1
|
A Calcium- and Diacylglycerol-Stimulated Protein Kinase C (PKC), Caenorhabditis elegans PKC-2, Links Thermal Signals to Learned Behavior by Acting in Sensory Neurons and Intestinal Cells. Mol Cell Biol 2017; 37:MCB.00192-17. [PMID: 28716951 DOI: 10.1128/mcb.00192-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/13/2017] [Accepted: 07/07/2017] [Indexed: 12/18/2022] Open
Abstract
Ca2+- and diacylglycerol (DAG)-activated protein kinase C (cPKC) promotes learning and behavioral plasticity. However, knowledge of in vivo regulation and exact functions of cPKCs that affect behavior is limited. We show that PKC-2, a Caenorhabditis elegans cPKC, is essential for a complex behavior, thermotaxis. C. elegans memorizes a nutrient-associated cultivation temperature (Tc ) and migrates along the Tc within a 17 to 25°C gradient. pkc-2 gene disruption abrogated thermotaxis; a PKC-2 transgene, driven by endogenous pkc-2 promoters, restored thermotaxis behavior in pkc-2-/- animals. Cell-specific manipulation of PKC-2 activity revealed that thermotaxis is controlled by cooperative PKC-2-mediated signaling in both AFD sensory neurons and intestinal cells. Cold-directed migration (cryophilic drive) precedes Tc tracking during thermotaxis. Analysis of temperature-directed behaviors elicited by persistent PKC-2 activation or inhibition in AFD (or intestine) disclosed that PKC-2 regulates initiation and duration of cryophilic drive. In AFD neurons, PKC-2 is a Ca2+ sensor and signal amplifier that operates downstream from cyclic GMP-gated cation channels and distal guanylate cyclases. UNC-18, which regulates neurotransmitter and neuropeptide release from synaptic vesicles, is a critical PKC-2 effector in AFD. UNC-18 variants, created by mutating Ser311 or Ser322, disrupt thermotaxis and suppress PKC-2-dependent cryophilic migration.
Collapse
|
2
|
Aicart-Ramos C, He SDQ, Land M, Rubin CS. A Novel Conserved Domain Mediates Dimerization of Protein Kinase D (PKD) Isoforms: DIMERIZATION IS ESSENTIAL FOR PKD-DEPENDENT REGULATION OF SECRETION AND INNATE IMMUNITY. J Biol Chem 2016; 291:23516-23531. [PMID: 27662904 DOI: 10.1074/jbc.m116.735399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/27/2016] [Indexed: 01/22/2023] Open
Abstract
Protein kinase D (PKD) isoforms are protein kinase C effectors in signaling pathways regulated by diacylglycerol. Important physiological processes (including secretion, immune responses, motility, and transcription) are placed under diacylglycerol control by the distinctive substrate specificity and subcellular distribution of PKDs. Potentially, broadly co-expressed PKD polypeptides may interact to generate homo- or heteromultimeric regulatory complexes. However, the frequency, molecular basis, regulatory significance, and physiological relevance of stable PKD-PKD interactions are largely unknown. Here, we demonstrate that mammalian PKDs 1-3 and the prototypical Caenorhabditis elegans PKD, DKF-2A, are exclusively (homo- or hetero-) dimers in cell extracts and intact cells. We discovered and characterized a novel, highly conserved N-terminal domain, comprising 92 amino acids, which mediates dimerization of PKD1, PKD2, and PKD3 monomers. A similar domain directs DKF-2A homodimerization. Dimerization occurred independently of properties of the regulatory and kinase domains of PKDs. Disruption of PKD dimerization abrogates secretion of PAUF, a protein carried in small trans-Golgi network-derived vesicles. In addition, disruption of DKF-2A homodimerization in C. elegans intestine impaired and degraded the immune defense of the intact animal against an ingested bacterial pathogen. Finally, dimerization was indispensable for the strong, dominant negative effect of catalytically inactive PKDs. Overall, the structural integrity and function of the novel dimerization domain are essential for PKD-mediated regulation of a key aspect of cell physiology, secretion, and innate immunity in vivo.
Collapse
Affiliation(s)
- Clara Aicart-Ramos
- From the Department of Molecular Pharmacology, Atran Laboratories, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Sophia Dan Qing He
- From the Department of Molecular Pharmacology, Atran Laboratories, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Marianne Land
- From the Department of Molecular Pharmacology, Atran Laboratories, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Charles S Rubin
- From the Department of Molecular Pharmacology, Atran Laboratories, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
3
|
FRET biosensors reveal AKAP-mediated shaping of subcellular PKA activity and a novel mode of Ca(2+)/PKA crosstalk. Cell Signal 2016; 28:294-306. [PMID: 26772752 DOI: 10.1016/j.cellsig.2016.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/06/2015] [Revised: 12/18/2015] [Accepted: 01/04/2016] [Indexed: 02/01/2023]
Abstract
Scaffold proteins play a critical role in cellular homeostasis by anchoring signaling enzymes in close proximity to downstream effectors. In addition to anchoring static enzyme complexes, some scaffold proteins also form dynamic signalosomes that can traffic to different subcellular compartments upon stimulation. Gravin (AKAP12), a multivalent scaffold, anchors PKA and other enzymes to the plasma membrane under basal conditions, but upon [Ca(2+)]i elevation, is rapidly redistributed to the cytosol. Because gravin redistribution also impacts PKA localization, we postulate that gravin acts as a calcium "switch" that modulates PKA-substrate interactions at the plasma membrane, thus facilitating a novel crosstalk mechanism between Ca(2+) and PKA-dependent pathways. To assess this, we measured the impact of gravin-V5/His expression on compartmentalized PKA activity using the FRET biosensor AKAR3 in cultured cells. Upon treatment with forskolin or isoproterenol, cells expressing gravin-V5/His showed elevated levels of plasma membrane PKA activity, but cytosolic PKA activity levels were reduced compared with control cells lacking gravin. This effect required both gravin interaction with PKA and localization at the plasma membrane. Pretreatment with calcium-elevating agents thapsigargin or ATP caused gravin redistribution away from the plasma membrane and prevented gravin from elevating PKA activity levels at the membrane. Importantly, this mode of Ca(2+)/PKA crosstalk was not observed in cells expressing a gravin mutant that resisted calcium-mediated redistribution from the cell periphery. These results reveal that gravin impacts subcellular PKA activity levels through the spatial targeting of PKA, and that calcium elevation modulates downstream β-adrenergic/PKA signaling through gravin redistribution, thus supporting the hypothesis that gravin mediates crosstalk between Ca(2+) and PKA-dependent signaling pathways. Based on these results, AKAP localization dynamics may represent an important paradigm for the regulation of cellular signaling networks.
Collapse
|
4
|
Corbin J. The Unexpected Evolution of Basic Science Studies about Cyclic Nucleotide Action into a Treatment for Erectile Dysfunction. J Biol Chem 2015; 290:1374-88. [DOI: 10.1074/jbc.x114.632174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
|
5
|
Chen L, Fu Y, Ren M, Xiao B, Rubin CS. A RasGRP, C. elegans RGEF-1b, couples external stimuli to behavior by activating LET-60 (Ras) in sensory neurons. Neuron 2011; 70:51-65. [PMID: 21482356 PMCID: PMC3081643 DOI: 10.1016/j.neuron.2011.02.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 01/14/2011] [Indexed: 11/17/2022]
Abstract
RasGRPs, which load GTP onto Ras and Rap1, are expressed in vertebrate and invertebrate neurons. The functions, regulation, and mechanisms of action of neuronal RasGRPs are unknown. Here, we show how C. elegans RGEF-1b, a prototypical neuronal RasGRP, regulates a critical behavior. Chemotaxis to volatile odorants was disrupted in RGEF-1b-deficient (rgef-1⁻/⁻) animals and wild-type animals expressing dominant-negative RGEF-1b in AWC sensory neurons. AWC-specific expression of RGEF-1b-GFP restored chemotaxis in rgef-1⁻/⁻ mutants. Signals disseminated by RGEF-1b in AWC neurons activated a LET-60 (Ras)-MPK-1 (ERK) signaling cascade. Other RGEF-1b and LET-60 effectors were dispensable for chemotaxis. A bifunctional C1 domain controlled intracellular targeting and catalytic activity of RGEF-1b and was essential for sensory signaling in vivo. Chemotaxis was unaffected when Ca²+-binding EF hands and a conserved phosphorylation site of RGEF-1b were inactivated. Diacylglycerol-activated RGEF-1b links external stimuli (odorants) to behavior (chemotaxis) by activating the LET-60-MPK-1 pathway in specific neurons.
Collapse
Affiliation(s)
- Lu Chen
- Department of Molecular Pharmacology, Atran Laboratories, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
6
|
Fu Y, Ren M, Feng H, Chen L, Altun ZF, Rubin CS. Neuronal and intestinal protein kinase d isoforms mediate Na+ (salt taste)-induced learning. Sci Signal 2009; 2:ra42. [PMID: 19671928 DOI: 10.1126/scisignal.2000224] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/02/2022]
Abstract
Ubiquitously expressed protein kinase D (PKD) isoforms are poised to disseminate signals carried by diacylglycerol (DAG). However, the in vivo regulation and functions of PKDs are poorly understood. We show that the Caenorhabditis elegans gene, dkf-2, encodes not just DKF-2A, but also a second previously unknown isoform, DKF-2B. Whereas DKF-2A is present mainly in intestine, we show that DKF-2B is found in neurons. Characterization of dkf-2 null mutants and transgenic animals expressing DKF-2B, DKF-2A, or both isoforms revealed that PKDs couple DAG signals to regulation of sodium ion (Na+)-induced learning. EGL-8 (a phospholipase Cbeta4 homolog) and TPA-1 (a protein kinase Cdelta homolog) are upstream regulators of DKF-2 isoforms in vivo. Thus, pathways containing EGL-8-TPA-1-DKF-2 enable learning and behavioral plasticity by receiving, transmitting, and cooperatively integrating environmental signals targeted to both neurons and intestine.
Collapse
Affiliation(s)
- Ya Fu
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | |
Collapse
|
7
|
Age-dependent requirement of AKAP150-anchored PKA and GluR2-lacking AMPA receptors in LTP. EMBO J 2007; 26:4879-90. [PMID: 17972919 DOI: 10.1038/sj.emboj.7601884] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/21/2007] [Accepted: 09/19/2007] [Indexed: 11/08/2022] Open
Abstract
Association of PKA with the AMPA receptor GluR1 subunit via the A kinase anchor protein AKAP150 is crucial for GluR1 phosphorylation. Mutating the AKAP150 gene to specifically prevent PKA binding reduced PKA within postsynaptic densities (>70%). It abolished hippocampal LTP in 7-12 but not 4-week-old mice. Inhibitors of PKA and of GluR2-lacking AMPA receptors blocked single tetanus LTP in hippocampal slices of 8 but not 4-week-old WT mice. Inhibitors of GluR2-lacking AMPA receptors also prevented LTP in 2 but not 3-week-old mice. Other studies demonstrate that GluR1 homomeric AMPA receptors are the main GluR2-lacking AMPA receptors in adult hippocampus and require PKA for their functional postsynaptic expression during potentiation. AKAP150-anchored PKA might thus critically contribute to LTP in adult hippocampus in part by phosphorylating GluR1 to foster postsynaptic accumulation of homomeric GluR1 AMPA receptors during initial LTP in 8-week-old mice.
Collapse
|
8
|
Feng H, Ren M, Chen L, Rubin CS. Properties, Regulation, and in Vivo Functions of a Novel Protein Kinase D. J Biol Chem 2007; 282:31273-88. [PMID: 17728253 DOI: 10.1074/jbc.m701532200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase D (PKD) isoforms are protein kinase C effectors in signaling cascades controlled by diacylglycerol (DAG). All PKDs are regulated by DAG/phorbol 12-myristate 13-acetate-binding C1 domains and an activation loop (A-loop). To understand how PKD isoforms diversify DAG signaling networks, it is essential to determine redundant and novel properties of their regulatory domains, characterize factors controlling PKD gene expression, and discover their in vivo physiological roles. Studies on a novel PKD, Caenorhabditis elegans DKF-2 (D kinase family-2), addressed these topics. The C1b domain mediates phorbol 12-myristate 13-acetate-induced translocation and activation of DKF-2. However, when DAG is elevated, C1a and C1b contribute equally to targeting/activation of DKF-2. DKF-2 C1 domains do not inhibit catalytic activity; they mediate delivery of DKF-2 to a membrane where protein kinase C phosphorylates Ser(925) and Ser(929) in the A-loop. This potently stimulates DKF-2 catalytic activity. Phosphorylation of Ser(925) alone switches on 70% of maximal kinase activity. Persistent phosphorylation of Ser(929) tags DKF-2 for proteasomal degradation; Ser(P)(925) plays a minor role in DKF-2 degradation. GATA enhancer sequences govern DKF-2 expression in intestine in vivo. Adult life span increases 40% in animals lacking DKF-2. In thermally stressed wild type animals, the DAF-16 transcription factor is segregated from the nuclei of adult intestinal cells. In contrast, DAF-16 enters adult intestinal nuclei of DKF-2-deficient, thermally stressed animals, where it can trigger gene transcription that protects against various insults. The results suggest a mechanism for increased longevity and show that a PKD links DAG signals to regulation of stress responses and life span.
Collapse
Affiliation(s)
- Hui Feng
- Department of Molecular Pharmacology, Atran Laboratories, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
9
|
Amin MR, Malakooti J, Sandoval R, Dudeja PK, Ramaswamy K. IFN-gamma and TNF-alpha regulate human NHE3 gene expression by modulating the Sp family transcription factors in human intestinal epithelial cell line C2BBe1. Am J Physiol Cell Physiol 2006; 291:C887-96. [PMID: 16760259 DOI: 10.1152/ajpcell.00630.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023]
Abstract
Diarrhea associated with inflammatory bowel disease has been attributed to stimulated secretion of proinflammatory cytokines like IFN-gamma and TNF-alpha, which have been shown to downregulate the expression of the sodium-hydrogen exchanger-3 (NHE3) gene. In this study, we have investigated the mechanism of NHE3 gene regulation by IFN-gamma and TNF-alpha in C2BBe1 cells. In response to both IFN-gamma (30 ng/ml) and TNF-alpha (20 ng/ml), the construct containing the bp -95 to +5 region of the human NHE3 promoter, which harbors a number of cis-elements including four potential Sp1 binding sites, showed a maximum repression of 60%. Knockdown of Sp1 and Sp3 expression using small interfering RNA resulted in a significant inhibition of the NHE3 promoter activity and resistance to cytokines effects. These cytokines showed no effects on the expression of Sp1 and Sp3 mRNA and protein levels as assessed by RT-PCR and Western blot analyses, respectively. After treatment with cytokines, the binding of Sp1 and Sp3 proteins to NHE3 promoter decreased significantly, as seen by gel mobility shift assays and chromatin immunoprecipitation assays. The inhibitory effects of both cytokines on the NHE3 promoter were completely blocked by the broad-range kinase inhibitor staurosporine and the selective protein kinase A (PKA) inhibitor 8-bromoadenosine-3',5'-cyclic monophosphorothioate, Rp-isomer. The binding affinity of Sp1 and Sp3 proteins for NHE3 Sp1 probe was significantly decreased after in vitro phosphorylation of nuclear proteins by the alpha-catalytic subunit of PKA. Our data indicate that IFN-gamma and TNF-alpha may repress the NHE3 promoter activity in C2BBe1 cells by PKA-mediated phosphorylation of Sp1 and Sp3 transcription factors.
Collapse
Affiliation(s)
- Md Ruhul Amin
- University of Illinois at Chicago, Dept. of Medicine, Section of Digestive Diseases and Nutrition, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
10
|
Feng H, Ren M, Rubin CS. Conserved Domains Subserve Novel Mechanisms and Functions in DKF-1, a Caenorhabditis elegans Protein Kinase D. J Biol Chem 2006; 281:17815-26. [PMID: 16613842 DOI: 10.1074/jbc.m511898200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinase D (PKD) isoforms are effectors in signaling pathways controlled by diacylglycerol. PKDs contain conserved diacylglycerol binding (C1a, C1b), pleckstrin homology (PH), and Ser/Thr kinase domains. However, the properties of conserved domains may vary within the context of distinct PKD polypeptides. Such functional/structural malleability (plasticity) was explored by studying Caenorhabditis elegans D kinase family-1 (DKF-1), a PKD that governs locomotion in vivo. Phorbol ester binding with C1b alone activates classical PKDs by relieving C1-mediated inhibition. In contrast, C1a avidly ligated phorbol 12-myristate 13-acetate (PMA) and anchored DKF-1 at the plasma membrane. C1b bound PMA (moderate affinity) and cooperated with C1a in targeting DKF-1 to membranes. Mutations at a "Pro(11)" position in C1 domains were inactivating; kinase activity was minimal at PMA concentrations that stimulated wild type DKF-1 approximately 10-fold. DKF-1 mutants exhibited unchanged, maximum kinase activity after cells were incubated with high PMA concentrations. Titration in situ revealed that translocation and activation of wild type and mutant DKF-1 were tightly and quantitatively linked at all PMA concentrations. Thus, C1 domains positively regulated phosphotransferase activity by docking DKF-1 with pools of activating lipid. A PH domain inhibits kinase activity in classical PKDs. The DKF-1 PH module neither inhibited catalytic activity nor bound phosphoinositides. Consequently, the PH module is an obligatory, positive regulator of DKF-1 activity that is compromised by mutation of Lys(298) or Trp(396). Phosphorylation of Thr(588) switched on DKF-1 kinase activity. Persistent phosphorylation of Thr(588) (activation loop) promoted ubiquitinylation and proteasome-mediated degradation of DKF-1. Each DKF-1 domain displayed novel properties indicative of functional malleability (plasticity).
Collapse
Affiliation(s)
- Hui Feng
- Department of Molecular Pharmacology, Atran Laboratories, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | |
Collapse
|
11
|
Feng H, Ren M, Wu SL, Hall DH, Rubin CS. Characterization of a novel protein kinase D: Caenorhabditis elegans DKF-1 is activated by translocation-phosphorylation and regulates movement and growth in vivo. J Biol Chem 2006; 281:17801-14. [PMID: 16613841 DOI: 10.1074/jbc.m511899200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/29/2023] Open
Abstract
Protein kinase D (PKD) isoforms are protein kinase C (PKC) effectors in diacylglycerol (DAG)-regulated signaling pathways. Key physiological processes are placed under DAG control by the distinctive substrate specificity and intracellular distribution of PKDs. Comprehension of the roles of PKDs in homeostasis and signal transduction requires further knowledge of regulatory interplay among PKD and PKC isoforms, analysis of PKC-independent PKD activation, and characterization of functions controlled by PKDs in vivo. Caenorhabditis elegans and mammals share conserved signaling mechanisms, molecules, and pathways Thus, characterization of the C. elegans PKDs could yield insights into regulation and functions that apply to all eukaryotic PKDs. C. elegans DKF-1 (D kinase family-1) contains tandem DAG binding (C1) modules, a PH (pleckstrin homology) domain, and a Ser/Thr protein kinase segment, which are homologous with domains in classical PKDs. DKF-1 and PKDs have similar substrate specificities. Phorbol 12-myristate 13-acetate (PMA) switches on DKF-1 catalytic activity in situ by promoting phosphorylation of a single amino acid Thr(588) in the activation loop. DKF-1 phosphorylation and activation are unaffected when PKC activity is eliminated by inhibitors. Both phosphorylation and kinase activity of DKF-1 are extinguished by substituting Ala for Thr(588) or Gln for Lys(455) ("kinase dead") or incubating with protein phosphatase 2C. Thus, DKF-1 is a PMA-activated, PKC-independent D kinase. In vivo, dkf-1 gene promoter activity is evident in neurons. Both dkf-1 gene disruption (null phenotype) and RNA interference-mediated depletion of DKF-1 protein cause lower body paralysis. Targeted DKF-1 expression corrected this locomotory defect in dkf-1 null animals. Supraphysiological expression of DKF-1 limited C. elegans growth to approximately 60% of normal length.
Collapse
Affiliation(s)
- Hui Feng
- Department of Molecular Pharmacology, Atran Laboratories, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
12
|
Quinn KV, Giblin JP, Tinker A. Multisite phosphorylation mechanism for protein kinase A activation of the smooth muscle ATP-sensitive K+ channel. Circ Res 2004; 94:1359-66. [PMID: 15087422 DOI: 10.1161/01.res.0000128513.34817.c4] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022]
Abstract
The activation of ATP-sensitive K+ channels by protein kinase A in vascular smooth muscle is an important component of the action of vasodilators. In this study, we examine the molecular mechanisms of regulation of the cloned equivalent of this channel comprising the sulfonylurea receptor 2B and the inward rectifier 6.1 subunit (SUR2B/Kir6.1). Specifically, we focus on whether the channel is directly phosphorylated and the sites at which this occurs in the protein complex. We identify one site in Kir6.1 (S385) and two sites in SUR2B (T633 and S1465) using a combination of biochemical and functional assays. Our work supports a model in which multiple sites in the channel complex have to be phosphorylated before activation occurs.
Collapse
Affiliation(s)
- Kathryn V Quinn
- British Heart Foundation Laboratories and the Department of Medicine, University College London, UK
| | | | | |
Collapse
|
13
|
Kang BH, Jo I, Eun SY, Jo SA. Cyclic AMP-dependent protein kinase A and CREB are involved in neuregulin-induced synapse-specific expression of acetylcholine receptor gene. Biochem Biophys Res Commun 2003; 304:758-65. [PMID: 12727221 DOI: 10.1016/s0006-291x(03)00660-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022]
Abstract
Neuregulin is reported to stimulate synapse-specific transcription of acetylcholine receptor (AChR) genes in the skeletal muscle fiber by multiple signaling pathways such as ERK, PI3K, and JNK. The co-localization of PKA mRNA with AChR and ErbBs, receptors for neuregulin, at the confined region of synapse implicates the putative role of PKA in neuregulin-induced AChR gene expression. In the present study, we found that mRNA and protein of a regulatory subunit of PKA (PKARIalpha) were concentrated at synaptic sites of the rat sternomastoid muscle fiber, while those of ERK and PI3K were uniformly distributed throughout the muscle fiber. Neuregulin (100 ng/ml) increased both PKA activity in the nucleus and AChRdelta subunit gene transcription in cultured Sol8 myotubes. These increases were significantly blocked by a specific PKA inhibitor H-89 (100 nM) and an adenylcyclase inhibitor SQ 22536 (200 microM) (72.5% and 60.1%, respectively). Furthermore, neuregulin phosphorylated CREB, a well-known down-stream transcription factor of PKA. While H-89 inhibited CREB phosphorylation, H-89 and PD098059 (50 microM), a specific MEK1/2 inhibitor, did not inhibit the phosphorylation of ERK and CREB, respectively, suggesting no cross-talk between PKA and ERK pathways. In conclusion, neuregulin increases AChRdelta subunit gene transcription, in part, by the activation of PKA/CREB, an alternative route to the previously reported ERK signaling pathway.
Collapse
Affiliation(s)
- Byung-Hak Kang
- Department of Biomedical Sciences, National Institute of Health, 5 Nokbun-dong, Eunpyung-gu, Seoul 122-701, South Korea
| | | | | | | |
Collapse
|
14
|
Abstract
Over the past few years, significant progress has been made in characterizing the expression and localization of proteins that act as scaffolds for cAMP-dependent protein kinase (PK-A). These A-kinase anchor proteins (AKAPs) tether PK-A to intracellular organelles and structures, sequestering the kinase near its physiological substrates. The compartmentalization of distinct pockets of PK-A activity serves to provide spatial regulation of this signaling pathway. In addition, other signaling proteins bind to AKAPs, as do some newly described proteins of unknown function, suggesting that proteins of various pathways are anchored through AKAPs.
Collapse
Affiliation(s)
- S B Moss
- Center for Research on Reproduction and Women's Health, University of Pennsylvania Medical Center, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
15
|
Sun F, Hug MJ, Bradbury NA, Frizzell RA. Protein kinase A associates with cystic fibrosis transmembrane conductance regulator via an interaction with ezrin. J Biol Chem 2000; 275:14360-6. [PMID: 10799517 DOI: 10.1074/jbc.275.19.14360] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) is an epithelial Cl(-) channel whose activity is controlled by cAMP-dependent protein kinase (PKA)-mediated phosphorylation. We found that CFTR immunoprecipitates from Calu-3 airway cells contain endogenous PKA, which is capable of phosphorylating CFTR. This phosphorylation is stimulated by cAMP and inhibited by the PKA inhibitory peptide. The endogenous PKA that co-precipitates with CFTR could also phosphorylate the PKA substrate peptide, Leu-Arg-Arg-Ala-Ser-Leu-Gly (kemptide). Both the catalytic and type II regulatory subunits of PKA are identified by immunoblotting CFTR immunoprecipitates, demonstrating that the endogenous kinase associated with CFTR is PKA, type II (PKA II). Phosphorylation reactions mediated by CFTR-associated PKA II are inhibited by Ht31 peptide but not by the control peptide Ht31P, indicating that a protein kinase A anchoring protein (AKAP) is responsible for the association between PKA and CFTR. Ezrin may function as this AKAP, since it is expressed in Calu-3 and T84 epithelia, ezrin binds RII in overlay assays, and RII is immunoprecipitated with ezrin from Calu-3 cells. Whole-cell patch clamp of Calu-3 cells shows that Ht31 peptide reduces cAMP-stimulated CFTR Cl(-) current, but Ht31P does not. Taken together, these data demonstrate that PKA II is linked physically and functionally to CFTR by an AKAP interaction, and they suggest that ezrin serves as an AKAP for PKA-mediated phosphorylation of CFTR.
Collapse
Affiliation(s)
- F Sun
- Department of Cell Biology and Physiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
16
|
Sík A, Gulácsi A, Lai Y, Doyle WK, Pacia S, Mody I, Freund TF. Localization of the A kinase anchoring protein AKAP79 in the human hippocampus. Eur J Neurosci 2000; 12:1155-64. [PMID: 10762347 DOI: 10.1046/j.1460-9568.2000.00002.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
Abstract
The phosphorylation state of the proteins, regulated by phosphatases and kinases, plays an important role in signal transduction and long-term changes in neuronal excitability. In neurons, cAMP-dependent protein kinase (PKA), protein kinase C (PKC) and calcineurin (CN) are attached to a scaffold protein, A kinase anchoring protein (AKAP), thought to anchor these three enzymes to specific sites of action. However, the localization of AKAP, and the predicted sites of linked phosphatase and kinase activities, are still unknown at the fine structural level. In the present study, we investigated the distribution of AKAP79 in the hippocampus from postmortem human brains and lobectomy samples from patients with intractable epilepsy, using preembedding immunoperoxidase and immunogold histochemical methods. AKAP79 was found in the CA1, presubicular and subicular regions, mostly in pyramidal cell dendrites, whereas pyramidal cells in the CA3, CA2 regions and dentate granule cells were negative both in postmortem and in surgical samples. In some epileptic cases, the dentate molecular layer and hilar interneurons also became immunoreactive. At the subcellular level, AKAP79 immunoreactivity was present in postsynaptic profiles near, but not attached to, the postsynaptic density of asymmetrical (presumed excitatory) synapses. We conclude that the spatial selectivity for the action of certain kinases and phosphatases regulating various ligand- and voltage-gated channels may be ensured by the selective presence of their anchoring protein, AKAP79, at the majority of glutamatergic synapses in the CA1, but not in the CA2/CA3 regions, suggesting profound differences in signal transduction and long-term synaptic plasticity between these regions of the human hippocampus.
Collapse
Affiliation(s)
- A Sík
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Szigony u. 43, H-1083, Hungary
| | | | | | | | | | | | | |
Collapse
|
17
|
Angelo RG, Rubin CS. Characterization of structural features that mediate the tethering of Caenorhabditis elegans protein kinase A to a novel A kinase anchor protein. Insights into the anchoring of PKAI isoforms. J Biol Chem 2000; 275:4351-62. [PMID: 10660605 DOI: 10.1074/jbc.275.6.4351] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
Caenorhabditis elegans protein kinase A (PKAI(CE)) is tethered to organelles in vivo. A unique A kinase anchor protein (AKAP(CE)) avidly binds the RI-like regulatory subunits (R(CE)) of PKAI(CE) and stringently discriminates against RIIalpha and RIIbeta subunits, the preferred ligands for classical AKAPs. We elucidated structural features that stabilize AKAP(CE).R(CE) complexes and confer atypical R isoform specificity on the anchor protein. Three large aliphatic amino acids (Leu(236), Ile(248), and Leu(252)) in the tethering domain of AKAP(CE) (residues 236-255) are crucial for ligation of R(CE). Their side chains apparently generate a precisely configured hydrophobic binding pocket that accommodates an apolar surface on R(CE) dimers. Basic residues (His(254)-Arg(255)-Lys(256)) at the C terminus of the tethering site set an upper limit on affinity for R(CE.) A central dipeptide (Phe(243)-Ser(244)) contributes critical and distinctive properties of the tethering site. Ser(244) is essential for selective binding of R(CE) and exclusion of RII isoforms. The aromatic hydrophobic character of Phe(243) ensures maximal R(CE) binding activity, thereby supporting a "gatekeeper" function of Ser(244). Substitution of Phe(243)-Ser(244) with Leu-Val generated an RII-specific AKAP. R(CE) and RII subunits contain similar dimerization domains. AKAP-binding domains of R(CE) (residues 23-47) and RII differ markedly in size, amino acid sequence, and docking specificity. Four hydrophobic residues (Cys(23), Val(27), Ile(32), and Cys(44)) in R(CE) are crucial for avid binding with AKAP(CE), whereas side chains from Leu(20), Leu(35), Val(36), Ile(40), and Ile(41) have little impact on complex formation. Tyr(26) is embedded in the docking domain, but its aromatic ring is required for R(CE)-R(CE) dimerization. Residues 236-255 in AKAP(CE) also constitute a binding site for mammalian RIalpha. RIalpha (PKAIalpha) is tightly sequestered by AKAP(CE) in vitro (K(D) = approximately 10 nM) and in the environment of intact cells. The tethering domain of AKAP(CE) provides a molecular module for manipulating intracellular localization of RI and elucidating functions of anchored PKAI in eukaryotes.
Collapse
Affiliation(s)
- R G Angelo
- Department of Molecular Pharmacology, Atran Laboratories, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
18
|
Pursiheimo JP, Jalkanen M, Taskén K, Jaakkola P. Involvement of protein kinase A in fibroblast growth factor-2-activated transcription. Proc Natl Acad Sci U S A 2000; 97:168-73. [PMID: 10618389 PMCID: PMC26634 DOI: 10.1073/pnas.97.1.168] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022] Open
Abstract
Polypeptide growth factors activate common signal transduction pathways, yet they can induce transcription of different target genes. The mechanisms that control this specificity are not completely understood. Recently, we have described a fibroblast growth factor (FGF)-inducible response element, FiRE, on the syndecan-1 gene. In NIH 3T3 cells, the FiRE is activated by FGF-2 but not by several other growth factors, such as platelet-derived growth factor or epidermal growth factor, suggesting that FGF-2 activates signaling pathways that diverge from pathways activated by other growth factors. In this paper, we report that the activation of FiRE by FGF-2 requires protein kinase A (PKA) in NIH 3T3 cells. The PKA-specific inhibitor H-89 (N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide) blocked the FGF-2-induced activation of FiRE, the transcription of the syndecan-1 gene, and cell proliferation. Also, expression of a dominant-negative form of PKA inhibited the FGF-2-induced FiRE activation and the transcription of the syndecan-1 gene. The binding of activator protein-1 transcription-factor complexes, required for the activation of FiRE, was blocked by inhibition of PKA activity before FGF-2 treatment. In accordance with the growth factor specificity of FiRE, the activity of PKA was stimulated by FGF-2 but not by platelet-derived growth factor or epidermal growth factor. Furthermore, a portion of the PKA catalytic subunit pool was translocated to the nucleus by FGF-2. Noticeably, the total cellular cAMP concentration was not affected by FGF-2 stimulus. We propose that the FGF-2-selective transcriptional activation through FiRE is caused by the ability of FGF-2 to control PKA activity.
Collapse
Affiliation(s)
- J P Pursiheimo
- Turku Centre for Biotechnology, University of Turku, Tykistökatu 6B, BioCity, FIN-20520 Turku, Finland
| | | | | | | |
Collapse
|
19
|
Cassano S, Di Lieto A, Cerillo R, Avvedimento EV. Membrane-bound cAMP-dependent protein kinase controls cAMP-induced differentiation in PC12 cells. J Biol Chem 1999; 274:32574-9. [PMID: 10551810 DOI: 10.1074/jbc.274.46.32574] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
The A126 cell line, a derivative of PC12, is defective in cAMP-induced transcription and does not differentiate in the presence of cAMP. In these cells overexpression of a cAMP-dependent protein kinase (PKA) anchor protein, AKAP75, and of the PKA catalytic subunit substantially increased the fraction of PKAII bound to the membrane, stimulated the transcription of cAMP-induced genes, and induced terminal differentiation. Conversely, wild type PC12 cells expressing a derivative of the AKAP75 protein, AKAP45, which binds the PKA regulatory subunits RII, but fails to locate them to the membranes, induced translocation of PKAII to the cytosol. These cells did not efficiently accumulate PKA catalytic subunit in the nuclei when stimulated with cAMP, did not transcribe cAMP-induced genes, and failed to differentiate when exposed to cAMP. These data indicate that membrane-bound PKA positively controls the transcription of cAMP-induced genes and differentiation in PC12 cells.
Collapse
Affiliation(s)
- S Cassano
- Centro di Endocrinologia ed Oncologia Sperimentale del CNR, Dipartimento di Biologia e Patologia Molecolare e Cellulare, Facoltà di Medicina e Chirurgia, Università "Federico II" Napoli, 80131 Napoli, Italy
| | | | | | | |
Collapse
|
20
|
Ruehr ML, Zakhary DR, Damron DS, Bond M. Cyclic AMP-dependent protein kinase binding to A-kinase anchoring proteins in living cells by fluorescence resonance energy transfer of green fluorescent protein fusion proteins. J Biol Chem 1999; 274:33092-6. [PMID: 10551879 DOI: 10.1074/jbc.274.46.33092] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
A-kinase anchoring proteins tether cAMP-dependent protein kinase (PKA) to specific subcellular locations. The purpose of this study was to use fluorescence resonance energy transfer to monitor binding events in living cells between the type II regulatory subunit of PKA (RII) and the RII-binding domain of the human thyroid RII anchoring protein (Ht31), a peptide containing the PKA-binding domain of an A-kinase anchoring protein. RII was linked to enhanced yellow fluorescent protein (EYFP), Ht31 was linked to enhanced cyan fluorescent protein (ECFP), and these constructs were coexpressed in Chinese hamster ovary cells. Upon excitation of the donor fluorophore, Ht31.ECFP, an increase in emission of the acceptor fluorophore, RII.EYFP, and a decrease in emission from Ht31.ECFP were observed. The emission ratio (acceptor/donor) was increased 2-fold (p < 0.05) in cells expressing Ht31.ECFP and RII.EYFP compared with cells expressing Ht31P.ECFP, the inactive form of Ht31, and RII.EYFP. These results provide the first in vivo demonstration of RII/Ht31 interaction in living cells and confirm previous in vitro findings of RII/Ht31 binding. Using surface plasmon resonance, we also showed that the green fluorescent protein tags did not significantly alter the binding of Ht31 to RII. Thus, fluorescence resonance energy transfer can be used to directly monitor protein-protein interactions of the PKA signaling pathway in living cells.
Collapse
Affiliation(s)
- M L Ruehr
- Department of Molecular Cardiology, Lerner Research Institute, Case Western Reserve University School of Medicine, Cleveland, Ohio 44195, USA
| | | | | | | |
Collapse
|
21
|
Davare MA, Dong F, Rubin CS, Hell JW. The A-kinase anchor protein MAP2B and cAMP-dependent protein kinase are associated with class C L-type calcium channels in neurons. J Biol Chem 1999; 274:30280-7. [PMID: 10514522 DOI: 10.1074/jbc.274.42.30280] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation by cAMP-dependent protein kinase (PKA) increases the activity of class C L-type Ca(2+) channels which are clustered at postsynaptic sites and are important regulators of neuronal functions. We investigated a possible mechanism that could ensure rapid and efficient phosphorylation of these channels by PKA upon stimulation of cAMP-mediated signaling pathways. A kinase anchor proteins (AKAPs) bind to the regulatory R subunits of PKA and target the holoenzyme to defined subcellular compartments and substrates. Class C channels isolated from rat brain extracts by immunoprecipitation contain an endogenous kinase that phosphorylates kemptide, a classic PKA substrate peptide, and also the main phosphorylation site for PKA in the pore-forming alpha(1) subunit of the class C channel complex, serine 1928. The kinase activity is inhibited by the PKA inhibitory peptide PKI(5-24) and stimulated by cAMP. Physical association of the catalytic C subunit of PKA with the immunoisolated class C channel complex was confirmed by immunoblotting. A direct protein overlay binding assay performed with (32)P-labeled RIIbeta revealed a prominent AKAP with an M(r) of 280,000 in class C channel complexes. The protein was identified by immunoblotting as the microtubule-associated protein MAP2B, a well established AKAP. Class C channels did not contain tubulin and MAP2B association was not disrupted by dilution or addition of nocodazole, two treatments that cause dissociation of microtubules. In vitro experiments show that MAP2B can directly bind to the alpha(1) subunit of the class C channel. Our findings indicate that PKA is an integral part of neuronal class C L-type Ca(2+) channels and suggest that the AKAP MAP2B may mediate this interaction. Neither PKA nor MAP2B were detected in immunoprecipitates of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid-type glutamate receptors or class B N-type Ca(2+) channels. Accordingly, MAP2B docked at class C Ca(2+) channels may be important for recruiting PKA to postsynaptic sites.
Collapse
Affiliation(s)
- M A Davare
- Department of Pharmacology, University of Wisconsin, Madison, Wisconsin 53706-1532, USA
| | | | | | | |
Collapse
|
22
|
Li Z, Rossi EA, Hoheisel JD, Kalderon D, Rubin CS. Generation of a novel A kinase anchor protein and a myristoylated alanine-rich C kinase substrate-like analog from a single gene. J Biol Chem 1999; 274:27191-200. [PMID: 10480936 DOI: 10.1074/jbc.274.38.27191] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
A unique Drosophila gene encodes two novel signaling proteins. Drosophila A kinase anchor protein 200 (DAKAP200) (753 amino acids) binds regulatory subunits of protein kinase AII (PKAII) isoforms in vitro and in intact cells. The acidic DAKAP200 polypeptide (pI approximately 3.8) contains an optimal N-terminal myristoylation site and a positively charged domain that resembles the multifunctional phosphorylation site domain of vertebrate myristoylated alanine-rich C kinase substrate proteins. The 15-kilobase pair DAKAP200 gene contains six exons and encodes a second protein, DeltaDAKAP200. DeltaDAKAP200 is derived from DAKAP200 transcripts by excision of exon 5 (381 codons), which encodes the PKAII binding region and a Pro-rich sequence. DeltaDAKAP200 appears to be a myristoylated alanine-rich C kinase substrate analog. DAKAP200 and DeltaDAKAP200 are evident in vivo at all stages of Drosophila development. Thus, both proteins may play important physiological roles throughout the life span of the organism. Nevertheless, DAKAP200 gene expression is regulated. Maximal levels of DAKAP200 are detected in the pupal phase of development; DeltaDAKAP200 content is elevated 7-fold in adult head (brain) relative to other body parts. Enhancement or suppression of exon 5 excision during DAKAP200 pre-mRNA processing provides potential mechanisms for regulating anchoring of PKAII and targeting of cAMP signals to effector sites in cytoskeleton and/or organelles.
Collapse
Affiliation(s)
- Z Li
- Department of Molecular Pharmacology, Atran Laboratories, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
23
|
Rossi EA, Li Z, Feng H, Rubin CS. Characterization of the targeting, binding, and phosphorylation site domains of an A kinase anchor protein and a myristoylated alanine-rich C kinase substrate-like analog that are encoded by a single gene. J Biol Chem 1999; 274:27201-10. [PMID: 10480937 DOI: 10.1074/jbc.274.38.27201] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
A novel Drosophila A kinase anchor protein, Drosophila A kinase anchor protein 200 (DAKAP200), is predicted to be involved in routing, mediating, and integrating signals carried by cAMP, Ca(2+), and diacylglycerol (Li, Z., Rossi, E. A., Hoheisel, J. D., Kalderon, D., and Rubin, C. S. (1999) J. Biol. Chem. 274, 27191-27200). Experiments designed to assess this hypothesis now (a) establish the function, boundaries and identity of critical amino acids of the protein kinase AII (PKAII) tethering site of DAKAP200; (b) demonstrate that residues 119-148 mediate binding with Ca(2+)-calmodulin and F-actin; (c) show that a polybasic region of DAKAP200 is a substrate for protein kinase C; (d) reveal that phosphorylation of the polybasic domain regulates affinity for F-actin and Ca(2+)-calmodulin; and (e) indicate that DAKAP200 is myristoylated and that this modification promotes targeting of DAKAP200 to plasma membrane. DeltaDAKAP200, a second product of the DAKAP200 gene, cannot tether PKAII. However, DeltaDAKAP200 is myristoylated and contains a phosphorylation site domain that binds Ca(2+)-calmodulin and F-actin. An atypical amino acid composition, a high level of negative charge, exceptional thermostability, unusual hydrodynamic properties, properties of the phosphorylation site domain, and a calculated M(r) of 38,000 suggest that DeltaDAKAP200 is a new member of the myristoylated alanine-rich C kinase substrate protein family. DAKAP200 is a potentially mobile, chimeric A kinase anchor protein-myristoylated alanine-rich C kinase substrate protein that may facilitate localized reception and targeted transmission of signals carried by cAMP, Ca(2+), and diacylglycerol.
Collapse
Affiliation(s)
- E A Rossi
- Department of Molecular Pharmacology, Atran Laboratories, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
24
|
Francis SH, Corbin JD. Cyclic nucleotide-dependent protein kinases: intracellular receptors for cAMP and cGMP action. Crit Rev Clin Lab Sci 1999; 36:275-328. [PMID: 10486703 DOI: 10.1080/10408369991239213] [Citation(s) in RCA: 219] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/25/2022]
Abstract
Intracellular cAMP and cGMP levels are increased in response to a variety of hormonal and chemical stimuli; these nucleotides play key roles as second messenger signals in modulating myriad physiological processes. The cAMP-dependent protein kinase and cGMP-dependent protein kinase are major intracellular receptors for these nucleotides, and the actions of these enzymes account for much of the cellular responses to increased levels of cAMP or cGMP. This review summarizes many studies that have contributed significantly to an improved understanding of the catalytic, regulatory, and structural properties of these protein kinases. These accumulated findings provide insights into the mechanisms by which these enzymes produce their specific physiological effects and are helpful in considering the actions of other protein kinases as well.
Collapse
Affiliation(s)
- S H Francis
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232-0615, USA
| | | |
Collapse
|
25
|
Paolillo M, Feliciello A, Porcellini A, Garbi C, Bifulco M, Schinelli S, Ventra C, Stabile E, Ricciardelli G, Schettini G, Avvedimento EV. The type and the localization of cAMP-dependent protein kinase regulate transmission of cAMP signals to the nucleus in cortical and cerebellar granule cells. J Biol Chem 1999; 274:6546-52. [PMID: 10037748 DOI: 10.1074/jbc.274.10.6546] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
cAMP signals are received and transmitted by multiple isoforms of cAMP-dependent protein kinases, typically determined by their specific regulatory subunits. In the brain the major regulatory isoform RIIbeta and the RII-anchor protein, AKAP150 (rat) or 75 (bovine), are differentially expressed. Cortical neurons express RIIbeta and AKAP75; conversely, granule cerebellar cells express predominantly RIalpha and RIIalpha. Cortical neurons accumulate PKA catalytic subunit and phosphorylated cAMP responsive element binding protein very efficiently into nuclei upon cAMP induction, whereas granule cerebellar cells fail to do so. Down-regulation of RIIbeta synthesis by antisense oligonucleotides inhibited cAMP-induced nuclear signaling in cortical neurons. Expression in cerebellar granule cells of RIIbeta and AKAP75 genes by microinjection of specific expression vectors, markedly stimulated cAMP-induced transcription of the lacZ gene driven by a cAMP-responsive element promoter. These data indicate that the composition of PKA in cortical and granule cells underlies the differential ability of these cells to transmit cAMP signals to the nucleus.
Collapse
Affiliation(s)
- M Paolillo
- Istituto di Farmacologia, Facoltà di Farmacia, Università di Pavia, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Klussmann E, Maric K, Wiesner B, Beyermann M, Rosenthal W. Protein kinase A anchoring proteins are required for vasopressin-mediated translocation of aquaporin-2 into cell membranes of renal principal cells. J Biol Chem 1999; 274:4934-8. [PMID: 9988736 DOI: 10.1074/jbc.274.8.4934] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
The antidiuretic hormone arginine-vasopressin (AVP) regulates water reabsorption in renal collecting duct principal cells by inducing a cAMP-dependent translocation of water channels (aquaporin-2, AQP-2) from intracellular vesicles into the apical cell membranes. In subcellular fractions from primary cultured rat inner medullary collecting duct (IMCD) cells, enriched for intracellular AQP-2-bearing vesicles, catalytic protein kinase A (PKA) subunits and several protein kinase A anchoring proteins (AKAPs) were detected. In nonstimulated IMCD cells the majority of AQP-2 staining was detected intracellularly but became mainly localized within the cell membrane after stimulation with AVP or forskolin. Quantitative analysis revealed that preincubation of the cells with the synthetic peptide S-Ht31, which prevents the binding between AKAPs and regulatory subunits of PKA, strongly inhibited AQP-2 translocation in response to forskolin. Preincubation of the cells with the PKA inhibitor H89 prior to forskolin stimulation abolished AQP-2 translocation. In contrast to H89, S-Ht31 did not affect the catalytic activity of PKA. These data demonstrate that not only the activity of PKA, but also its tethering to subcellular compartments, are prerequisites for cAMP-dependent AQP-2 translocation.
Collapse
Affiliation(s)
- E Klussmann
- Forschungsinstitut für Molekulare Pharmakologie, Alfred-Kowalke-Strasse 4, D-10315 Berlin, Germany.
| | | | | | | | | |
Collapse
|
27
|
Feliciello A, Rubin CS, Avvedimento EV, Gottesman ME. Expression of a kinase anchor protein 121 is regulated by hormones in thyroid and testicular germ cells. J Biol Chem 1998; 273:23361-6. [PMID: 9722570 DOI: 10.1074/jbc.273.36.23361] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
Distinct A Kinase Anchor Proteins (AKAPs) immobilize and concentrate protein kinase A II (PKAII) isoforms at specific intracellular locations. AKAP121 binds and targets PKAIIalpha to the cytoplasmic surface of mitochondria. Mechanisms that control expression of this mitochondrial AKAP are unknown. We have cloned cDNA for rat AKAP121 and show that AKAP121 protein expression is regulated by thyroid stimulating hormone (TSH) and cAMP. Differentiated thyroid cells (TL5) accumulate AKAP121 upon incubation with TSH or a cAMP analog. Levels of total and newly synthesized AKAP121 mRNA also increased after treatment. AKAP121 mRNA accumulated in the presence of cycloheximide, suggesting that transcription of the anchor protein gene is directly controlled by cAMP and PKA. AKAP121 is induced with similar kinetics when an unrelated, spermatocyte-derived cell line (GC-2) is incubated with 8-chlorophenylthio-cAMP. Thus, AKAP121 concentration may be controlled by hormones that activate adenylate cyclase. This mode of regulation could provide a general mechanism for (a) enhancing the sensitivity of distal organelles to cAMP and (b) shifting the focus of cAMP-mediated signaling from cytoplasm to organelles.
Collapse
Affiliation(s)
- A Feliciello
- Institute of Cancer Research, Columbia University, New York, New York 10032, USA
| | | | | | | |
Collapse
|
28
|
Angelo R, Rubin CS. Molecular characterization of an anchor protein (AKAPCE) that binds the RI subunit (RCE) of type I protein kinase A from Caenorhabditis elegans. J Biol Chem 1998; 273:14633-43. [PMID: 9603981 DOI: 10.1074/jbc.273.23.14633] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
Classical A kinase anchor proteins (AKAPs) preferentially tether type II protein kinase A (PKAII) isoforms to sites in the cytoskeleton and organelles. It is not known if distinct proteins selectively sequester regulatory (R) subunits of type I PKAs, thereby diversifying functions of these critical enzymes. In Caenorhabditis elegans, a single type I PKA mediates all aspects of cAMP signaling. We have discovered a cDNA that encodes a binding protein (AKAPCE) for the regulatory subunit (RCE) of C. elegans PKAICE. AKAPCE is a novel, highly acidic RING finger protein composed of 1,280 amino acids. It binds RI-like RCE with high affinity and neither RIIalpha nor RIIbeta competitively inhibits formation of AKAPCE.RCE complexes. The RCE-binding site was mapped to a segment of 20 amino acids in an N-terminal region of AKAPCE. Several hydrophobic residues in the binding site align with essential Leu and Ile residues in the RII-selective tethering domain of prototypic mammalian AKAPs. However, the RCE-binding region in AKAPCE diverges sharply from consensus RII-binding sites by inclusion of three aromatic amino acids, exclusion of a highly conserved Leu or Ile at position 8 and replacement of C-terminal hydrophobic amino acids with basic residues. AKAPCE.RCE complexes accumulate in intact cells.
Collapse
Affiliation(s)
- R Angelo
- Department of Molecular Pharmacology, Atran Laboratories, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
29
|
Dong F, Feldmesser M, Casadevall A, Rubin CS. Molecular characterization of a cDNA that encodes six isoforms of a novel murine A kinase anchor protein. J Biol Chem 1998; 273:6533-41. [PMID: 9497389 DOI: 10.1074/jbc.273.11.6533] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
We have cloned cDNA that encodes six novel A kinase anchor proteins (collectively named AKAP-KL). AKAP-KL diversity is generated by alternative mRNA splicing and utilization of two translation initiation codons. AKAP-KL polypeptides are evident in lung, kidney, and cerebellum, but are absent from many tissues. Different isoforms predominate in different tissues. Thus, AKAP-KL expression is differentially regulated in vivo. All AKAP-KL isoforms contain a 20-residue domain that avidly binds (Kd approximately 10 nM) regulatory subunits (RII) of protein kinase AII and is highly homologous with the RII tethering site in neuronal AKAP75. The distribution of AKAP-KL is strikingly asymmetric (polarized) in situ. Anchor protein accumulates near the inner, apical surface of highly polarized epithelium in tubules of nephrons. Both RII and AKAP-KL are enriched at an intracellular site that lies just below the plasma membrane of alveolar epithelial cells in lung. AKAP-KL interacts with and modulates the structure of the actin cytoskeleton in transfected cells. We also demonstrate that the tethering domain of AKAP-KL avidly ligates RII subunits in intact cells. AKAP-KL may be involved in (a) establishing polarity in signaling systems and (b) physically and functionally integrating PKAII isoforms with downstream effectors to capture, amplify, and precisely focus diffuse, trans-cellular signals carried by cAMP.
Collapse
Affiliation(s)
- F Dong
- Department of Molecular Pharmacology, Atran Laboratories, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
30
|
Steagall WK, Kelley TJ, Marsick RJ, Drumm ML. Type II protein kinase A regulates CFTR in airway, pancreatic, and intestinal cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:C819-26. [PMID: 9530114 DOI: 10.1152/ajpcell.1998.274.3.c819] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/07/2023]
Abstract
The type of protein kinase A (PKA) responsible for cystic fibrosis transmembrane conductance regulator (CFTR) activation was determined with adenosine 3', 5'-cyclic monophosphate analogs capable of selectively activating type I or type II PKA. The type II-selective pair stimulated chloride efflux in airway, pancreatic, and colonic epithelial cells; the type I-selective pair only stimulated a calcium-dependent efflux in airway cells. The type II-selective analogs activated larger increases in CFTR-mediated current than did the type I-selective analogs. Measurement of soluble PKA activity demonstrated similar levels stimulated by type I- and type II-selective analogs, creating an apparent paradox regarding PKA activity and current generated. Also, addition of forskolin after the type I-selective analogs resulted in an increase in current; little increase was seen after the type II-selective analogs. Measurement of insoluble PKA activity stimulated by the analogs resolved this paradox. Type II-selective analogs stimulated three times as much insoluble PKA activity as the type I-selective pair, indicating that differential activation of PKA in cellular compartments is important in CFTR regulation.
Collapse
Affiliation(s)
- W K Steagall
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio 44106-4948, USA
| | | | | | | |
Collapse
|
31
|
Iona S, Cuomo M, Bushnik T, Naro F, Sette C, Hess M, Shelton ER, Conti M. Characterization of the rolipram-sensitive, cyclic AMP-specific phosphodiesterases: identification and differential expression of immunologically distinct forms in the rat brain. Mol Pharmacol 1998; 53:23-32. [PMID: 9443929 DOI: 10.1124/mol.53.1.23] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/05/2023] Open
Abstract
To determine the properties of the cAMP-specific, rolipram-sensitive phosphodiesterases (cAMP-PDEs) that are expressed in different organs, monoclonal and polyclonal antibodies were raised against different epitopes present in the cAMP-PDE sequences. Of the several antibodies generated against peptides and fusion proteins, one monoclonal and four polyclonal antibodies recognized both the native cAMP-PDEs as well as the denatured proteins on Western immunoblot analysis. An immunoprecipitation assay demonstrated that these antibodies recognized the recombinant rat PDE4A, PDE4B, and PDE4D proteins with different avidity. The polyclonal antibody K118 and the monoclonal M3S1 were most specific for rat PDE4B and PDE4D forms, respectively, whereas the AC55 antiserum displayed the highest affinity for PDE4A forms. This selectivity was confirmed by Western blot analysis using recombinant rat PDE4A, PDE4B, and PDE4D proteins expressed in a heterologous system. These antibodies were used to characterize the cAMP-PDEs expressed in the rat brain. An immunoblot of extract of cortex and cerebellum demonstrated that at least seven different polypeptides specifically cross-reacted with the different antibodies, indicating that multiple cAMP-PDEs are expressed in this tissue. On the basis of cross-reactivity with PDE4D but not PDE4A or PDE4B antibodies, 93- and 105-kDa PDE4D species were detected in the cortex and cerebellum extract. These forms are different from the 68-kDa PDE4D form expressed in endocrine cells after hormonal stimulation. Although the 93-kDa form was recovered in both the soluble and particulate fractions, the 105-kDa polypeptide was mostly particulate in the cortex and cerebellum extracts. PDE4B forms of 90-87 kDa were recovered in both soluble and particulate compartments of the brain extract. These forms were different from the previously identified PDE4A variants of 110 and 75 kDa. These data demonstrate that the presence of multiple cAMP-PDE genes is translated into cAMP-PDE proteins of different sizes and distinct immunological properties and that multiple variants derived from these cAMP-PDE genes are expressed in different regions of the brain and different subcellular compartments. These immunological tools will be useful to identify different cAMP-PDE forms expressed in organs targeted for pharmacological intervention with PDE4 inhibitors.
Collapse
Affiliation(s)
- S Iona
- Department of Gynecology and Obstetrics, Stanford University Medical Center, California 94305-5317, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Feliciello A, Li Y, Avvedimento EV, Gottesman ME, Rubin CS. A-kinase anchor protein 75 increases the rate and magnitude of cAMP signaling to the nucleus. Curr Biol 1997; 7:1011-4. [PMID: 9382844 DOI: 10.1016/s0960-9822(06)00424-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/05/2023]
Abstract
A-kinase anchor protein 75 (AKAP75) binds regulatory subunits (RIIalpha and RIIbeta) of type II protein kinase A (PKAII) isoforms and targets the resulting complexes to sites in the cytoskeleton that abut the plasma membrane [1-7]. Co-localization of AKAP75-PKAII with adenylate cyclase and PKA substrate/effector proteins in cytoskeleton and plasma membrane effects a physical and functional integration of up-stream and downstream signaling proteins, thereby ensuring efficient propagation of signals carried by locally generated cyclic AMP (cAMP) [4-9]. An important, but previously untested, prediction of the AKAP model is that efficient, cyclic nucleotide-dependent liberation of diffusible PKA catalytic subunits from cytoskeleton-bound AKAP75-PKAII complexes will also enhance signaling to distal organelles, such as the nucleus. We tested this idea by suing HEK-A75 cells, in which PKAII isoforms are immobilized in cortical cytoskeleton by AKAP75. Abilities of HEK-A75 and control cells (with cytoplasmically dispersed PKAII isoforms) to respond to increases in cAMP content were compared. Cells with anchored PKAII exhibited a threefold higher level of nuclear catalytic subunit content and 4-10-fold greater increments in phosphorylation of a regulatory serine residue in cAMP response element binding protein (CREB) and in phosphoCREB-stimulated transcription of the c-fos gene. Each effect occurred more rapidly in cells containing targeted AKAP75-PKAII complexes. Thus, anchoring of PKAII in actin cortical cytoskeleton increases the rate, magnitude and sensitivity of cAMP signaling to the nucleus.
Collapse
Affiliation(s)
- A Feliciello
- Department of Molecular Pharmacology, Atran Laboratories, Albert Einstein College of Medicine, Bronx, New York, New York 10461, USA
| | | | | | | | | |
Collapse
|
33
|
Han JD, Baker NE, Rubin CS. Molecular characterization of a novel A kinase anchor protein from Drosophila melanogaster. J Biol Chem 1997; 272:26611-9. [PMID: 9334242 DOI: 10.1074/jbc.272.42.26611] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/05/2023] Open
Abstract
Activation of protein kinase A (PKA) at discrete intracellular sites facilitates oogenesis and development in Drosophila. Thus, PKA-anchor protein complexes may be involved in controlling these crucial biological processes. Evaluation of this proposition requires knowledge of PKA binding/targeting proteins in the fly. We now report the discovery and characterization of cDNAs encoding a novel, Drosophila A kinase anchor protein, DAKAP550. DAKAP550 is a large (>2300 amino acids) acidic protein that is maximally expressed in anterior tissues. It binds regulatory subunits (RII) of both mammalian and Drosophila PKAII isoforms. The tethering region of DAKAP550 includes two proximal, but non-contiguous RII-binding sites (B1 and B2). The B1 domain (residues 1406-1425) binds RII approximately 20-fold more avidly than B2 (amino acids 1350-1369). Affinity-purified anti-DAKAP550 IgGs were exploited to demonstrate that the anchor protein is expressed in many cells in nearly all tissues throughout the lifespan of the fly. However, DAKAP550 is highly enriched and asymmetrically positioned in subpopulations of neurons and in apical portions of cells in gut and trachea. The combination of RII (PKAII) binding activity with differential expression and polarized localization is consistent with a role for DAKAP550 in creating target loci for the reception of signals carried by cAMP. The DAKAP550 gene was mapped to the 4F1.2 region of the X chromosome; flies that carry a deletion for this portion of the X chromosome lack DAKAP550 protein.
Collapse
Affiliation(s)
- J D Han
- Department of Molecular Pharmacology, Atran Laboratories, Bronx, New York 10461, USA
| | | | | |
Collapse
|
34
|
Gao T, Yatani A, Dell'Acqua ML, Sako H, Green SA, Dascal N, Scott JD, Hosey MM. cAMP-dependent regulation of cardiac L-type Ca2+ channels requires membrane targeting of PKA and phosphorylation of channel subunits. Neuron 1997; 19:185-96. [PMID: 9247274 DOI: 10.1016/s0896-6273(00)80358-x] [Citation(s) in RCA: 368] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/04/2023]
Abstract
The cardiac L-type Ca2+ channel is a textbook example of an ion channel regulated by protein phosphorylation; however, the molecular events that underlie its regulation remain unknown. Here, we report that in transiently transfected HEK293 cells expressing L-type channels, elevations in cAMP resulted in phosphorylation of the alpha1C and beta2a channel subunits and increases in channel activity. Channel phosphorylation and regulation were facilitated by submembrane targeting of protein kinase A (PKA), through association with an A-kinase anchoring protein called AKAP79. In transfected cells expressing a mutant AKAP79 that is unable to bind PKA, phosphorylation of the alpha1C subunit and regulation of channel activity were not observed. Furthermore, we have demonstrated that the association of an AKAP with PKA was required for beta-adrenergic receptor-mediated regulation of L-type channels in native cardiac myocytes, illustrating that the events observed in the heterologous expression system reflect those occurring in the native system. Mutation of Ser1928 to alanine in the C-terminus of the alpha1C subunit resulted in a complete loss of cAMP-mediated phosphorylation and a loss of channel regulation. Thus, the PKA-mediated regulation of L-type Ca2+ channels is critically dependent on a functional AKAP and phosphorylation of the alpha1C subunit at Ser1928.
Collapse
Affiliation(s)
- T Gao
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Chen Q, Lin RY, Rubin CS. Organelle-specific targeting of protein kinase AII (PKAII). Molecular and in situ characterization of murine A kinase anchor proteins that recruit regulatory subunits of PKAII to the cytoplasmic surface of mitochondria. J Biol Chem 1997; 272:15247-57. [PMID: 9182549 DOI: 10.1074/jbc.272.24.15247] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/04/2023] Open
Abstract
Experiments were designed to test the idea that A kinase anchor proteins (AKAPs) tether regulatory subunits (RII) of protein kinase AII (PKAII) isoforms to surfaces of organelles that are bounded by phospholipid bilayers. S-AKAP84, one of three RII-binding proteins encoded by a single-copy murine gene, was studied as a prototypic organelle-associated AKAP. When S-AKAP84 was expressed in HEK293 cells, the anchor protein was targeted to mitochondria and excluded from other cell compartments. The RII tethering site is located in the cytoplasm adjacent to the mitochondrial surface. Endogenous RII subunits are not associated with mitochondria isolated from control cells. Expression of S-AKAP84 in transfected HEK293 cells triggered a redistribution of 15% of total RII to mitochondria. Thus, the tethering region of the organelle-inserted anchor protein is properly oriented and avidly binds RII (PKAII) isoforms in intact cells. Two critical domains in S-AKAP84 were mapped. Residues 1 to 30 govern insertion of the polypeptide into the outer mitochondrial membrane; amino acids 306-325 constitute the RII-binding site. Properties established for S-AKAP84 in vitro and in situ strongly suggest that a physiological function of this protein is to concentrate and immobilize RII (PKAII) isoforms at the cytoplasmic face of a phospholipid bilayer.
Collapse
Affiliation(s)
- Q Chen
- Department of Molecular Pharmacology, Atran Laboratories, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
36
|
Cassano S, Gallo A, Buccigrossi V, Porcellini A, Cerillo R, Gottesman ME, Avvedimento EV. Membrane localization of cAMP-dependent protein kinase amplifies cAMP signaling to the nucleus in PC12 cells. J Biol Chem 1996; 271:29870-5. [PMID: 8939928 DOI: 10.1074/jbc.271.47.29870] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/03/2023] Open
Abstract
The A126 cell line, in contrast to its PC12 parent, does not differentiate, accumulate nuclear cAMP-dependent protein kinase A (PKA) catalytic subunit, or transcribe cAMP-dependent promoters in response to cAMP. Total PKA is reduced by 50% and is partly resistant to cAMP-induced dissociation in vivo. Unlike PC12, where PKAII is membrane-associated, PKAII is exclusively cytosolic in A126. Cotransfection with the RII anchor protein (AKAP75) and the PKA catalytic subunit (C-PKA) restored cAMP-induced transcription to levels found in PC12. These data indicate that membrane-bound PKAII amplifies cAMP signaling to the nucleus and suggest that cAMP-mediated responses are specified by the type and cellular localization of the PKA isoform.
Collapse
Affiliation(s)
- S Cassano
- Centro di Endocrinologia ed Oncologia Sperimentale del CNR, c/o Dipartimento di Biologia e Patologia Molecolare e Cellulare, Facoltà di Medicina, Università "Federico II" 80131 Napoli, Italy.
| | | | | | | | | | | | | |
Collapse
|
37
|
Feliciello A, Giuliano P, Porcellini A, Garbi C, Obici S, Mele E, Angotti E, Grieco D, Amabile G, Cassano S, Li Y, Musti AM, Rubin CS, Gottesman ME, Avvedimento EV. The v-Ki-Ras oncogene alters cAMP nuclear signaling by regulating the location and the expression of cAMP-dependent protein kinase IIbeta. J Biol Chem 1996; 271:25350-9. [PMID: 8810300 DOI: 10.1074/jbc.271.41.25350] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/02/2023] Open
Abstract
The v-Ki-Ras oncoprotein dedifferentiates thyroid cells and inhibits nuclear accumulation of the catalytic subunit of cAMP-dependent protein kinase. After activation of v-Ras or protein kinase C, the regulatory subunit of type II protein kinase A, RIIbeta, translocates from the membranes to the cytosol. RIIbeta mRNA and protein were eventually depleted. These effects were mimicked by expressing AKAP45, a truncated version of the RII anchor protein, AKAP75. Because AKAP45 lacks membrane targeting domains, it induces the translocation of PKAII to the cytoplasm. Expression of AKAP45 markedly decreased thyroglobulin mRNA levels and inhibited accumulation of C-PKA in the nucleus. Our results suggest that: 1) The localization of PKAII influences cAMP signaling to the nucleus; 2) Ras alters the localization and the expression of PKAII; 3) Translocation of PKAII to the cytoplasm reduces nuclear C-PKA accumulation, resulting in decreased expression of cAMP-dependent genes, including RIIbeta, TSH receptor, and thyroglobulin. The loss of RIIbeta permanently down-regulates thyroid-specific gene expression.
Collapse
Affiliation(s)
- A Feliciello
- Dipartimento Biologia e Patologia Molecolare e Cellulare, Centro di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche, Facoltà di Medicina, Università Federico II, Napoli, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Li Y, Ndubuka C, Rubin CS. A kinase anchor protein 75 targets regulatory (RII) subunits of cAMP-dependent protein kinase II to the cortical actin cytoskeleton in non-neuronal cells. J Biol Chem 1996; 271:16862-9. [PMID: 8663279 DOI: 10.1074/jbc.271.28.16862] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/01/2023] Open
Abstract
Neuronal A kinase anchor protein (AKAP) homologs, such as AKAPs 75 and 150, tether cAMP-dependent protein kinase II (PKAII) isoforms to the postsynaptic cytoskeleton, thereby creating target sites for cAMP action. These AKAPs, which bind regulatory subunits (RIIs) of PKAII, are also expressed in certain non-neuronal cells. Non-neuronal cell lines that stably express wild type and mutant AKAP75 transgenes were generated to investigate the extraneuronal function of AKAPs. In non-neuronal cells, AKAP75 accumulates selectively in the actin-rich, cortical cytoskeleton in close proximity with the plasma membrane. AKAP75 efficiently sequesters cytoplasmic RIIalpha and RIIbeta (PKAII isoforms) and translocates these polypeptides to the cell cortex. Two structural modules in AKAP75, T1 (residues 27-48), and T2 (residues 77-100), are essential for targeting AKAP75.RII complexes to the cortical cytoskeleton. Deletions or amino acid substitutions in T1 and/or T2 result in the dispersion of both AKAP75 and RII subunits throughout the cytoplasm. AKAP75 is co-localized with F-actin and fodrin in the cortical cytoskeleton. Incubation of cells with 5 microM cytochalasin D disrupts actin filaments and dissociates actin from the cell cortex. In contrast, the bulk of AKAP75 and fodrin remain associated with the cortical region of cytochalasin D-treated cells. Thus, targeting of AKAP75 does not depend upon direct binding with F-actin. Rather, AKAP75 (like fodrin) may be associated with a multiprotein complex that interacts with integral plasma membrane proteins.
Collapse
Affiliation(s)
- Y Li
- Department of Molecular Pharmacology, Atran Laboratories, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
39
|
Lin RY, Moss SB, Rubin CS. Characterization of S-AKAP84, a novel developmentally regulated A kinase anchor protein of male germ cells. J Biol Chem 1995; 270:27804-11. [PMID: 7499250 DOI: 10.1074/jbc.270.46.27804] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/25/2023] Open
Abstract
In mammalian spermatozoa, most of the type II alpha isoform of cAMP-dependent protein kinase (PKAII alpha) is anchored at the cytoplasmic surface of a specialized array of mitochondria in the flagellar cytoskeleton. This places the catalytic subunits of PKAII alpha in proximity with potential target substrates in the cytoskeleton. The mechanism by which PKAII alpha is anchored at the outer surface of germ cell mitochondria has not been elucidated. We now report the cloning of a cDNA that encodes a novel, germ cell A kinase anchor protein (AKAP) designated S-AKAP84. S-AKAP84 comprises 593 amino acids and contains a centrally located domain that avidly binds regulatory subunits (RII alpha and RII beta) of PKAII alpha and PKAII beta. The 3.2-kilobase S-AKAP84 mRNA and the cognate S-AKAP84 RII binding protein are expressed principally in the male germ cell lineage. Expression of S-AKAP84 is tightly regulated during development. The protein accumulates as spermatids undergo nuclear condensation and tail elongation. The timing of S-AKAP84 expression is correlated with the de novo accumulation of RII alpha and RII beta subunits and the migration of mitochondria from the cytoplasm (round spermatids) to the cytoskeleton (midpiece in elongating spermatids). Residues 1-30 at the NH2 terminus of S-AKAP84 constitute a putative signal/anchor sequence that may target the protein to the outer mitochondrial membrane. Immunofluorescence analysis demonstrated that S-AKAP84 is co-localized with mitochondria in the flagellum.
Collapse
Affiliation(s)
- R Y Lin
- Department of Molecular Pharmacology, Atran Laboratories, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
40
|
Cho-Chung YS, Pepe S, Clair T, Budillon A, Nesterova M. cAMP-dependent protein kinase: role in normal and malignant growth. Crit Rev Oncol Hematol 1995; 21:33-61. [PMID: 8822496 DOI: 10.1016/1040-8428(94)00166-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Y S Cho-Chung
- Laboratory of Tumor Immunology and Biology, DCBDC, NCI, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
41
|
Abstract
A fundamental question in signal transduction is how stimulation of a specific protein kinase leads to phosphorylation of particular protein substrates throughout the cell. Recent studies indicate that specific anchoring proteins located at various sites in the cell compartmentalize the kinases to their sites of action. Inhibitors of the interactions between kinases and their anchoring proteins inhibit the functions mediated by the kinases. These data indicate that the location of these anchoring proteins provides some of the specificity of the responses mediated by each kinase and suggest that inhibitors of the interaction between the kinases and their anchoring proteins may be useful as therapeutic agents.
Collapse
Affiliation(s)
- D Mochly-Rosen
- Department of Molecular Pharmacology, School of Medicine, Stanford University, CA 94305-5332, USA
| |
Collapse
|
42
|
Li Y, Rubin CS. Mutagenesis of the Regulatory Subunit (RIIβ) of cAMP-dependent Protein Kinase IIβ Reveals Hydrophobic Amino Acids That Are Essential for RIIβ Dimerization and/or Anchoring RIIβ to the Cytoskeleton. J Biol Chem 1995. [DOI: 10.1074/jbc.270.4.1935] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
|
43
|
Roger PP, Reuse S, Maenhaut C, Dumont JE. Multiple facets of the modulation of growth by cAMP. VITAMINS AND HORMONES 1995; 51:59-191. [PMID: 7483330 DOI: 10.1016/s0083-6729(08)61038-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/25/2023]
Affiliation(s)
- P P Roger
- Institute of Interdisciplinary Research, Free University of Brussels, Belgium
| | | | | | | |
Collapse
|
44
|
Macleod J, Mei X, Erlichman J, Orr GA. Association of the regulatory subunit of a type II cAMP-dependent protein kinase and its binding proteins with the fibrous sheath of rat sperm flagellum. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 225:107-14. [PMID: 7925427 DOI: 10.1111/j.1432-1033.1994.00107.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/27/2023]
Abstract
Demembranated rat sperm flagellar polypeptides capable of binding the regulatory subunit (RII) of a type II cAMP-dependent protein kinase, having apparent subunit molecular masses of 120, 80 and 57 kDa were identified by an RII overlay procedure [Horowitz, J. A., Wasco, W., Leiser, M. & Orr, G. A. (1988) J. Biol. Chem. 263, 2098-2104]. In this study it is shown that all three polypeptides capable of binding RII on a solid-phase blot are tightly associated with the fibrous sheath. Purified fibrous sheath preparations were capable of binding (a) [3H]cAMP and (b) purified catalytic subunits of cAMP-dependent protein kinase forming a functional holoenzyme. The 57-kDa protein was identified as RII by photoaffinity labeling with 8-azido[32P]cAMP. This peptide was phosphorylated by the catalytic subunit of cAMP-dependent protein kinase. RII alpha was also shown to form tight, specific complexes with the fibrous sheath demonstrating the presence of functional RII alpha-binding sites. Truncated RII beta fusion proteins were used to identify the N-terminal amino acids at positions 1-50 as a primary determinant for RII-binding protein interaction. Differential extraction of adult testis with buffers containing Triton X-100, urea and sodium dodecyl sulfate revealed the presence of 80-kDa (major) and 120-kDa (minor) RII-binding proteins in particulate extracts. The 80-kDa polypeptide is only expressed at late stages of spermatogenesis, i.e. during spermiogenesis, suggesting a developmental role for RII anchoring to the sperm flagellar fibrous sheath.
Collapse
Affiliation(s)
- J Macleod
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx
| | | | | | | |
Collapse
|
45
|
Identification of a ras-related protein in murine erythroleukemia cells that is a cAMP-dependent protein kinase substrate and is phosphorylated during chemically induced differentiation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)32352-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022] Open
|
46
|
Type II regulatory subunits of cAMP-dependent protein kinase and their binding proteins in the nervous system of Aplysia californica. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42028-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022] Open
|
47
|
Carr D, DeManno D, Atwood A, Hunzicker-Dunn M, Scott J. Follicle-stimulating hormone regulation of A-kinase anchoring proteins in granulosa cells. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)36841-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022] Open
|