic cells. Evidence for posttranscriptional control and a central role for the C subunit. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39050-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
18
|
Gross RE, Bagchi S, Lu X, Rubin CS. Cloning, characterization, and expression of the gene for the catalytic subunit of cAMP-dependent protein kinase in Caenorhabditis elegans. Identification of highly conserved and unique isoforms generated by alternative splicing. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39234-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
19
|
Casein kinase II from Caenorhabditis elegans. Properties and developmental regulation of the enzyme; cloning and sequence analyses of cDNA and the gene for the catalytic subunit. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)34086-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
20
|
Cloning, structure, and expression of the gene for a novel regulatory subunit of cAMP-dependent protein kinase in Caenorhabditis elegans. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39766-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
21
|
Elshourbagy NA, Near JC, Kmetz PJ, Sathe GM, Southan C, Strickler JE, Gross M, Young JF, Wells TN, Groot PH. Rat ATP citrate-lyase. Molecular cloning and sequence analysis of a full-length cDNA and mRNA abundance as a function of diet, organ, and age. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)40033-1] [Citation(s) in RCA: 96] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
22
|
Slice LW, Freedman JH, Rubin CS. Purification, characterization, and cDNA cloning of a novel metallothionein-like, cadmium-binding protein from Caenorhabditis elegans. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)40224-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
23
|
Levels of mRNAs coding for lipogenic enzymes in rat lung upon fasting and refeeding and during perinatal development. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 1006:329-34. [PMID: 2574595 DOI: 10.1016/0005-2760(89)90020-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The relative amounts of mRNAs coding for fatty-acid synthase (EC 2.3.1.85), acetyl-CoA carboxylase (EC 6.4.1.2), ATP citrate lyase (EC 4.1.3.8) and malic enzyme (EC 1.1.1.40) were determined in lungs and livers of adult rats that were normally fed, starved for 48 h or starved for 48 h and subsequently refed for 72 h with a carbohydrate-rich, fat-free diet. In the liver, starvation caused a small decrease in the relative abundance of the mRNAs which was not statistically significant. Subsequent refeeding caused a statistically significant increase in mRNAs for all of the enzymes studied. In the lung, no significant changes were found, indicating that the regulation of the abundance of mRNAs encoding the lipogenic enzymes in the lung differs from that in the liver. In the developing rat lung, mRNA for fatty-acid synthase increased 3-fold in abundance between fetal days 18 and 20 and decreased directly after birth (at day 22 of gestation). A similar pattern was observed for ATP citrate lyase mRNA. The level of acetyl-CoA carboxylase mRNA decreased significantly after birth. These observations indicate that in perinatal rat lungs, pretranslational regulation is involved in the control of the synthesis of these enzymes. The abundance of acetyl-CoA carboxylase mRNA did not change in the prenatal period, a time during which the specific activity of this enzyme increases. This lack of correlation between the specific activity of acetyl-CoA carboxylase and the abundance of its mRNA may indicate that translational regulation of the synthesis of the enzyme or post-synthetic regulatory effects on enzyme molecules are involved in the control of this enzyme in the prenatal period. No changes in the abundance of lung malic enzyme mRNAs were observed throughout the perinatal period.
Collapse
|
24
|
Höppner W, Seitz H. Effect of thyroid hormones on glucokinase gene transcription in rat liver. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)47112-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
25
|
Gehnrich SC, Gekakis N, Sul HS. Liver (B-type) phosphofructokinase mRNA. Cloning, structure, and expression. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)37848-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
26
|
Smith PJ, Wise LS, Berkowitz R, Wan C, Rubin CS. Insulin-like growth factor-I is an essential regulator of the differentiation of 3T3-L1 adipocytes. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(19)76555-7] [Citation(s) in RCA: 155] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
27
|
Paulauskis JD, Sul HS. Cloning and expression of mouse fatty acid synthase and other specific mRNAs. Developmental and hormonal regulation in 3T3-L1 cells. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68602-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
28
|
Brown ML, Wise LS, Rubin CS. The molecular basis for a cytosolic malic enzyme null mutation. Malic enzyme mRNA from MOD-1 null mice contains an internal in-frame duplication that extends the coding sequence by 522 nucleotides. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68953-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
29
|
Bagchi S, Wise LS, Brown ML, Bregman D, Sul HS, Rubin CS. Structure and expression of murine malic enzyme mRNA. Differentiation-dependent accumulation of two forms of malic enzyme mRNA in 3T3-L1 cells. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(19)75671-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
30
|
Bagchi S, Wise LS, Brown ML, Sul HS, Bregman D, Rubin CS. Regulation and structure of murine malic enzyme mRNA. Ann N Y Acad Sci 1986; 478:77-92. [PMID: 3541755 DOI: 10.1111/j.1749-6632.1986.tb15522.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
31
|
Vaulont S, Munnich A, Decaux JF, Kahn A. Transcriptional and post-transcriptional regulation of L-type pyruvate kinase gene expression in rat liver. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(19)57443-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
32
|
Back DW, Goldman MJ, Fisch JE, Ochs RS, Goodridge AG. The fatty acid synthase gene in avian liver. Two mRNAs are expressed and regulated in parallel by feeding, primarily at the level of transcription. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(17)35644-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
33
|
|
34
|
Freytag SO, Collier KJ. Molecular cloning of a cDNA for human pyruvate carboxylase. Structural relationship to other biotin-containing carboxylases and regulation of mRNA content in differentiating preadipocytes. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(18)90822-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|