1
|
Filipowicz A, Allard P. Caenorhabditis Elegans as a Model for Environmental Epigenetics. Curr Environ Health Rep 2025; 12:6. [PMID: 39828873 PMCID: PMC11743352 DOI: 10.1007/s40572-025-00472-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
PURPOSE OF REVIEW The burgeoning field of environmental epigenetics has revealed the malleability of the epigenome and uncovered numerous instances of its sensitivity to environmental influences; however, pinpointing specific mechanisms that tie together environmental triggers, epigenetic pathways, and organismal responses has proven difficult. This article describes how Caenorhabditis elegans can fill this gap, serving as a useful model for the discovery of molecular epigenetic mechanisms that are conserved in humans. RECENT FINDINGS Recent results show that environmental stressors such as methylmercury, arsenite, starvation, heat, bacterial infection, and mitochondrial inhibitors can all have profound effects on the epigenome, with some insults showing epigenetic and organismal effects for multiple generations. In some cases, the pathways connecting the stressor to epigenetic pathways and organismal responses have been elucidated. For example, a small RNA from the bacterial pathogen Pseudomonas aeruginosa induces transgenerational learned avoidance by activating the RNA interference PIWI-interacting RNA pathways across generations to downregulate, via Cer1 retrotransposon particles and histone methylation, maco-1, a gene that functions in sensory neurons to regulate chemotaxis. Mitochondrial inhibitors seem to have a profound effect on both the DNA methylation mark 6mA and histone methylation, and may act within mitochondrial DNA (mtDNA) to regulate mitochondrial stress response genes. Transgenerational transcriptional responses to alcohol have also been worked out at the single-nucleus resolution in C. elegans, demonstrating its utility when combined with modern sequencing technologies. These recent studies highlight how C. elegans can serve as a bridge between biochemical in vitro experiments and the more associative findings of epidemiological studies in humans to unveil possible mechanisms of environmental influence on the epigenome. The nematode is particularly well-suited to transgenerational experiments thanks to its rapid generation time and ability to self-fertilize. These studies have revealed connections between the various epigenetic mechanisms, and so studies in C. elegans that take advantage of recent advancements in sequencing technologies, including single-cell techniques, to gain unprecedented resolution of the whole epigenome across development and generations will be critical.
Collapse
Affiliation(s)
- Adam Filipowicz
- Institute for Society and Genetics, University of California, Boyer Hall, Room 332, 611 Charles E Young Dr E., UCLA, Los Angeles, CA, 90095, USA
- Environmental and Molecular Toxicology Program, University of California, Los Angeles, USA
| | - Patrick Allard
- Institute for Society and Genetics, University of California, Boyer Hall, Room 332, 611 Charles E Young Dr E., UCLA, Los Angeles, CA, 90095, USA.
- Environmental and Molecular Toxicology Program, University of California, Los Angeles, USA.
| |
Collapse
|
2
|
Andric A, Niederwanger M, Albertini E, Jansen-Dürr P, Stürzenbaum SR, Dallinger R, Pedrini-Martha V, Weiss AKH. A multi-domain snail metallothionein increases cadmium resistance and fitness in Caenorhabditis elegans. Sci Rep 2024; 14:25589. [PMID: 39462019 PMCID: PMC11513058 DOI: 10.1038/s41598-024-76268-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/23/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Metallothioneins (MTs) are a family of mostly low-molecular weight, cysteine-rich proteins capable of specific metal-ion binding that are involved in metal detoxification and homeostasis, as well as in stress response. In contrast to most other animal species which possess two-domain (bidominial) MTs, some gastropod species have evolved Cd2+-selective multidomain MTs (md-MTs) consisting of several concatenated β3 domains and a single C-terminal β1 domain. Each domain contains three-metal ion clusters and binds three metal ions. The terrestrial snail Alinda biplicata possesses, among other MT isoforms, an md-MT with nine β3 domains and a C-terminal β1 domain (termed 10md-MT), capable of binding up to 30 Cd2+ ions per protein molecule. In the present study, the Alinda biplicata 10md-MT gene and a truncated version consisting of one β3 domain and a single C-terminal β1 domain (2d-MT) were introduced into a Caenorhabditis elegans knock-out strain lacking a native MT gene (mtl-1). The two snail MT constructs consistently increased Cd2+ resistance, and partially improved morphological, life history and physiological fitness traits in the nematode model host Caenorhabditis elegans. This highlights how the engineering of transgenic Caenorhabditis elegans strains expressing snail MTs provides an enhancement of the innate metal detoxification mechanism and in doing so provides a platform for enhanced mechanistic toxicology.
Collapse
Affiliation(s)
- Andreas Andric
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | | | - Eva Albertini
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Stephen R Stürzenbaum
- Department of Analytical, Environmental and Forensic Sciences, King's College London, London, UK
| | - Reinhard Dallinger
- Department of Zoology, University of Innsbruck, Innsbruck, Austria.
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria.
| | | | - Alexander K H Weiss
- Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
3
|
Ohse VA, Klotz LO, Priebs J. Copper Homeostasis in the Model Organism C. elegans. Cells 2024; 13:727. [PMID: 38727263 PMCID: PMC11083455 DOI: 10.3390/cells13090727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/18/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Cellular and organismic copper (Cu) homeostasis is regulated by Cu transporters and Cu chaperones to ensure the controlled uptake, distribution and export of Cu ions. Many of these processes have been extensively investigated in mammalian cell culture, as well as in humans and in mammalian model organisms. Most of the human genes encoding proteins involved in Cu homeostasis have orthologs in the model organism, Caenorhabditis elegans (C. elegans). Starting with a compilation of human Cu proteins and their orthologs, this review presents an overview of Cu homeostasis in C. elegans, comparing it to the human system, thereby establishing the basis for an assessment of the suitability of C. elegans as a model to answer mechanistic questions relating to human Cu homeostasis.
Collapse
Affiliation(s)
| | - Lars-Oliver Klotz
- Nutrigenomics Section, Institute of Nutritional Sciences, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany;
| | - Josephine Priebs
- Nutrigenomics Section, Institute of Nutritional Sciences, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany;
| |
Collapse
|
4
|
Essig YJ, Leszczyszyn OI, Almutairi N, Harrison-Smith A, Blease A, Zeitoun-Ghandour S, Webb SM, Blindauer CA, Stürzenbaum SR. Juggling cadmium detoxification and zinc homeostasis: A division of labour between the two C. elegans metallothioneins. CHEMOSPHERE 2024; 350:141021. [PMID: 38151062 PMCID: PMC11134313 DOI: 10.1016/j.chemosphere.2023.141021] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/21/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
The chemical properties of toxic cadmium and essential zinc are very similar, and organisms require intricate mechanisms that drive selective handling of metals. Previously regarded as unspecific "metal sponges", metallothioneins (MTLs) are emerging as metal selectivity filters. By utilizing C. elegans mtl-1 and mtl-2 knockout strains, metal accumulation in single worms, single copy fluorescent-tagged transgenes, isoform specific qPCR and lifespan studies it was possible to demonstrate that the handling of cadmium and zinc by the two C. elegans metallothioneins differs fundamentally: the MTL-2 protein can handle both zinc and cadmium, but when it becomes unavailable, either via a knockout or by elevated cadmium exposure, MTL-1 takes over zinc handling, leaving MTL-2 to sequester cadmium. This division of labour is reflected in the folding behaviour of the proteins: MTL-1 folded well in presence of zinc but not cadmium, the reverse was the case for MTL-2. These differences are in part mediated by a zinc-specific mononuclear His3Cys site in the C-terminal insertion of MTL-1; its removal affected the entire C-terminal domain and may shift its metal selectivity towards zinc. Overall, we uncover how metallothionein isoform-specific responses and protein properties allow C. elegans to differentiate between toxic cadmium and essential zinc.
Collapse
Affiliation(s)
- Yona J Essig
- Analytical, Environmental and Forensic Sciences Department, King's College London, London, UK
| | - Oksana I Leszczyszyn
- Analytical, Environmental and Forensic Sciences Department, King's College London, London, UK
| | - Norah Almutairi
- Analytical, Environmental and Forensic Sciences Department, King's College London, London, UK
| | | | - Alix Blease
- Analytical, Environmental and Forensic Sciences Department, King's College London, London, UK
| | | | - Sam M Webb
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | | | - Stephen R Stürzenbaum
- Analytical, Environmental and Forensic Sciences Department, King's College London, London, UK.
| |
Collapse
|
5
|
Jewett E, Arnott G, Connolly L, Vasudevan N, Kevei E. Microplastics and Their Impact on Reproduction-Can we Learn From the C. elegans Model? FRONTIERS IN TOXICOLOGY 2022; 4:748912. [PMID: 35399297 PMCID: PMC8987311 DOI: 10.3389/ftox.2022.748912] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/28/2021] [Accepted: 02/15/2022] [Indexed: 12/17/2022] Open
Abstract
Biologically active environmental pollutants have significant impact on ecosystems, wildlife, and human health. Microplastic (MP) and nanoplastic (NP) particles are pollutants that are present in the terrestrial and aquatic ecosystems at virtually every level of the food chain. Moreover, recently, airborne microplastic particles have been shown to reach and potentially damage respiratory systems. Microplastics and nanoplastics have been shown to cause increased oxidative stress, inflammation, altered metabolism leading to cellular damage, which ultimately affects tissue and organismal homeostasis in numerous animal species and human cells. However, the full impact of these plastic particles on living organisms is not completely understood. The ability of MPs/NPs to carry contaminants, toxic chemicals, pesticides, and bioactive compounds, such as endocrine disrupting chemicals, present an additional risk to animal and human health. This review will discusses the current knowledge on pathways by which microplastic and nanoplastic particles impact reproduction and reproductive behaviors from the level of the whole organism down to plastics-induced cellular defects, while also identifying gaps in current knowledge regarding mechanisms of action. Furthermore, we suggest that the nematode Caenorhabditis elegans provides an advantageous high-throughput model system for determining the effect of plastic particles on animal reproduction, using reproductive behavioral end points and cellular readouts.
Collapse
Affiliation(s)
- Elysia Jewett
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Gareth Arnott
- The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Lisa Connolly
- The Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Northern Ireland, United Kingdom
| | - Nandini Vasudevan
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Eva Kevei
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
6
|
Wakabayashi T, Nojiri Y, Takahashi-Watanabe M. Multiple Chemosensory Neurons Mediate Avoidance Behavior to Rare Earth Ions in Caenorhabditis elegans. Biol Trace Elem Res 2021; 199:2764-2769. [PMID: 32914378 DOI: 10.1007/s12011-020-02375-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/16/2020] [Accepted: 09/02/2020] [Indexed: 12/22/2022]
Abstract
As rare earth (RE) metals are abundantly present in the soil, in spite of their name, it is conceivable that organisms may encounter and interact with RE ions. In the present study, we demonstrated that the soil nematode Caenorhabditis elegans avoids RE ions, such as yttrium and all examined lanthanide ions, which exhibit toxic effects on nematodes. We also demonstrated that the chemosensory system of this animal mediates avoidance behavior toward RE ions similar to heavy metal (HM) ion avoidance. The C. elegans dyf-11(pe554) mutant is unable to respond to chemosensory cues because it lacks all ciliated endings of the chemosensory neurons required for the detection of environmental chemicals. Cell-specific rescue of the dyf-11 mutant and cell-specific genetic ablation studies revealed that the avoidance behavior toward HM and RE ions was mediated by a partially overlapping but distinct subset of chemosensory neurons (ASH, ADL, ASE, ADF, and ASK). With the help of multiple chemosensory neurons, worms may improve the fidelity of avoidance behavior to evade RE ions. Among the chemosensory neurons in C. elegans, ADF and ASK neurons were involved in RE avoidance, but not in HM avoidance. These results suggested that ADF and ASK neurons in C. elegans have RE-selective mechanisms to mediate the avoidance response.
Collapse
Affiliation(s)
- Tokumitsu Wakabayashi
- Department of Chemistry and Biosciences, Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, 020-8551, Japan.
| | - Yui Nojiri
- Department of Chemistry and Biosciences, Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, 020-8551, Japan
| | - Miwa Takahashi-Watanabe
- Department of Chemistry and Biosciences, Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka, 020-8551, Japan
| |
Collapse
|
7
|
Hartman JH, Widmayer SJ, Bergemann CM, King DE, Morton KS, Romersi RF, Jameson LE, Leung MCK, Andersen EC, Taubert S, Meyer JN. Xenobiotic metabolism and transport in Caenorhabditis elegans. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2021; 24:51-94. [PMID: 33616007 PMCID: PMC7958427 DOI: 10.1080/10937404.2021.1884921] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/03/2023]
Abstract
Caenorhabditis elegans has emerged as a major model in biomedical and environmental toxicology. Numerous papers on toxicology and pharmacology in C. elegans have been published, and this species has now been adopted by investigators in academic toxicology, pharmacology, and drug discovery labs. C. elegans has also attracted the interest of governmental regulatory agencies charged with evaluating the safety of chemicals. However, a major, fundamental aspect of toxicological science remains underdeveloped in C. elegans: xenobiotic metabolism and transport processes that are critical to understanding toxicokinetics and toxicodynamics, and extrapolation to other species. The aim of this review was to initially briefly describe the history and trajectory of the use of C. elegans in toxicological and pharmacological studies. Subsequently, physical barriers to chemical uptake and the role of the worm microbiome in xenobiotic transformation were described. Then a review of what is and is not known regarding the classic Phase I, Phase II, and Phase III processes was performed. In addition, the following were discussed (1) regulation of xenobiotic metabolism; (2) review of published toxicokinetics for specific chemicals; and (3) genetic diversity of these processes in C. elegans. Finally, worm xenobiotic transport and metabolism was placed in an evolutionary context; key areas for future research highlighted; and implications for extrapolating C. elegans toxicity results to other species discussed.
Collapse
Affiliation(s)
- Jessica H Hartman
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Samuel J Widmayer
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States
| | | | - Dillon E King
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Katherine S Morton
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Riccardo F Romersi
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Laura E Jameson
- School of Mathematical and Natural Sciences, Arizona State University - West Campus, Glendale, Arizona, United States
| | - Maxwell C K Leung
- School of Mathematical and Natural Sciences, Arizona State University - West Campus, Glendale, Arizona, United States
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States
| | - Stefan Taubert
- Dept. Of Medical Genetics, Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, the University of British Colombia, Vancouver, BC, Canada
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| |
Collapse
|
8
|
Sterken MG, Bevers RPJ, Volkers RJM, Riksen JAG, Kammenga JE, Snoek BL. Dissecting the eQTL Micro-Architecture in Caenorhabditis elegans. Front Genet 2020; 11:501376. [PMID: 33240309 PMCID: PMC7670075 DOI: 10.3389/fgene.2020.501376] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/29/2019] [Accepted: 10/13/2020] [Indexed: 01/11/2023] Open
Abstract
The study of expression quantitative trait loci (eQTL) using natural variation in inbred populations has yielded detailed information about the transcriptional regulation of complex traits. Studies on eQTL using recombinant inbred lines (RILs) led to insights on cis and trans regulatory loci of transcript abundance. However, determining the underlying causal polymorphic genes or variants is difficult, but ultimately essential for the understanding of regulatory networks of complex traits. This requires insight into whether associated loci are single eQTL or a combination of closely linked eQTL, and how this QTL micro-architecture depends on the environment. We addressed these questions by testing for independent replication of previously mapped eQTL in Caenorhabditis elegans using new data from introgression lines (ILs). Both populations indicate that the overall heritability of gene expression, number, and position of eQTL differed among environments. Across environments we were able to replicate 70% of the cis- and 40% of the trans-eQTL using the ILs. Testing eight different simulation models, we suggest that additive effects explain up to 60-93% of RIL/IL heritability for all three environments. Closely linked eQTL explained up to 40% of RIL/IL heritability in the control environment whereas only 7% in the heat-stress and recovery environments. In conclusion, we show that reproducibility of eQTL was higher for cis vs. trans eQTL and that the environment affects the eQTL micro-architecture.
Collapse
Affiliation(s)
- Mark G. Sterken
- Laboratory of Nematology, Wageningen University & Research, Wageningen, Netherlands
| | - Roel P. J. Bevers
- Laboratory of Nematology, Wageningen University & Research, Wageningen, Netherlands
| | - Rita J. M. Volkers
- Laboratory of Nematology, Wageningen University & Research, Wageningen, Netherlands
| | - Joost A. G. Riksen
- Laboratory of Nematology, Wageningen University & Research, Wageningen, Netherlands
| | - Jan E. Kammenga
- Laboratory of Nematology, Wageningen University & Research, Wageningen, Netherlands
| | - Basten L. Snoek
- Laboratory of Nematology, Wageningen University & Research, Wageningen, Netherlands
- Theoretical Biology & Bioinformatics, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
9
|
Heaton A, Faulconer E, Milligan E, Kroetz MB, Weir SM, Glaberman S. Interspecific Variation in Nematode Responses to Metals. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1006-1016. [PMID: 32072668 DOI: 10.1002/etc.4689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/22/2019] [Revised: 11/25/2019] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Performing toxicity testing on multiple species with differing degrees of evolutionary relatedness can provide important information on how chemical sensitivity varies among species and can help pinpoint the biological drivers of species sensitivity. Such knowledge could ultimately be used to design better multispecies predictive ecological risk assessment models and identify particularly sensitive species. However, laboratory toxicity tests involving multiple species can also be resource intensive, especially when each species has unique husbandry conditions. We performed lethality tests with 2 metals, copper chloride and zinc chloride, on 5 different nematode species, which are nested in their degree of evolutionary relatedness: Caenorhabditis briggsae, Caenorhabditis elegans, Oscheius myriophila, Oscheius tipulae, and Pristionchus pacificus. All species were successfully cultured and tested concurrently with limited resources, demonstrating that inexpensive, multispecies nematode toxicity testing systems are achievable. The results indicate that P. pacificus is the most sensitive to both metals. Conversely, C. elegans is the least sensitive species to copper, but the second most sensitive to zinc, indicating that species relationships do not necessarily predict species sensitivity. Toxicity testing with additional nematode species and types of chemicals is feasible and will help form more generalizable conclusions about relative species sensitivity. Environ Toxicol Chem 2020;39:1006-1016. © 2020 SETAC.
Collapse
Affiliation(s)
- Andrew Heaton
- Department of Biology, University of South Alabama, Mobile, Alabama, USA
| | | | - Emma Milligan
- Department of Biology, University of South Alabama, Mobile, Alabama, USA
| | - Mary B Kroetz
- Department of Biology, University of South Alabama, Mobile, Alabama, USA
| | - Scott M Weir
- Department of Biology, Queens University of Charlotte, Charlotte, North Carolina, USA
| | - Scott Glaberman
- Department of Biology, University of South Alabama, Mobile, Alabama, USA
- Department of Environmental Science & Policy, George Mason University, Fairfax, Virginia, USA
| |
Collapse
|
10
|
Zúñiga A, Laporte D, González A, Gómez M, Sáez CA, Moenne A. Isolation and Characterization of Copper- and Zinc- Binding Metallothioneins from the Marine Alga Ulva compressa (Chlorophyta). Int J Mol Sci 2019; 21:E153. [PMID: 31881655 PMCID: PMC6981760 DOI: 10.3390/ijms21010153] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/23/2019] [Revised: 12/17/2019] [Accepted: 12/22/2019] [Indexed: 02/07/2023] Open
Abstract
In this work, transcripts encoding three metallothioneins from Ulva compressa (UcMTs) were amplified: The 5'and 3' UTRs by RACE-PCR, and the open reading frames (ORFs) by PCR. Transcripts encoding UcMT1.1 (Crassostrea-like), UcMT2 (Mytilus-like), and UcMT3 (Dreissena-like) showed a 5'UTR of 61, 71, and 65 nucleotides and a 3'UTR of 418, 235, and 193 nucleotides, respectively. UcMT1.1 ORF encodes a protein of 81 amino acids (MW 8.2 KDa) with 25 cysteines (29.4%), arranged as three motifs CC and nine motifs CXC; UcMT2 ORF encode a protein of 90 amino acids (9.05 kDa) with 27 cysteines (30%), arranged as three motifs CC, nine motifs CXC, and one motif CXXC; UcMT3 encode a protein of 139 amino acids (13.4 kDa) with 34 cysteines (24%), arranged as seven motifs CC and seven motifs CXC. UcMT1 and UcMT2 were more similar among each other, showing 60% similarity in amino acids; UcMT3 showed only 31% similarity with UcMT1 and UcMT2. In addition, UcMTs displayed structural similarity with MTs of marine invertebrates MTs and the terrestrial invertebrate Caenorhabtidis elegans MTs, but not with MTs from red or brown macroalgae. The ORFs fused with GST were expressed in bacteria allowing copper accumulation, mainly in MT1 and MT2, and zinc, in the case of the three MTs. Thus, the three MTs allowed copper and zinc accumulation in vivo. UcMTs may play a role in copper and zinc accumulation in U. compressa.
Collapse
Affiliation(s)
- Antonio Zúñiga
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda 3363, Santiago 9170022, Chile; (A.Z.); (A.G.); (M.G.)
- HUB AMBIENTAL UPLA, Vicerrectoría de Investigación, Postgrado e Innovación, University of Playa Ancha, Avenida Carvallo 270, Valparaíso 2340000, Chile;
| | - Daniel Laporte
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda 3363, Santiago 9170022, Chile; (A.Z.); (A.G.); (M.G.)
| | - Alberto González
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda 3363, Santiago 9170022, Chile; (A.Z.); (A.G.); (M.G.)
| | - Melissa Gómez
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda 3363, Santiago 9170022, Chile; (A.Z.); (A.G.); (M.G.)
| | - Claudio A. Sáez
- HUB AMBIENTAL UPLA, Vicerrectoría de Investigación, Postgrado e Innovación, University of Playa Ancha, Avenida Carvallo 270, Valparaíso 2340000, Chile;
- Laboratory of Aquatic Environmental Research, Center of Advances Studies, University of Playa Ancha, Traslaviña 450, Viña del Mar 2520000, Chile
| | - Alejandra Moenne
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda 3363, Santiago 9170022, Chile; (A.Z.); (A.G.); (M.G.)
| |
Collapse
|
11
|
Yang W, Petersen C, Pees B, Zimmermann J, Waschina S, Dirksen P, Rosenstiel P, Tholey A, Leippe M, Dierking K, Kaleta C, Schulenburg H. The Inducible Response of the Nematode Caenorhabditis elegans to Members of Its Natural Microbiota Across Development and Adult Life. Front Microbiol 2019; 10:1793. [PMID: 31440221 PMCID: PMC6693516 DOI: 10.3389/fmicb.2019.01793] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/21/2019] [Accepted: 07/22/2019] [Indexed: 12/11/2022] Open
Abstract
The biology of all organisms is influenced by the associated community of microorganisms. In spite of its importance, it is usually not well understood how exactly this microbiota affects host functions and what are the underlying molecular processes. To rectify this knowledge gap, we took advantage of the nematode Caenorhabditis elegans as a tractable, experimental model system and assessed the inducible transcriptome response after colonization with members of its native microbiota. For this study, we focused on two isolates of the genus Ochrobactrum. These bacteria are known to be abundant in the nematode’s microbiota and are capable of colonizing and persisting in the nematode gut, even under stressful conditions. The transcriptome response was assessed across development and three time points of adult life, using general and C. elegans-specific enrichment analyses to identify affected functions. Our assessment revealed an influence of the microbiota members on the nematode’s dietary response, development, fertility, immunity, and energy metabolism. This response is mainly regulated by a GATA transcription factor, most likely ELT-2, as indicated by the enrichment of (i) the GATA motif in the promoter regions of inducible genes and (ii) of ELT-2 targets among the differentially expressed genes. We compared our transcriptome results with a corresponding previously characterized proteome data set, highlighting a significant overlap in the differentially expressed genes, the affected functions, and ELT-2 target genes. Our analysis further identified a core set of 86 genes that consistently responded to the microbiota members across development and adult life, including several C-type lectin-like genes and genes known to be involved in energy metabolism or fertility. We additionally assessed the consequences of induced gene expression with the help of metabolic network model analysis, using a previously established metabolic network for C. elegans. This analysis complemented the enrichment analyses by revealing an influence of the Ochrobactrum isolates on C. elegans energy metabolism and furthermore metabolism of specific amino acids, fatty acids, and also folate biosynthesis. Our findings highlight the multifaceted impact of naturally colonizing microbiota isolates on C. elegans life history and thereby provide a framework for further analysis of microbiota-mediated host functions.
Collapse
Affiliation(s)
- Wentao Yang
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Carola Petersen
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.,Research Group Comparative Immunobiology, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Barbara Pees
- Research Group Comparative Immunobiology, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Johannes Zimmermann
- Research Group Medical Systems Biology, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Silvio Waschina
- Research Group Medical Systems Biology, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Philipp Dirksen
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Philip Rosenstiel
- Institute for Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Andreas Tholey
- Research Group Proteomics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Matthias Leippe
- Research Group Comparative Immunobiology, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Katja Dierking
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Hinrich Schulenburg
- Research Group Evolutionary Ecology and Genetics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.,Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
12
|
Kim Y, Choudhry QN, Chatterjee N, Choi J. Immune and xenobiotic response crosstalk to chemical exposure by PA01 infection in the nematode Caenorhabditis elegans. CHEMOSPHERE 2018; 210:1082-1090. [PMID: 30208533 DOI: 10.1016/j.chemosphere.2018.07.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/27/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
Most organisms simultaneously face various chemical and biological stresses in the environment. Herein, we investigated how pathogen infection modifies an organism's response to chemical exposure. To explore this phenomenon, we conducted a toxicity study combined with pathogen infection by using the nematode Caenorhabditis elegans, the pathogen Pseudomonas aeruginosa, and various environmental chemicals. C. elegans preinfected with PA01, when subsequently exposed to chemicals, became sensitized to the toxicity of nonylphenol (NP) and cadmium (Cd), whereas they became tolerant to the toxicity of silver nanoparticles (AgNPs); this led us to conduct a mechanistic study focusing on AgNP exposure. A gene expression profiling study revealed that most of the immune response genes activated by PA01 infection remained activated after subsequent exposure to AgNPs, thereby suggesting that the acquired tolerance of C. elegans to AgNP exposure may be due to boosted immunity resulting from PA01 preinfection. Further, a functional genetic analysis revealed that the immune response pathway (i.e., PMK-1/p38 MAPK) was involved in defense against AgNP exposure in PA01-preinfected C. elegans, thus suggesting immune and stress response crosstalk to xenobiotic exposure. This study will aid in the elucidation of how pathogen infection impacts the way the defense system responds to subsequent xenobiotic exposure.
Collapse
Affiliation(s)
- Youngho Kim
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul, 02504, Republic of Korea
| | - Qaisra Naheed Choudhry
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul, 02504, Republic of Korea
| | - Nivedita Chatterjee
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul, 02504, Republic of Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Siripdaero, Dongdaemun-gu, Seoul, 02504, Republic of Korea.
| |
Collapse
|
13
|
Weinhouse C, Truong L, Meyer JN, Allard P. Caenorhabditis elegans as an emerging model system in environmental epigenetics. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:560-575. [PMID: 30091255 PMCID: PMC6113102 DOI: 10.1002/em.22203] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/27/2017] [Revised: 04/13/2018] [Accepted: 04/19/2018] [Indexed: 05/19/2023]
Abstract
The roundworm Caenorhabitis elegans has been an established model organism for the study of genetics and developmental biology, including studies of transcriptional regulation, since the 1970s. This model organism has continued to be used as a classical model system as the field of transcriptional regulation has expanded to include scientific advances in epigenetics and chromatin biology. In the last several decades, C. elegans has emerged as a powerful model for environmental toxicology, particularly for the study of chemical genotoxicity. Here, we outline the utility and applicability of C. elegans as a powerful model organism for mechanistic studies of environmental influences on the epigenome. Our goal in this article is to inform the field of environmental epigenetics of the strengths and limitations of the well-established C. elegans model organism as an emerging model for medium-throughput, in vivo exploration of the role of exogenous chemical stimuli in transcriptional regulation, developmental epigenetic reprogramming, and epigenetic memory and inheritance. As the field of environmental epigenetics matures, and research begins to map mechanisms underlying observed associations, new toolkits and model systems, particularly manipulable, scalable in vivo systems that accurately model human transcriptional regulatory circuits, will provide an essential experimental bridge between in vitro biochemical experiments and mammalian model systems. Environ. Mol. Mutagen. 59:560-575, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Caren Weinhouse
- Duke Global Health Institute, Duke University, Durham, North Carolina
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Lisa Truong
- UCLA Human Genetics and Genomic Analysis Training Program, University of California, Los Angeles; Los Angeles, California
| | - Joel N. Meyer
- Duke Global Health Institute, Duke University, Durham, North Carolina
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Patrick Allard
- Institute for Society and Genetics, University of California at Los Angeles, Los Angeles, California
| |
Collapse
|
14
|
Cobb E, Hall J, Palazzolo DL. Induction of Metallothionein Expression After Exposure to Conventional Cigarette Smoke but Not Electronic Cigarette (ECIG)-Generated Aerosol in Caenorhabditis elegans. Front Physiol 2018; 9:426. [PMID: 29740339 PMCID: PMC5925786 DOI: 10.3389/fphys.2018.00426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/14/2017] [Accepted: 04/05/2018] [Indexed: 11/21/2022] Open
Abstract
Aim: With the invention of electronic cigarettes (ECIG), many questions have been raised regarding their safety as an alternative to smoking conventional cigarettes. Conventional cigarette smoke contains a variety of toxicants including heavy metals. However, ECIG-generated aerosol contains only trace amounts of metals, adding to the argument for it being a safer alternative. In response to heavy metal exposure, metallothioneins are induced in cells to help store the metal, detoxify the body, and are also known responders to oxidative stress. In an attempt to add to the evaluation of the safety of ECIGs, metallothionein expression was quantified using the nematode Caenorhabditis elegans as an assessment of stress induced cellular damage caused by exposure. Methods: Adult nematodes were exposed to either ECIG aerosol or conventional cigarette smoke at doses of 15, 30, and 45 puffs, the equivalent of one, two, and three cigarettes, respectively. Movement, survival, and stress-induced sleep were assessed for up to 24 h after exposure. Relative expression levels for mtl-1 and mtl-2, C. elegans metallothionein genes, were analyzed after 1, 5, and 24 h post exposure using quantitative RT-PCR. Results: Nematodes exposed to conventional cigarette smoke underwent stress-induced sleep in a dose dependent manner with animals recovering to values within the range of air control after 5 h post exposure. Those exposed to ECIG aerosol did not undergo stress-induced sleep and were indistinguishable from controls. The expression of mtl-1 increased in a dose and time dependent manner in C. elegans exposed to conventional cigarette smoke, with a maximum expression observed at 5 h post exposure of 45 puffs. No induction of mtl-2 was observed in any animals. Additionally, ECIG aerosol did not induce expression of mtl-1 and mtl-2 at levels different than those of untreated. Conclusion: ECIG aerosol failed to induce a stress response in C. elegans. In contrast, conventional cigarette smoke induced the production of mtl-1 in a manner that correlates with the induction of stress-induced sleep suggesting a stress response to damage. The lack of cellular stress response to ECIG aerosol suggests it may be a safer alternative to conventional cigarettes.
Collapse
Affiliation(s)
- Eric Cobb
- School of Mathematics and Sciences, Lincoln Memorial University, Harrogate, TN, United States.,DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN, United States
| | - Julie Hall
- Department of Biology, School of Mathematics and Sciences, Lincoln Memorial University, Harrogate, TN, United States
| | - Dominic L Palazzolo
- Department of Physiology, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN, United States
| |
Collapse
|
15
|
Zhao L, Rui Q, Wang D. Molecular basis for oxidative stress induced by simulated microgravity in nematode Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 607-608:1381-1390. [PMID: 28738528 DOI: 10.1016/j.scitotenv.2017.07.088] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/06/2017] [Revised: 06/12/2017] [Accepted: 07/10/2017] [Indexed: 05/11/2023]
Abstract
Caenorhabditis elegans is an important in vivo assay system for toxicological studies. Herein, we investigated the role of oxidative stress and the underlying molecular mechanism for induced adverse effects of simulated microgravity. In nematodes, simulated microgravity treatment induced a significant induction of oxidative stress. Genes (mev-1, gas-1, and isp-1) encoding a molecular machinery for the control of oxidative stress were found to be dysregulated in simulated microgravity treated nematodes. Meanwhile, genes (sod-2, sod-3, sod-4, sod-5, aak-2, skn-1, and gst-4) encoding certain antioxidant defense systems were increased in simulated microgravity treated nematodes. Mutation of mev-1, gas-1, sod-2, sod-3, aak-2, skn-1, or gst-4 enhanced susceptibility to oxidative stress induced by simulated microgravity, whereas mutation of isp-1 induced a resistance to oxidative stress induced by simulated microgravity. Mutation of sod-2, sod-3, or aak-2 further suppressed the recovery effect of simulated microgravity toxicity in nematodes after simulated microgravity treatment for 1h. Moreover, administration of ascorbate could inhibit the adverse effects including the induction of oxidative stress in simulated microgravity treated nematodes. Mutation of any of the genes encoding metallothioneins or the genes of hsp-16.1, hsp-16.2 and hsp-16.48 encoding heat-shock proteins did not affect the induction of oxidative stress in simulated microgravity treated nematodes. Our results provide a molecular basis for the induction of oxidative stress in simulated microgravity treated organisms.
Collapse
Affiliation(s)
- Li Zhao
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Qi Rui
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dayong Wang
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China.
| |
Collapse
|
16
|
A Calcium- and Diacylglycerol-Stimulated Protein Kinase C (PKC), Caenorhabditis elegans PKC-2, Links Thermal Signals to Learned Behavior by Acting in Sensory Neurons and Intestinal Cells. Mol Cell Biol 2017; 37:MCB.00192-17. [PMID: 28716951 DOI: 10.1128/mcb.00192-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/13/2017] [Accepted: 07/07/2017] [Indexed: 12/18/2022] Open
Abstract
Ca2+- and diacylglycerol (DAG)-activated protein kinase C (cPKC) promotes learning and behavioral plasticity. However, knowledge of in vivo regulation and exact functions of cPKCs that affect behavior is limited. We show that PKC-2, a Caenorhabditis elegans cPKC, is essential for a complex behavior, thermotaxis. C. elegans memorizes a nutrient-associated cultivation temperature (Tc ) and migrates along the Tc within a 17 to 25°C gradient. pkc-2 gene disruption abrogated thermotaxis; a PKC-2 transgene, driven by endogenous pkc-2 promoters, restored thermotaxis behavior in pkc-2-/- animals. Cell-specific manipulation of PKC-2 activity revealed that thermotaxis is controlled by cooperative PKC-2-mediated signaling in both AFD sensory neurons and intestinal cells. Cold-directed migration (cryophilic drive) precedes Tc tracking during thermotaxis. Analysis of temperature-directed behaviors elicited by persistent PKC-2 activation or inhibition in AFD (or intestine) disclosed that PKC-2 regulates initiation and duration of cryophilic drive. In AFD neurons, PKC-2 is a Ca2+ sensor and signal amplifier that operates downstream from cyclic GMP-gated cation channels and distal guanylate cyclases. UNC-18, which regulates neurotransmitter and neuropeptide release from synaptic vesicles, is a critical PKC-2 effector in AFD. UNC-18 variants, created by mutating Ser311 or Ser322, disrupt thermotaxis and suppress PKC-2-dependent cryophilic migration.
Collapse
|
17
|
Smolentseva O, Gusarov I, Gautier L, Shamovsky I, DeFrancesco AS, Losick R, Nudler E. Mechanism of biofilm-mediated stress resistance and lifespan extension in C. elegans. Sci Rep 2017; 7:7137. [PMID: 28769037 PMCID: PMC5540977 DOI: 10.1038/s41598-017-07222-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/07/2017] [Accepted: 06/26/2017] [Indexed: 01/16/2023] Open
Abstract
Bacteria naturally form communities of cells known as biofilms. However the physiological roles of biofilms produced by non-pathogenic microbiota remain largely unknown. To assess the impact of a biofilm on host physiology we explored the effect of several non-pathogenic biofilm-forming bacteria on Caenorhabditis elegans. We show that biofilm formation by Bacillus subtilis, Lactobacillus rhamnosus and Pseudomonas fluorescens induces C. elegans stress resistance. Biofilm also protects against pathogenic infection and prolongs lifespan. Total mRNA analysis identified a set of host genes that are upregulated in response to biofilm formation by B. subtilis. We further demonstrate that mtl-1 is responsible for the biofilm-mediated increase in oxidative stress resistance and lifespan extension. Induction of mtl-1 and hsp-70 promotes biofilm-mediated thermotolerance. ilys-2 activity accounts for biofilm-mediated resistance to Pseudomonas aeruginosa killing. These results reveal the importance of non-pathogenic biofilms for host physiology and provide a framework to study commensal biofilms in higher organisms.
Collapse
Affiliation(s)
- Olga Smolentseva
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Ivan Gusarov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Laurent Gautier
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Ilya Shamovsky
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Alicia S DeFrancesco
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, 02138, USA
| | - Richard Losick
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, 02138, USA
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA.
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
18
|
PMK-1 p38 MAPK promotes cadmium stress resistance, the expression of SKN-1/Nrf and DAF-16 target genes, and protein biosynthesis in Caenorhabditis elegans. Mol Genet Genomics 2017; 292:1341-1361. [PMID: 28766017 PMCID: PMC5682872 DOI: 10.1007/s00438-017-1351-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/03/2016] [Accepted: 07/25/2017] [Indexed: 01/01/2023]
Abstract
The mechanisms of cadmium (Cd) resistance are complex and not sufficiently understood. The present study, therefore, aimed at assessing the roles of important components of stress-signaling pathways and of ABC transporters under severe Cd stress in Caenorhabditis elegans. Survival assays on mutant and control animals revealed a significant promotion of Cd resistance by the PMK-1 p38 MAP kinase, the transcription factor DAF-16/FoxO, and the ABC transporter MRP-1. Transcriptome profiling by RNA-Seq on wild type and a pmk-1 mutant under control and Cd stress conditions revealed, inter alia, a PMK-1-dependent promotion of gene expression for the translational machinery. PMK-1 also promoted the expression of target genes of the transcription factors SKN-1/Nrf and DAF-16 in Cd-stressed animals, which included genes for molecular chaperones or immune proteins. Gene expression studies by qRT-PCR confirmed the positive effects of PMK-1 on DAF-16 activity under Cd stress and revealed negative effects of DAF-16 on the expression of genes for MRP-1 and DAF-15/raptor. Additional studies on pmk-1 RNAi-treated wild type and mutant strains provided further information on the effects of PMK-1 on SKN-1 and DAF-16, which resulted in a model of these relationships. The results of this study demonstrate a central role of PMK-1 for the processing of cellular responses to abiotic and biotic stressors, with the promoting effects of PMK-1 on Cd resistance mostly mediated by the transcription factors SKN-1 and DAF-16.
Collapse
|
19
|
Hall JA, McElwee MK, Freedman JH. Identification of ATF-7 and the insulin signaling pathway in the regulation of metallothionein in C. elegans suggests roles in aging and reactive oxygen species. PLoS One 2017. [PMID: 28632756 PMCID: PMC5478092 DOI: 10.1371/journal.pone.0177432] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022] Open
Abstract
It has been proposed that aging results from the lifelong accumulation of intracellular damage via reactions with reactive oxygen species (ROS). Metallothioneins are conserved cysteine-rich proteins that function as efficient ROS scavengers and may affect longevity. To better understand mechanisms controlling metallothionein expression, the regulatory factors and pathways that controlled cadmium-inducible transcription of the C. elegans metallothionein gene, mtl-1, were identified. The transcription factor ATF-7 was identified in both ethylmethanesulfonate mutagenesis and candidate gene screens. PMK-1 and members of the insulin signaling pathway, PDK-1 and AKT-1/2, were also identified as mtl-1 regulators. Genetic and previous results support a model for the regulation of cadmium-inducible mtl-1 transcription based on the derepression of the constitutively active transcription factor ELT-2. In addition, knockdown of the mammalian homologs of PDK1 and ATF7 in HEK293 cells resulted in changes in metallothionein expression, suggesting that this pathway was evolutionarily conserved. The insulin signaling pathway is known to influence the aging process; however, various factors responsible for affecting the aging phenotype are unknown. Identification of portions of the insulin signaling pathway as regulators of metallothionein expression supports the hypothesis that longevity is affected by the expression of this efficient ROS scavenger.
Collapse
Affiliation(s)
- Julie A. Hall
- Biomolecular Screening Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| | - Matthew K. McElwee
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Jonathan H. Freedman
- Biomolecular Screening Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
20
|
Abstract
Caenorhabditis elegans is an important model organism with many useful features, including rapid development and aging, easy cultivation, and genetic tractability. Survival assays using C. elegans are powerful methods for studying physiological processes. In this review, we describe diverse types of C. elegans survival assays and discuss the aims, uses, and advantages of specific assays. C. elegans survival assays have played key roles in identifying novel genetic factors that regulate many aspects of animal physiology, such as aging and lifespan, stress response, and immunity against pathogens. Because many genetic factors discovered using C. elegans are evolutionarily conserved, survival assays can provide insights into mechanisms underlying physiological processes in mammals, including humans.
Collapse
Affiliation(s)
- Hae-Eun H. Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673,
Korea
| | - Yoonji Jung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673,
Korea
| | - Seung-Jae V. Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673,
Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673,
Korea
| |
Collapse
|
21
|
Warnhoff K, Roh HC, Kocsisova Z, Tan CH, Morrison A, Croswell D, Schneider DL, Kornfeld K. The Nuclear Receptor HIZR-1 Uses Zinc as a Ligand to Mediate Homeostasis in Response to High Zinc. PLoS Biol 2017; 15:e2000094. [PMID: 28095401 PMCID: PMC5240932 DOI: 10.1371/journal.pbio.2000094] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/19/2016] [Accepted: 12/14/2016] [Indexed: 11/18/2022] Open
Abstract
Nuclear receptors were originally defined as endocrine sensors in humans, leading to the identification of the nuclear receptor superfamily. Despite intensive efforts, most nuclear receptors have no known ligand, suggesting new ligand classes remain to be discovered. Furthermore, nuclear receptors are encoded in the genomes of primitive organisms that lack endocrine signaling, suggesting the primordial function may have been environmental sensing. Here we describe a novel Caenorhabditis elegans nuclear receptor, HIZR-1, that is a high zinc sensor in an animal and the master regulator of high zinc homeostasis. The essential micronutrient zinc acts as a HIZR-1 ligand, and activated HIZR-1 increases transcription of genes that promote zinc efflux and storage. The results identify zinc as the first inorganic molecule to function as a physiological ligand for a nuclear receptor and direct environmental sensing as a novel function of nuclear receptors. Zinc is an essential nutrient for all life forms, and maintaining zinc homeostasis is critical for survival. However, little is known about how animals sense changes in zinc availability and make adjustments to maintain homeostasis. In particular, logic dictates there must be a mechanism for zinc sensing, but it has not been defined in animals. We discovered that the nuclear receptor transcription factor HIZR-1 is the master regulator of high zinc homeostasis in the roundworm Caenorhabditis elegans. In response to high dietary zinc, HIZR-1 activates transcription of multiple genes that encode a network of proteins that store and detoxify excess zinc. Furthermore, our results suggest HIZR-1 itself is the high zinc sensor, since it directly binds zinc ions in the ligand-binding domain that regulates transcriptional activation. These findings advance the understanding of zinc homeostasis and nuclear receptor biology. Nuclear receptors were initially characterized as receptors for hormones such as estrogen, indicating complex animals use these transcription factors to monitor their internal environment. However, nuclear receptors are present in simple organisms that lack endocrine signaling, suggesting these transcription factors might have a primordial function in sensing the external environment. Our results identify a new class of nuclear receptor ligands, the inorganic ion zinc, and a new function for nuclear receptors in directly sensing levels of a nutrient. We speculate that nutrient homeostasis mediated by direct binding of nutrients to the ligand-binding domain is a primordial function of nuclear receptors, whereas endocrine signaling in complex animals mediated by direct binding of hormones to the ligand-binding domain is a derived function of nuclear receptors that appeared later in evolution.
Collapse
Affiliation(s)
- Kurt Warnhoff
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Hyun C. Roh
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Zuzana Kocsisova
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Chieh-Hsiang Tan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Andrew Morrison
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Damari Croswell
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Daniel L. Schneider
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
22
|
Arantes LP, Peres TV, Chen P, Caito S, Aschner M, Soares FAA. Guarana ( Paullinia cupana Mart.) attenuates methylmercury-induced toxicity in Caenorhabditis elegans. Toxicol Res (Camb) 2016; 5:1629-1638. [PMID: 28316775 DOI: 10.1039/c6tx00161k] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022] Open
Abstract
The influence of routine guarana (Paullinia cupana) consumption on apparent tolerance to mercury intoxication has been proposed. The present study investigated this hypothesis in Caenorhabditis elegans, a suitable experimental model for studies in toxicology. Wild type (WT) and skn-1 (ok2315) worm strains were pretreated with guarana ethanolic extract (GEE) from larvae 1 (L1) to L4 stage and then exposed for 6 hours to methylmercury (MeHg). The analyses included evaluation of GEE's effects on lethality, developmental delay, feeding, locomotion, gene expression (sod-3, gst-4, sir-2.1, hsf-1, snn-1, mtl-1, mtl-2, aat-1, aat-2 and aat-3) and antioxidant activity. GEE pre-treatment had no aberrant effects on WT worms exposed to MeHg, and protected skn-1 (ok2315) worms, which are more susceptible to environmental stresses. Protective effects of GEE might be dependent on modulation of genes other than those directly involved in antioxidant activity. GEE increased the expression of genes involved in metal transport (aat-2), metal detoxification (mtl-1 and mtl-2) and antioxidant responses (sir-2.1 and sod-3). Thus, routine consumption of guarana might be beneficial in protecting against MeHg-induced toxicity.
Collapse
Affiliation(s)
- Leticia Priscilla Arantes
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Tanara Vieira Peres
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Pam Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Samuel Caito
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | | |
Collapse
|
23
|
Yang R, Rui Q, Kong L, Zhang N, Li Y, Wang X, Tao J, Tian P, Ma Y, Wei J, Li G, Wang D. Metallothioneins act downstream of insulin signaling to regulate toxicity of outdoor fine particulate matter (PM 2.5) during Spring Festival in Beijing in nematode Caenorhabditis elegans. Toxicol Res (Camb) 2016; 5:1097-1105. [PMID: 30090415 PMCID: PMC6060693 DOI: 10.1039/c6tx00022c] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/17/2016] [Accepted: 04/16/2016] [Indexed: 12/25/2022] Open
Abstract
In this study, we performed the toxicological assessment of outdoor PM2.5 collected from Beijing during Spring Festival using the in vivo assay system of Caenorhabditis elegans. Acute exposure to outdoor PM2.5 at a concentration of 10 mg L-1 and prolonged exposure to outdoor PM2.5 at concentrations of 0.1-10 mg L-1 decreased locomotion behavior and caused significant induction of intestinal ROS production. Meanwhile, outdoor PM2.5 exposure induced significant expression of gene (mtl-1 and mtl-2) encoded metallothioneins in the intestine. Mutation of the mtl-1 or mtl-2 gene resulted in a susceptible property of nematodes to outdoor PM2.5 toxicity. Genetic assays suggested that mtl-1 and mtl-2 genes acted downstream of the daf-16 gene encoding a FOXO transcriptional factor and daf-2 gene encoding an insulin receptor in the insulin signaling pathway to regulate outdoor PM2.5 toxicity. DAF-2 further acted upstream of DAF-16 and suppressed the function of DAF-16 to regulate outdoor PM2.5 toxicity. Therefore, we identified a signaling cascade of DAF-2-DAF-16-MTL-1/2 in the control of outdoor PM2.5 toxicity in nematodes. Our study provides an important molecular basis for the potential toxicity of outdoor PM2.5 during Spring Festival in Beijing in nematodes. Especially, our study will highlight the potential adverse effects of outdoor PM2.5 during Spring Festival on environmental organisms.
Collapse
Affiliation(s)
- Ruilong Yang
- College of Life Sciences , Nanjing Agricultural University , Nanjing 210095 , China .
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education , Medical School , Southeast University , Nanjing 210009 , China .
| | - Qi Rui
- College of Life Sciences , Nanjing Agricultural University , Nanjing 210095 , China .
| | - Ling Kong
- Beijing Research Center for Prevention Medicine , Beijing 100013 , China .
| | - Nan Zhang
- Beijing Research Center for Prevention Medicine , Beijing 100013 , China .
| | - Yu Li
- Beijing Research Center for Prevention Medicine , Beijing 100013 , China .
| | - Xinyu Wang
- Beijing Research Center for Prevention Medicine , Beijing 100013 , China .
| | - Jing Tao
- Beijing Research Center for Prevention Medicine , Beijing 100013 , China .
| | - Peiyao Tian
- Beijing Research Center for Prevention Medicine , Beijing 100013 , China .
| | - Yan Ma
- Beijing Research Center for Prevention Medicine , Beijing 100013 , China .
| | - Jianrong Wei
- Beijing Research Center for Prevention Medicine , Beijing 100013 , China .
| | - Guojun Li
- Beijing Research Center for Prevention Medicine , Beijing 100013 , China .
- School of Public Health , Capital Medical University , Beijing 100069 , China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education , Medical School , Southeast University , Nanjing 210009 , China .
| |
Collapse
|
24
|
Dietrich N, Tan CH, Cubillas C, Earley BJ, Kornfeld K. Insights into zinc and cadmium biology in the nematode Caenorhabditis elegans. Arch Biochem Biophys 2016; 611:120-133. [PMID: 27261336 DOI: 10.1016/j.abb.2016.05.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/03/2016] [Revised: 05/18/2016] [Accepted: 05/28/2016] [Indexed: 10/21/2022]
Abstract
Zinc is an essential metal that is involved in a wide range of biological processes, and aberrant zinc homeostasis is implicated in multiple human diseases. Cadmium is chemically similar to zinc, but it is a nonessential environmental pollutant. Because zinc deficiency and excess are deleterious, animals require homeostatic mechanisms to maintain zinc levels in response to dietary fluctuations. The nematode Caenorhabditis elegans is emerging as a powerful model system to investigate zinc trafficking and homeostasis as well as cadmium toxicity. Here we review genetic and molecular studies that have combined to generate a picture of zinc homeostasis based on the transcriptional control of zinc transporters in intestinal cells. Furthermore, we summarize studies of cadmium toxicity that reveal intriguing parallels with zinc biology.
Collapse
Affiliation(s)
- Nicholas Dietrich
- Department of Developmental Biology, Washington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, St. Louis, MO 63110, United States.
| | - Chieh-Hsiang Tan
- Department of Developmental Biology, Washington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| | - Ciro Cubillas
- Department of Developmental Biology, Washington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| | - Brian James Earley
- Department of Developmental Biology, Washington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| |
Collapse
|
25
|
Kumar J, Barhydt T, Awasthi A, Lithgow GJ, Killilea DW, Kapahi P. Zinc Levels Modulate Lifespan through Multiple Longevity Pathways in Caenorhabditis elegans. PLoS One 2016; 11:e0153513. [PMID: 27078872 PMCID: PMC4831763 DOI: 10.1371/journal.pone.0153513] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/11/2015] [Accepted: 03/30/2016] [Indexed: 12/22/2022] Open
Abstract
Zinc is an essential trace metal that has integral roles in numerous biological processes, including enzymatic function, protein structure, and cell signaling pathways. Both excess and deficiency of zinc can lead to detrimental effects on development and metabolism, resulting in abnormalities and disease. We altered the zinc balance within Caenorhabditis elegans to examine how changes in zinc burden affect longevity and healthspan in an invertebrate animal model. We found that increasing zinc levels in vivo with excess dietary zinc supplementation decreased the mean and maximum lifespan, whereas reducing zinc levels in vivo with a zinc-selective chelator increased the mean and maximum lifespan in C. elegans. We determined that the lifespan shortening effects of excess zinc required expression of DAF-16, HSF-1 and SKN-1 proteins, whereas the lifespan lengthening effects of the reduced zinc may be partially dependent upon this set of proteins. Furthermore, reducing zinc levels led to greater nuclear localization of DAF-16 and enhanced dauer formation compared to controls, suggesting that the lifespan effects of zinc are mediated in part by the insulin/IGF-1 pathway. Additionally, zinc status correlated with several markers of healthspan in worms, including proteostasis, locomotion and thermotolerance, with reduced zinc levels always associated with improvements in function. Taken together, these data support a role for zinc in regulating both development and lifespan in C. elegans, and that suggest that regulation of zinc homeostasis in the worm may be an example of antagonistic pleiotropy.
Collapse
Affiliation(s)
- Jitendra Kumar
- The Buck Institute for Research on Aging, Novato, California, United States of America
- DBT-PU-IPLS Programme, Department of Botany/Biotechnology, Patna University, Patna- 800005, Bihar, India
- * E-mail: (PK); (DWK); (JK)
| | - Tracy Barhydt
- The Buck Institute for Research on Aging, Novato, California, United States of America
| | - Anjali Awasthi
- Department of Biological Sciences, Birla Institute of Technology and Science, Rajasthan, India
| | - Gordon J. Lithgow
- The Buck Institute for Research on Aging, Novato, California, United States of America
| | - David W. Killilea
- Nutrition & Metabolism Center, Children’s Hospital of Oakland Research Institute, Oakland, California, United States of America
- * E-mail: (PK); (DWK); (JK)
| | - Pankaj Kapahi
- The Buck Institute for Research on Aging, Novato, California, United States of America
- * E-mail: (PK); (DWK); (JK)
| |
Collapse
|
26
|
Al Kaddissi S, Simon O, Elia AC, Gonzalez P, Floriani M, Cavalie I, Camilleri V, Frelon S, Legeay A. How toxic is the depleted uranium to crayfish Procambarus clarkii compared with cadmium? ENVIRONMENTAL TOXICOLOGY 2016; 31:211-223. [PMID: 25213093 DOI: 10.1002/tox.22036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/15/2013] [Revised: 07/31/2014] [Accepted: 08/03/2014] [Indexed: 06/03/2023]
Abstract
Due to a lack of information on the assessment of uranium's (U) toxicity, our work aimed to compare the effects of U on the crayfish Procambarus clarkii with those of the well documented metal: cadmium (Cd). Accumulation and impacts at different levels of biological organization were assessed after acute (40 µM Cd or U; 4-10 days) and chronic (0.1 µM Cd or U; 30-60 days) exposures. The survival rates demonstrated the high tolerance of this species toward both metals and showed that Cd had a greater effect on the sustainability of crayfish. The concentration levels of Cd and U accumulated in gills and hepatopancreas were compared between both conditions. Distinctions in the adsorption capacities and the mobility of the contaminants were suspected. Differences in the detoxification mechanisms of both metals using transmission electron microscopy equiped with an energy dispersive X-ray were also pointed out. In contrast, comparison between the histological structures of contaminated hepatopancreas showed similar symptoms. Principal component analyses revealed different impacts of each metal on the oxidative balance and mitochondria using enzymatic activities and gene expression levels as endpoints. The observation that U seemed to generate more oxidative stress than Cd in our conditions of exposure is discussed.
Collapse
Affiliation(s)
- Simone Al Kaddissi
- IRSN/PRP-ENV/SERIS-Laboratory of Biogeochemistry, Biodisponibility and Transfer of Radionuclides (L2BT), BP 3, 13115 Saint-Paul-Lez-Durance, France
- University of Bordeaux1, EPOC, UMR CNRS 5805, F-33120, Arcachon, France
| | - Olivier Simon
- IRSN/PRP-ENV/SERIS-Laboratory of Biogeochemistry, Biodisponibility and Transfer of Radionuclides (L2BT), BP 3, 13115 Saint-Paul-Lez-Durance, France
| | - Antonia Concetta Elia
- Department of Cellular and Environmental Biology, Ecotoxicology Laboratory, University of Perugia, 06123, Perugia, Italy
| | - Patrice Gonzalez
- University of Bordeaux1, EPOC, UMR CNRS 5805, F-33120, Arcachon, France
| | - Magali Floriani
- IRSN/PRP-ENV/SERIS-Laboratory of Biogeochemistry, Biodisponibility and Transfer of Radionuclides (L2BT), BP 3, 13115 Saint-Paul-Lez-Durance, France
| | - Isabelle Cavalie
- IRSN/PRP-ENV/SERIS-Laboratory of Biogeochemistry, Biodisponibility and Transfer of Radionuclides (L2BT), BP 3, 13115 Saint-Paul-Lez-Durance, France
| | - Virginie Camilleri
- IRSN/PRP-ENV/SERIS-Laboratory of Biogeochemistry, Biodisponibility and Transfer of Radionuclides (L2BT), BP 3, 13115 Saint-Paul-Lez-Durance, France
| | - Sandrine Frelon
- IRSN/PRP-ENV/SERIS-Laboratory of Biogeochemistry, Biodisponibility and Transfer of Radionuclides (L2BT), BP 3, 13115 Saint-Paul-Lez-Durance, France
| | - Alexia Legeay
- University of Bordeaux1, EPOC, UMR CNRS 5805, F-33120, Arcachon, France
| |
Collapse
|
27
|
Höckner M, Dallinger R, Stürzenbaum SR. Metallothionein gene activation in the earthworm (Lumbricus rubellus). Biochem Biophys Res Commun 2015; 460:537-42. [PMID: 25797623 PMCID: PMC4427108 DOI: 10.1016/j.bbrc.2015.03.065] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/05/2015] [Accepted: 03/11/2015] [Indexed: 01/09/2023]
Abstract
In order to cope with changing environmental conditions, organisms require highly responsive stress mechanisms. Heavy metal stress is handled by metallothioneins (MTs), the regulation of which is evolutionary conserved in insects and vertebrates and involves the binding of metal transcription factor 1 (MTF-1) to metal responsive elements (MREs) positioned in the promoter of MT genes. However, in most invertebrate phyla, the transcriptional activation of MTs is different and the exact mechanism is still unknown. Interestingly, although MREs are typically present also in invertebrate MT gene promoters, MTF-1 is notably absent. Here we use Lumbricus rubellus, the red earthworm, to study the elusive mechanism of wMT-2 activation in control and Cd-exposed conditions. EMSA and DNase I footprinting approaches were used to pinpoint functional binding sites within the wMT-2 promoter region, which revealed that the cAMP responsive element (CRE) is a promising candidate which may act as a transcriptional activator of invertebrate MTs. The wMT-2 promoter region of Lumbricus rubellus was analyzed and revealed a CRE binding site acting as putative transcriptional activator. MREs from the wMT-2 promoter region were shown to be functional protein binding sites. The wMT-2 transcription revealed an induction at the mRNA and protein level upon Cd exposure.
Collapse
Affiliation(s)
- M Höckner
- University of Innsbruck, Institute of Zoology, Innsbruck, Austria; King's College London, Faculty of Life Sciences & Medicine, London, United Kingdom.
| | - R Dallinger
- University of Innsbruck, Institute of Zoology, Innsbruck, Austria.
| | - S R Stürzenbaum
- King's College London, Faculty of Life Sciences & Medicine, London, United Kingdom.
| |
Collapse
|
28
|
Weinheimer I, Jiu Y, Rajamäki ML, Matilainen O, Kallijärvi J, Cuellar WJ, Lu R, Saarma M, Holmberg CI, Jäntti J, Valkonen JPT. Suppression of RNAi by dsRNA-degrading RNaseIII enzymes of viruses in animals and plants. PLoS Pathog 2015; 11:e1004711. [PMID: 25747942 PMCID: PMC4352025 DOI: 10.1371/journal.ppat.1004711] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/31/2014] [Accepted: 01/28/2015] [Indexed: 01/08/2023] Open
Abstract
Certain RNA and DNA viruses that infect plants, insects, fish or poikilothermic animals encode Class 1 RNaseIII endoribonuclease-like proteins. dsRNA-specific endoribonuclease activity of the RNaseIII of rock bream iridovirus infecting fish and Sweet potato chlorotic stunt crinivirus (SPCSV) infecting plants has been shown. Suppression of the host antiviral RNA interference (RNAi) pathway has been documented with the RNaseIII of SPCSV and Heliothis virescens ascovirus infecting insects. Suppression of RNAi by the viral RNaseIIIs in non-host organisms of different kingdoms is not known. Here we expressed PPR3, the RNaseIII of Pike-perch iridovirus, in the non-hosts Nicotiana benthamiana (plant) and Caenorhabditis elegans (nematode) and found that it cleaves double-stranded small interfering RNA (ds-siRNA) molecules that are pivotal in the host RNA interference (RNAi) pathway and thereby suppresses RNAi in non-host tissues. In N. benthamiana, PPR3 enhanced accumulation of Tobacco rattle tobravirus RNA1 replicon lacking the 16K RNAi suppressor. Furthermore, PPR3 suppressed single-stranded RNA (ssRNA)--mediated RNAi and rescued replication of Flock House virus RNA1 replicon lacking the B2 RNAi suppressor in C. elegans. Suppression of RNAi was debilitated with the catalytically compromised mutant PPR3-Ala. However, the RNaseIII (CSR3) produced by SPCSV, which cleaves ds-siRNA and counteracts antiviral RNAi in plants, failed to suppress ssRNA-mediated RNAi in C. elegans. In leaves of N. benthamiana, PPR3 suppressed RNAi induced by ssRNA and dsRNA and reversed silencing; CSR3, however, suppressed only RNAi induced by ssRNA and was unable to reverse silencing. Neither PPR3 nor CSR3 suppressed antisense-mediated RNAi in Drosophila melanogaster. These results show that the RNaseIII enzymes of RNA and DNA viruses suppress RNAi, which requires catalytic activities of RNaseIII. In contrast to other viral silencing suppression proteins, the RNaseIII enzymes are homologous in unrelated RNA and DNA viruses and can be detected in viral genomes using gene modeling and protein structure prediction programs.
Collapse
Affiliation(s)
- Isabel Weinheimer
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Yaming Jiu
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | - Olli Matilainen
- Research Programs Unit, Translational Cancer Biology, and Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Jukka Kallijärvi
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Wilmer J. Cuellar
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Rui Lu
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Mart Saarma
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Carina I. Holmberg
- Research Programs Unit, Translational Cancer Biology, and Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Jussi Jäntti
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Jari P. T. Valkonen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
29
|
Roh HC, Dimitrov I, Deshmukh K, Zhao G, Warnhoff K, Cabrera D, Tsai W, Kornfeld K. A modular system of DNA enhancer elements mediates tissue-specific activation of transcription by high dietary zinc in C. elegans. Nucleic Acids Res 2014; 43:803-16. [PMID: 25552416 PMCID: PMC4333406 DOI: 10.1093/nar/gku1360] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/14/2022] Open
Abstract
Zinc is essential for biological systems, and aberrant zinc metabolism is implicated in a broad range of human diseases. To maintain homeostasis in response to fluctuating levels of dietary zinc, animals regulate gene expression; however, mechanisms that mediate the transcriptional response to fluctuating levels of zinc have not been fully defined. Here, we identified DNA enhancer elements that mediate intestine-specific transcriptional activation in response to high levels of dietary zinc in C. elegans. Using bioinformatics, we characterized an evolutionarily conserved enhancer element present in multiple zinc-inducible genes, the high zinc activation (HZA) element. The HZA was consistently adjacent to a GATA element that mediates expression in intestinal cells. Functional studies using transgenic animals demonstrated that this modular system of DNA enhancers mediates tissue-specific transcriptional activation in response to high levels of dietary zinc. We used this information to search the genome and successfully identified novel zinc-inducible genes. To characterize the mechanism of enhancer function, we demonstrated that the GATA transcription factor ELT-2 and the mediator subunit MDT-15 are necessary for zinc-responsive transcriptional activation. These findings define new mechanisms of zinc homeostasis and tissue-specific regulation of transcription.
Collapse
Affiliation(s)
- Hyun Cheol Roh
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ivan Dimitrov
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Krupa Deshmukh
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Guoyan Zhao
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kurt Warnhoff
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel Cabrera
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wendy Tsai
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
30
|
Wang X, Cook LF, Grasso LM, Cao M, Dong Y. Royal Jelly-Mediated Prolongevity and Stress Resistance in Caenorhabditis elegans Is Possibly Modulated by the Interplays of DAF-16, SIR-2.1, HCF-1, and 14-3-3 Proteins. J Gerontol A Biol Sci Med Sci 2014; 70:827-38. [PMID: 25073462 DOI: 10.1093/gerona/glu120] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/14/2014] [Accepted: 06/11/2014] [Indexed: 12/27/2022] Open
Abstract
Recent studies suggest that royal jelly (RJ) and its related substances may have antiaging properties. However, the molecular mechanisms underlying the beneficial effects remain elusive. We report that the effects of RJ and enzyme-treated RJ (eRJ) on life span and health span in Caenorhabditis elegans (C elegans) are modulated by the sophisticated interplays of DAF-16, SIR-2.1, HCF-1, and 14-3-3 proteins. Dietary supplementation with RJ or eRJ increased C. elegans life span in a dose-dependent manner. The RJ and eRJ consumption increased the tolerance of C elegans to oxidative stress, ultraviolet irradiation, and heat shock stress. Our genetic analyses showed that RJ/eRJ-mediated life-span extension requires insulin/IGF-1 signaling and the activities of DAF-16, SIR-2.1, HCF-1, and FTT-2, a 14-3-3 protein. Earlier studies reported that DAF-16/FOXO, SIR-2.1/SIRT1, FTT-2, and HCF-1 have extensive interplays in worms and mammals. Our present findings suggest that RJ/eRJ-mediated promotion of longevity and stress resistance in C elegans is dependent on these conserved interplays. From an evolutionary point of view, this study not only provides new insights into the molecular mechanisms of RJ's action on health span promotion in C elegans, but also has imperative implications in using RJ/eRJ as nutraceuticals to delay aging and age-related disorders.
Collapse
Affiliation(s)
| | | | | | - Min Cao
- Department of Biological Sciences and Institute for Engaged Aging, Clemson University, South Carolina
| | - Yuqing Dong
- Department of Biological Sciences and Institute for Engaged Aging, Clemson University, South Carolina.
| |
Collapse
|
31
|
Polak N, Read DS, Jurkschat K, Matzke M, Kelly FJ, Spurgeon DJ, Stürzenbaum SR. Metalloproteins and phytochelatin synthase may confer protection against zinc oxide nanoparticle induced toxicity in Caenorhabditis elegans. Comp Biochem Physiol C Toxicol Pharmacol 2014; 160:75-85. [PMID: 24333255 DOI: 10.1016/j.cbpc.2013.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 10/25/2013] [Revised: 12/03/2013] [Accepted: 12/04/2013] [Indexed: 12/28/2022]
Abstract
Zinc oxide nanoparticles (ZnONPs) are used in large quantities by the cosmetic, food and textile industries. Here we exposed Caenorhabditis elegans wild-type and a metal sensitive triple knockout mutant (mtl-1;mtl-2;pcs-1) to ZnONPs (0-50mg/L) to study strain and exposure specific effects on transcription, reactive oxygen species generation, the biomolecular phenotype (measured by Raman microspectroscopy) and key endpoints of the nematode life cycle (growth, reproduction and lifespan). A significant dissolution effect was observed, where dissolved ZnO constituted over 50% of total Zn within a two day exposure to the test medium, suggesting that the nominal exposure to pure ZnONPs represents in vivo, at best, a mixture exposure of ionic zinc and nanoparticles. Nevertheless, the analyses provided evidence that the metallothioneins (mtl-1 and mtl-2), the phytochelatin synthase (pcs-1) and an apoptotic marker (cep-1) were transcriptionally activated. In addition, the DCFH-DA assay provided in vitro evidence of the oxidative potential of ZnONPs in the metal exposure sensitive triple mutant. Raman spectroscopy highlighted that the biomolecular phenotype changes significantly in the mtl-1;mtl-2;pcs-1 triple knockout worm upon ZnONP exposure, suggesting that these metalloproteins are instrumental in the protection against cytotoxic damage. Finally, ZnONP exposure was shown to decrease growth and development, reproductive capacity and lifespan, effects which were amplified in the triple knockout. By combining diverse toxicological strategies, we identified that individuals (genotypes) housing mutations in key metalloproteins and phytochelatin synthase are more susceptible to ZnONP exposure, which underlines their importance to minimize ZnONP induced toxicity.
Collapse
Affiliation(s)
- Natasa Polak
- MRC-HPA Centre for Environment & Health, School of Biomedical Sciences, King's College London, London, UK
| | - Daniel S Read
- Centre for Ecology and Hydrology, Maclean Building, Wallingford, Oxfordshire OX10 8BB, UK
| | - Kerstin Jurkschat
- Department of Materials, Hirsch Building, University of Oxford, Kidlington OX5 1PF, UK
| | - Marianne Matzke
- Centre for Ecology and Hydrology, Maclean Building, Wallingford, Oxfordshire OX10 8BB, UK
| | - Frank J Kelly
- MRC-HPA Centre for Environment & Health, School of Biomedical Sciences, King's College London, London, UK
| | - David J Spurgeon
- Centre for Ecology and Hydrology, Maclean Building, Wallingford, Oxfordshire OX10 8BB, UK
| | - Stephen R Stürzenbaum
- MRC-HPA Centre for Environment & Health, School of Biomedical Sciences, King's College London, London, UK.
| |
Collapse
|
32
|
Turner EA, Kroeger GL, Arnold MC, Thornton BL, Di Giulio RT, Meyer JN. Assessing different mechanisms of toxicity in mountaintop removal/valley fill coal mining-affected watershed samples using Caenorhabditis elegans. PLoS One 2013; 8:e75329. [PMID: 24066176 PMCID: PMC3774817 DOI: 10.1371/journal.pone.0075329] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/10/2013] [Accepted: 08/13/2013] [Indexed: 12/03/2022] Open
Abstract
Mountaintop removal-valley fill coal mining has been associated with a variety of impacts on ecosystem and human health, in particular reductions in the biodiversity of receiving streams. However, effluents emerging from valley fills contain a complex mixture of chemicals including metals, metalloids, and salts, and it is not clear which of these are the most important drivers of toxicity. We found that streamwater and sediment samples collected from mine-impacted streams of the Upper Mud River in West Virginia inhibited the growth of the nematode Caenorhabditis elegans. Next, we took advantage of genetic and transgenic tools available in this model organism to test the hypotheses that the toxicity could be attributed to metals, selenium, oxidative stress, or osmotic stress. Our results indicate that in general, the toxicity of streamwater to C. elegans was attributable to osmotic stress, while the toxicity of sediments resulted mostly from metals or metalloids.
Collapse
Affiliation(s)
- Elena A Turner
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | | | | | | | | | | |
Collapse
|
33
|
Arnold MC, Badireddy AR, Wiesner MR, Di Giulio RT, Meyer JN. Cerium oxide nanoparticles are more toxic than equimolar bulk cerium oxide in Caenorhabditis elegans. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 65:224-33. [PMID: 23619766 DOI: 10.1007/s00244-013-9905-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/14/2012] [Accepted: 04/05/2013] [Indexed: 05/21/2023]
Abstract
Engineered cerium oxide nanoparticles (CeO2 NPs) are widely used in biomedical and engineering manufacturing industries. Previous research has shown the ability of CeO2 NPs to act as a redox catalyst, suggesting potential to both induce and alleviate oxidative stress in organisms. In this study, Caenorhabditis elegans and zebrafish (Danio rerio) were dosed with commercially available CeO2 NPs. Non-nano cerium oxide powder (CeO2) was used as a positive control for cerium toxicity. CeO2 NPs suspended in standard United States Environmental Protection Agency reconstituted moderately hard water, used to culture the C. elegans, quickly formed large polydisperse aggregates. Dosing solutions were renewed daily for 3 days. Exposure of wild-type nematodes resulted in dose-dependent growth inhibition detected for all 3 days (p < 0.0001). Non-nano CeO2 also caused significant growth inhibition (p < 0.0001), but the scale of inhibition was less at equivalent mass exposures compared with CeO2 NP exposure. Some metal and oxidative stress-sensitive mutant nematode strains showed mildly altered growth relative to the wild-type when dosed with 5 mg/L CeO2 NPs on days 2 and 3, thus providing weak evidence for a role for oxidative stress or metal sensitivity in CeO2 NP toxicity. Zebrafish microinjected with CeO2 NPs or CeO2 did not exhibit increased gross developmental defects compared with controls. Hyperspectral imaging showed that CeO2 NPs were ingested but not detectable inside the cells of C. elegans. Growth inhibition observed in C. elegans may be explained at least in part by a non-specific inhibition of feeding caused by CeO2 NPs aggregating around bacterial food and/or inside the gut tract.
Collapse
Affiliation(s)
- M C Arnold
- Nicholas School of the Environment, Duke University, P.O. 90328, Durham, NC 27708-0328, USA
| | | | | | | | | |
Collapse
|
34
|
Sahu SN, Lewis J, Patel I, Bozdag S, Lee JH, Sprando R, Cinar HN. Genomic analysis of stress response against arsenic in Caenorhabditis elegans. PLoS One 2013; 8:e66431. [PMID: 23894281 PMCID: PMC3722197 DOI: 10.1371/journal.pone.0066431] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/23/2012] [Accepted: 05/08/2013] [Indexed: 11/25/2022] Open
Abstract
Arsenic, a known human carcinogen, is widely distributed around the world and found in particularly high concentrations in certain regions including Southwestern US, Eastern Europe, India, China, Taiwan and Mexico. Chronic arsenic poisoning affects millions of people worldwide and is associated with increased risk of many diseases including arthrosclerosis, diabetes and cancer. In this study, we explored genome level global responses to high and low levels of arsenic exposure in Caenorhabditis elegans using Affymetrix expression microarrays. This experimental design allows us to do microarray analysis of dose-response relationships of global gene expression patterns. High dose (0.03%) exposure caused stronger global gene expression changes in comparison with low dose (0.003%) exposure, suggesting a positive dose-response correlation. Biological processes such as oxidative stress, and iron metabolism, which were previously reported to be involved in arsenic toxicity studies using cultured cells, experimental animals, and humans, were found to be affected in C. elegans. We performed genome-wide gene expression comparisons between our microarray data and publicly available C. elegans microarray datasets of cadmium, and sediment exposure samples of German rivers Rhine and Elbe. Bioinformatics analysis of arsenic-responsive regulatory networks were done using FastMEDUSA program. FastMEDUSA analysis identified cancer-related genes, particularly genes associated with leukemia, such as dnj-11, which encodes a protein orthologous to the mammalian ZRF1/MIDA1/MPP11/DNAJC2 family of ribosome-associated molecular chaperones. We analyzed the protective functions of several of the identified genes using RNAi. Our study indicates that C. elegans could be a substitute model to study the mechanism of metal toxicity using high-throughput expression data and bioinformatics tools such as FastMEDUSA.
Collapse
Affiliation(s)
- Surasri N. Sahu
- Division of Virulence Assessment, Food and Drug Administration, Laurel, Maryland, United States of America
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, United States of America
| | - Jada Lewis
- Division of Molecular Biology, Food and Drug Administration, Laurel, Maryland, United States of America
| | - Isha Patel
- Division of Molecular Biology, Food and Drug Administration, Laurel, Maryland, United States of America
| | - Serdar Bozdag
- Department of Mathematics, Statistics, and Computer Science, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Jeong H. Lee
- Division of Virulence Assessment, Food and Drug Administration, Laurel, Maryland, United States of America
- Kyungpook National University (KNU), Daegu, South Korea
| | - Robert Sprando
- Division of Toxicology, Food and Drug Administration, Laurel, Maryland, United States of America
- * E-mail: (RS); (HNC)
| | - Hediye Nese Cinar
- Division of Virulence Assessment, Food and Drug Administration, Laurel, Maryland, United States of America
- * E-mail: (RS); (HNC)
| |
Collapse
|
35
|
Roh HC, Collier S, Deshmukh K, Guthrie J, Robertson JD, Kornfeld K. ttm-1 encodes CDF transporters that excrete zinc from intestinal cells of C. elegans and act in a parallel negative feedback circuit that promotes homeostasis. PLoS Genet 2013; 9:e1003522. [PMID: 23717214 PMCID: PMC3662639 DOI: 10.1371/journal.pgen.1003522] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/07/2012] [Accepted: 04/06/2013] [Indexed: 01/04/2023] Open
Abstract
Zinc is an essential metal involved in a wide range of biological processes, and aberrant zinc metabolism is implicated in human diseases. The gastrointestinal tract of animals is a critical site of zinc metabolism that is responsible for dietary zinc uptake and distribution to the body. However, the role of the gastrointestinal tract in zinc excretion remains unclear. Zinc transporters are key regulators of zinc metabolism that mediate the movement of zinc ions across membranes. Here, we identified a comprehensive list of 14 predicted Cation Diffusion Facilitator (CDF) family zinc transporters in Caenorhabditis elegans and demonstrated that zinc is excreted from intestinal cells by one of these CDF proteins, TTM-1B. The ttm-1 locus encodes two transcripts, ttm-1a and ttm-1b, that use different transcription start sites. ttm-1b expression was induced by high levels of zinc specifically in intestinal cells, whereas ttm-1a was not induced by zinc. TTM-1B was localized to the apical plasma membrane of intestinal cells, and analyses of loss-of-function mutant animals indicated that TTM-1B promotes zinc excretion into the intestinal lumen. Zinc excretion mediated by TTM-1B contributes to zinc detoxification. These observations indicate that ttm-1 is a component of a negative feedback circuit, since high levels of cytoplasmic zinc increase ttm-1b transcript levels and TTM-1B protein functions to reduce the level of cytoplasmic zinc. We showed that TTM-1 isoforms function in tandem with CDF-2, which is also induced by high levels of cytoplasmic zinc and reduces cytoplasmic zinc levels by sequestering zinc in lysosome-related organelles. These findings define a parallel negative feedback circuit that promotes zinc homeostasis and advance the understanding of the physiological roles of the gastrointestinal tract in zinc metabolism in animals. Zinc is an essential mineral nutrient involved in many physiological processes, and it plays a critical role in human health. Insufficient dietary zinc causes a wide range of health problems, and excess dietary zinc causes toxicity. Furthermore, genetic mutations affecting zinc metabolism have been implicated in a variety of human diseases. Therefore, animals require homeostatic mechanisms that effectively regulate zinc metabolism in response to dietary fluctuations. The gastrointestinal tract is a major tissue that orchestrates zinc metabolism in animals, and zinc transporters are key molecular regulators involved in this process. To understand these regulatory mechanisms, we used bioinformatic techniques to identify 14 genes that encode predicted Cation Diffusion Facilitator (CDF) family zinc transporters in the C. elegans genome. We demonstrated that one of these, ttm-1, functions in intestinal cells to promote zinc excretion, and this activity protects animals from zinc toxicity. Genetic analysis revealed that zinc excretion mediated by TTM-1B is coordinated with zinc storage mediated by CDF-2, and these transporters function in a parallel negative feedback circuit to maintain zinc homeostasis in intestinal cells. These findings provide molecular and physiological insight into the regulatory mechanisms of zinc metabolism in animals.
Collapse
Affiliation(s)
- Hyun Cheol Roh
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Sara Collier
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Krupa Deshmukh
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - James Guthrie
- Research Reactor Center, University of Missouri, Columbia, Missouri, United States of America
| | - J. David Robertson
- Research Reactor Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Chemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
36
|
Anbalagan C, Lafayette I, Antoniou-Kourounioti M, Gutierrez C, Martin JR, Chowdhuri DK, De Pomerai DI. Use of transgenic GFP reporter strains of the nematode Caenorhabditis elegans to investigate the patterns of stress responses induced by pesticides and by organic extracts from agricultural soils. ECOTOXICOLOGY (LONDON, ENGLAND) 2013; 22:72-85. [PMID: 23081760 DOI: 10.1007/s10646-012-1004-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Accepted: 10/02/2012] [Indexed: 05/19/2023]
Abstract
As a free-living nematode, C. elegans is exposed to various pesticides used in agriculture, as well as to persistent organic residues which may contaminate the soil for long periods. Following on from our previous study of metal effects on 24 GFP-reporter strains representing four different stress-response pathways in C. elegans (Anbalagan et al. Ecotoxicology 21:439-455, 2012), we now present parallel data on the responses of these same strains to several commonly used pesticides. Some of these, like dichlorvos, induced multiple stress genes in a concentration-dependent manner. Unusually, endosulfan induced only one gene (cyp-34A9) to very high levels (8-10-fold) even at the lowest test concentration, with a clear plateau at higher doses. Other pesticides, like diuron, did not alter reporter gene expression detectably even at the highest test concentration attainable, while others (such as glyphosate) did so only at very high concentrations. We have also used five responsive GFP reporters to investigate the toxicity of soil pore water from two agricultural sites in south-east Spain, designated P74 (used for cauliflower production, but significantly metal contaminated) and P73 (used for growing lettuce, but with only background levels of metals). Both soil pore water samples induced all five test genes to varying extents, yet artificial mixtures containing all major metals present had essentially no effect on these same transgenes. Soluble organic contaminants present in the pore water were extracted with acetone and dichloromethane, then after evaporation of the solvents, the organic residues were redissolved in ultrapure water to reconstitute the soluble organic components of the original soil pore water. These organic extracts induced transgene expression at similar or higher levels than the original pore water. Addition of the corresponding metal mixtures had either no effect, or reduced transgene expression towards the levels seen with soil pore water only. We conclude that the main toxicants present in these soil pore water samples are organic rather than metallic in nature. Organic extracts from a control standard soil (Lufa 2.2) had negligible effects on expression of these genes, and similarly several pesticides had little effect on the expression of a constitutive myo-3::GFP transgene. Both the P73 and P74 sites have been treated regularly with (undisclosed) pesticides, as permitted under EU regulations, though other (e.g. industrial) organic residues may also be present.
Collapse
Affiliation(s)
- Charumathi Anbalagan
- School of Biology, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | | | | | | | | | | | | |
Collapse
|
37
|
Harrington JM, Boyd WA, Smith MV, Rice JR, Freedman JH, Crumbliss AL. Amelioration of metal-induced toxicity in Caenorhabditis elegans: utility of chelating agents in the bioremediation of metals. Toxicol Sci 2012; 129:49-56. [PMID: 22641620 PMCID: PMC3499079 DOI: 10.1093/toxsci/kfs191] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/07/2012] [Revised: 05/10/2012] [Accepted: 05/18/2012] [Indexed: 01/15/2023] Open
Abstract
The presence of toxic amounts of transition metals in the environment may originate from a range of human activities and natural processes. One method for the removal of toxic levels of metals is through chelation by small molecules. However, chelation is not synonymous with detoxification and may not affect the bioavailability of the metal. To test the bioavailability of chelated metals in vivo, the effects of several metal/chelator combinations were tested in the environmentally relevant organism Caenorhabditis elegans. The effect of metal exposure on nematode growth was used to determine the toxicity of cadmium, copper, nickel, and zinc. The restoration of growth to levels observed in nonexposed nematodes was used to determine the protective effects of the polydentate chelators: acetohydroxamic acid (AHA), cyclam, cysteine, calcium EDTA, desferrioxamine B, 1,2-dimethyl,3-hydroxy,4-pyridinone, and histidine. Cadmium toxicity was removed only by EDTA; copper toxicity was removed by all of the chelators except AHA; nickel toxicity was removed by cyclam, EDTA, and histidine; and zinc toxicity was removed by only EDTA. These results demonstrate the utility of polydentate chelators in the remediation of metal-contaminated systems. They also demonstrate that although the application of a chelator to metal contaminants may be effective, binding alone cannot be used to predict the level of remediation. Remediation depends on a number of factors, including metal complex speciation in the environment.
Collapse
Affiliation(s)
| | - Windy A. Boyd
- †Biomolecular Screening Branch, National Toxicology Program, Research Triangle Park, North Carolina 27709
| | | | - Julie R. Rice
- †Biomolecular Screening Branch, National Toxicology Program, Research Triangle Park, North Carolina 27709
| | - Jonathan H. Freedman
- †Biomolecular Screening Branch, National Toxicology Program, Research Triangle Park, North Carolina 27709
- §Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina
| | | |
Collapse
|
38
|
Sleumer MC, Wei G, Wang Y, Chang H, Xu T, Chen R, Zhang MQ. Regulatory elements of Caenorhabditis elegans ribosomal protein genes. BMC Genomics 2012; 13:433. [PMID: 22928635 PMCID: PMC3575287 DOI: 10.1186/1471-2164-13-433] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/22/2012] [Accepted: 08/17/2012] [Indexed: 01/16/2023] Open
Abstract
Background Ribosomal protein genes (RPGs) are essential, tightly regulated, and highly expressed during embryonic development and cell growth. Even though their protein sequences are strongly conserved, their mechanism of regulation is not conserved across yeast, Drosophila, and vertebrates. A recent investigation of genomic sequences conserved across both nematode species and associated with different gene groups indicated the existence of several elements in the upstream regions of C. elegans RPGs, providing a new insight regarding the regulation of these genes in C. elegans. Results In this study, we performed an in-depth examination of C. elegans RPG regulation and found nine highly conserved motifs in the upstream regions of C. elegans RPGs using the motif discovery algorithm DME. Four motifs were partially similar to transcription factor binding sites from C. elegans, Drosophila, yeast, and human. One pair of these motifs was found to co-occur in the upstream regions of 250 transcripts including 22 RPGs. The distance between the two motifs displayed a complex frequency pattern that was related to their relative orientation. We tested the impact of three of these motifs on the expression of rpl-2 using a series of reporter gene constructs and showed that all three motifs are necessary to maintain the high natural expression level of this gene. One of the motifs was similar to the binding site of an orthologue of POP-1, and we showed that RNAi knockdown of pop-1 impacts the expression of rpl-2. We further determined the transcription start site of rpl-2 by 5’ RACE and found that the motifs lie 40–90 bases upstream of the start site. We also found evidence that a noncoding RNA, contained within the outron of rpl-2, is co-transcribed with rpl-2 and cleaved during trans-splicing. Conclusions Our results indicate that C. elegans RPGs are regulated by a complex novel series of regulatory elements that is evolutionarily distinct from those of all other species examined up until now.
Collapse
Affiliation(s)
- Monica C Sleumer
- Bioinformatics Division, Center for Synthetic and Systems Biology, Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Hall J, Haas KL, Freedman JH. Role of MTL-1, MTL-2, and CDR-1 in mediating cadmium sensitivity in Caenorhabditis elegans. Toxicol Sci 2012; 128:418-26. [PMID: 22552775 PMCID: PMC3493192 DOI: 10.1093/toxsci/kfs166] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/10/2012] [Revised: 04/26/2012] [Accepted: 04/26/2012] [Indexed: 11/12/2022] Open
Abstract
Cadmium is an environmental toxicant whose exposure is associated with multiple human pathologies. To prevent cadmium-induced toxicity, organisms produce a variety of detoxification molecules. In response to cadmium, the nematode Caenorhabditis elegans increases the steady-state levels of several hundred genes, including two metallothioneins, mtl-1 and mtl-2, and the cadmium-specific response gene, cdr-1. Despite the presumed importance in metal detoxification of mtl-1 and mtl-2, knockdown of their expression does not increase cadmium hypersensitivity, which suggests that these genes are not required for resistance to metal toxicity in C. elegans. To determine whether cdr-1 is critical in metal detoxification and compensates for the loss of mtl-1 and/or mtl-2, C. elegans strains were generated in which one, two, and all three genes were deleted, and the effects of cadmium on brood size, embryonic lethality, the Bag phenotype, and growth were determined. Growth at low cadmium concentrations was the only endpoint in which the triple mutant displayed more sensitivity than the single and double mutants. A lack of hypersensitivity in these strains suggests that other factors may be involved in the response to cadmium. Caenorhabditis elegans produces phytochelatins (PCs) that are critical in the defense against cadmium toxicity. PC levels in wild type, cdr-1 single, mtl-1, mtl-2 double, and triple mutants were measured. PC levels were constitutively higher in the mtl-1, mtl-2 double, and triple mutants compared with wild type. Following cadmium exposure, PC levels increased. The lack of cadmium hypersensitivity when these genes are deleted may be attributed to the compensatory effects of increases in PCs.
Collapse
Affiliation(s)
| | - Kathryn L. Haas
- Laboratory of Toxicology and Pharmacology, National Institute of EnvironmentalHealth Sciences, NIH, Research Triangle Park, North Carolina 27709
| | - Jonathan H. Freedman
- Biomolecular Screening Branch and
- Laboratory of Toxicology and Pharmacology, National Institute of EnvironmentalHealth Sciences, NIH, Research Triangle Park, North Carolina 27709
| |
Collapse
|
40
|
Ladhar-Chaabouni R, Machreki-Ajmi M, Hamza-Chaffai A. Use of metallothioneins as biomarkers for environmental quality assessment in the Gulf of Gabès (Tunisia). ENVIRONMENTAL MONITORING AND ASSESSMENT 2012; 184:2177-2192. [PMID: 21611846 DOI: 10.1007/s10661-011-2108-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/20/2010] [Accepted: 04/26/2011] [Indexed: 05/30/2023]
Abstract
Detection and assessment of the impact of pollution on biological resources imply increasing research on early-warning markers such as metallothioneins (MTs) in metal exposure. In this paper, we have collated published information on the use of metallothioneins and metallothionein-like proteins (MTLPs) as biomarkers for environmental quality assessment in the Gulf of Gabès. In this area, some species of fish and bivalve were used as bioindicators of pollution. In these species, an induction of MTs/MTLPs by the essential metals such as Cu and Zn and the non-essential metals such as Cd was observed by different authors who suggest the potential use of these proteins as biomarkers. However, MT concentrations can be influenced by many biotic (sex, maturity stages, and tissues) and abiotic factors (temperature, salinity, and pH). This is essentially the case in field studies where many parameters can randomly affect MT levels, so the endogeneous regulation of MTs must be considered before using MTs as an indicator of heavy metal exposure. Moreover, the use of biomarker cannot be examined independently of the evaluation of techniques that enable its quantification. Therefore, the approach to the use of MTs/MTLP as biomarkers of exposure for an assessment of the physiological status of aquatic organisms is discussed in this paper.
Collapse
Affiliation(s)
- Rim Ladhar-Chaabouni
- UR 09-03 Marine Environmental Toxicology, Sfax University, IPEIS BP 1172, 3018, Sfax, Tunisia.
| | | | | |
Collapse
|
41
|
Anbalagan C, Lafayette I, Antoniou-Kourounioti M, Haque M, King J, Johnsen B, Baillie D, Gutierrez C, Rodriguez Martin JA, de Pomerai D. Transgenic nematodes as biosensors for metal stress in soil pore water samples. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:439-55. [PMID: 22037694 PMCID: PMC3277692 DOI: 10.1007/s10646-011-0804-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Accepted: 09/24/2011] [Indexed: 05/02/2023]
Abstract
Caenorhabditis elegans strains carrying stress-reporter green fluorescent protein transgenes were used to explore patterns of response to metals. Multiple stress pathways were induced at high doses by most metals tested, including members of the heat shock, oxidative stress, metallothionein (mtl) and xenobiotic response gene families. A mathematical model (to be published separately) of the gene regulatory circuit controlling mtl production predicted that chemically similar divalent metals (classic inducers) should show additive effects on mtl gene induction, whereas chemically dissimilar metals should show interference. These predictions were verified experimentally; thus cadmium and mercury showed additive effects, whereas ferric iron (a weak inducer) significantly reduced the effect of mercury. We applied a similar battery of tests to diluted samples of soil pore water extracted centrifugally after mixing 20% w/w ultrapure water with air-dried soil from an abandoned lead/zinc mine in the Murcia region of Spain. In addition, metal contents of both soil and soil pore water were determined by ICP-MS, and simplified mixtures of soluble metal salts were tested at equivalent final concentrations. The effects of extracted soil pore water (after tenfold dilution) were closely mimicked by mixtures of its principal component ions, and even by the single most prevalent contaminant (zinc) alone, though other metals modulated its effects both positively and negatively. In general, mixtures containing similar (divalent) metal ions exhibited mainly additive effects, whereas admixture of dissimilar (e.g. trivalent) ions often resulted in interference, reducing overall levels of stress-gene induction. These findings were also consistent with model predictions.
Collapse
Affiliation(s)
- Charumathi Anbalagan
- School of Biology, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Ivan Lafayette
- School of Biology, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | | | - Mainul Haque
- School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - John King
- School of Mathematical Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Bob Johnsen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6 Canada
| | - David Baillie
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6 Canada
| | - Carmen Gutierrez
- Department of Environmental Contamination, Instituto de Ciencias Agrarias (ICA)—CSIC, Serrano 115B, Madrid, 28006 Spain
| | - Jose A. Rodriguez Martin
- Department of Forest Ecology and Genetics, Centro de Investigacion Forestal (CIFOR)—INIA, Ctra. de la Coruña, Madrid, 28040 Spain
| | - David de Pomerai
- School of Biology, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| |
Collapse
|
42
|
Laing ST, Ivens A, Butler V, Ravikumar SP, Laing R, Woods DJ, Gilleard JS. The transcriptional response of Caenorhabditis elegans to Ivermectin exposure identifies novel genes involved in the response to reduced food intake. PLoS One 2012; 7:e31367. [PMID: 22348077 PMCID: PMC3279368 DOI: 10.1371/journal.pone.0031367] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/06/2011] [Accepted: 01/09/2012] [Indexed: 12/02/2022] Open
Abstract
We have examined the transcriptional response of Caenorhabditis elegans following exposure to the anthelmintic drug ivermectin (IVM) using whole genome microarrays and real-time QPCR. Our original aim was to identify candidate molecules involved in IVM metabolism and/or excretion. For this reason the IVM tolerant strain, DA1316, was used to minimise transcriptomic changes related to the phenotype of drug exposure. However, unlike equivalent work with benzimidazole drugs, very few of the induced genes were members of xenobiotic metabolising enzyme families. Instead, the transcriptional response was dominated by genes associated with fat mobilization and fatty acid metabolism including catalase, esterase, and fatty acid CoA synthetase genes. This is consistent with the reduction in pharyngeal pumping, and consequential reduction in food intake, upon exposure of DA1316 worms to IVM. Genes with the highest fold change in response to IVM exposure, cyp-37B1, mtl-1 and scl-2, were comparably up-regulated in response to short–term food withdrawal (4 hr) independent of IVM exposure, and GFP reporter constructs confirm their expression in tissues associated with fat storage (intestine and hypodermis). These experiments have serendipitously identified novel genes involved in an early response of C. elegans to reduced food intake and may provide insight into similar processes in higher organisms.
Collapse
Affiliation(s)
- Steven T. Laing
- Faculty of Veterinary Medicine, University of Glasgow, Glasgow, Strathclyde, United Kingdom
| | - Al Ivens
- Fios Genomics Ltd, The Edinburgh Technology Transfer Centre, Edinburgh, Lothian, United Kingdom
| | - Victoria Butler
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sai P. Ravikumar
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Roz Laing
- Faculty of Veterinary Medicine, University of Glasgow, Glasgow, Strathclyde, United Kingdom
| | - Debra J. Woods
- Research and Development, Pfizer Animal Health, Kalamazoo, Michigan, United States of America
| | - John S. Gilleard
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
43
|
Revelations from the Nematode Caenorhabditis elegans on the Complex Interplay of Metal Toxicological Mechanisms. J Toxicol 2011; 2011:895236. [PMID: 21876692 PMCID: PMC3157827 DOI: 10.1155/2011/895236] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/29/2011] [Accepted: 06/08/2011] [Indexed: 12/22/2022] Open
Abstract
Metals have been definitively linked to a number of disease states. Due to the widespread existence of metals in our environment from both natural and anthropogenic sources, understanding the mechanisms of their cellular detoxification is of upmost importance. Organisms have evolved cellular detoxification systems including glutathione, metallothioneins, pumps and transporters, and heat shock proteins to regulate intracellular metal levels. The model organism, Caenorhabditis elegans (C. elegans), contains these systems and provides several advantages for deciphering the mechanisms of metal detoxification. This review provides a brief summary of contemporary literature on the various mechanisms involved in the cellular detoxification of metals, specifically, antimony, arsenic, cadmium, copper, manganese, mercury, and depleted uranium using the C. elegans model system for investigation and analysis.
Collapse
|
44
|
Höckner M, Dallinger R, Stürzenbaum SR. Nematode and snail metallothioneins. J Biol Inorg Chem 2011; 16:1057-65. [PMID: 21822727 DOI: 10.1007/s00775-011-0826-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/07/2011] [Accepted: 07/25/2011] [Indexed: 01/27/2023]
Abstract
Metallobiologists have, at large, neglected soil dwelling invertebrates; exceptions are the nematode (Caenorhabditis elegans) and snails (Helix pomatia and Cantareus aspersus). This review aims to compare and contrast the molecular, protein and cellular mechanisms of the multifunctional nematode and snail metallothioneins (MTs). The C. elegans genome contains two MT genes, mtl-1, which is constitutively expressed in the pharynx and likely to act as an essential and/or toxic metal sensor, and mtl-2, which plays a negligible role under normal physiological conditions but is strongly induced (as mtl-1) in intestinal cells upon metal exposure. It has been possible to follow the intricate phenotypic responses upon the knockdown/knockout of single and multiple MT isoforms and we have started to decipher the multifunctional role of C. elegans MTs. The snails have contributed to our understanding regarding MT evolution and diversity, structure and metal-specific functionality. The H. pomatia and C. aspersus genomes contain at least three MT isoform genes. CdMT is responsible for cadmium detoxification, CuMT is involved in copper homeostasis and Cd/CuMT is a putative ancestral MT possibly only of minor importance in metal metabolism. Further investigations of nematode, snail and other invertebrate MTs will allow the development of alternative biomarker approaches and lead to an improved understanding of metallobiology, protein evolution and toxicogenomics.
Collapse
Affiliation(s)
- Martina Höckner
- Institute of Zoology, University of Innsbruck, 6020, Innsbruck, Austria
| | | | | |
Collapse
|
45
|
Histidine protects against zinc and nickel toxicity in Caenorhabditis elegans. PLoS Genet 2011; 7:e1002013. [PMID: 21455490 PMCID: PMC3063764 DOI: 10.1371/journal.pgen.1002013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/13/2010] [Accepted: 01/10/2011] [Indexed: 01/16/2023] Open
Abstract
Zinc is an essential trace element involved in a wide range of biological
processes and human diseases. Zinc excess is deleterious, and animals require
mechanisms to protect against zinc toxicity. To identify genes that modulate
zinc tolerance, we performed a forward genetic screen for Caenorhabditis
elegans mutants that were resistant to zinc toxicity. Here we
demonstrate that mutations of the C. elegans histidine ammonia
lyase (haly-1) gene promote zinc tolerance. C. elegans
haly-1 encodes a protein that is homologous to vertebrate HAL, an
enzyme that converts histidine to urocanic acid. haly-1 mutant
animals displayed elevated levels of histidine, indicating that C.
elegans HALY-1 protein is an enzyme involved in histidine
catabolism. These results suggest the model that elevated histidine chelates
zinc and thereby reduces zinc toxicity. Supporting this hypothesis, we
demonstrated that dietary histidine promotes zinc tolerance. Nickel is another
metal that binds histidine with high affinity. We demonstrated that
haly-1 mutant animals are resistant to nickel toxicity and
dietary histidine promotes nickel tolerance in wild-type animals. These studies
identify a novel role for haly-1 and histidine in zinc
metabolism and may be relevant for other animals. Zinc is an essential nutrient that is critical for human health. However, excess
zinc can cause toxicity, indicating that regulatory mechanisms are necessary to
maintain homeostasis. The analysis of mechanisms that promote zinc homeostasis
can elucidate fundamental regulatory processes and suggest new approaches for
treating disorders of zinc metabolism. To discover genes that modulate zinc
tolerance, we screened for C. elegans mutants that were
resistant to zinc toxicity. Here we demonstrate that mutations of the histidine
ammonia lyase (haly-1) gene promote zinc tolerance.
haly-1 encodes a protein that is similar to vertebrate HAL,
an enzyme that converts histidine to urocanic acid. Mutations in the human HAL
gene cause elevated levels of serum histidine and abnormal zinc metabolism.
Mutations in C. elegans haly-1 cause elevated levels of
histidine, suggesting that histidine causes resistance to excess zinc.
Consistent with this hypothesis, we demonstrated that dietary histidine promoted
tolerance to excess zinc in wild-type worms. Mutations in
haly-1 and supplemental dietary histidine also caused
resistance to nickel, another metal that can bind histidine. A likely mechanism
of protection is chelation of zinc and nickel by histidine. These studies
suggest that histidine plays a physiological role in zinc metabolism.
Collapse
|
46
|
Leszczyszyn OI, Zeitoun-Ghandour S, Stürzenbaum SR, Blindauer CA. Tools for metal ion sorting: in vitro evidence for partitioning of zinc and cadmium in C. elegans metallothionein isoforms. Chem Commun (Camb) 2011; 47:448-50. [DOI: 10.1039/c0cc02188a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
|
47
|
Zeitoun-Ghandour S, Leszczyszyn OI, Blindauer CA, Geier FM, Bundy JG, Stürzenbaum SR. C. elegans metallothioneins: response to and defence against ROS toxicity. MOLECULAR BIOSYSTEMS 2011; 7:2397-406. [DOI: 10.1039/c1mb05114h] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
|
48
|
Gupta RS, Ahnn J. Cadmium‐induced gene expression is regulated by MTF‐1, a key metal‐responsive transcription factor. ACTA ACUST UNITED AC 2010. [DOI: 10.1080/12265071.2003.9647702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/17/2022]
Affiliation(s)
- Ronojoy Sen Gupta
- a Department of Life Science and Biotechnology , Jadavpur University , Calcutta , 700032 , India Phone: E-mail:
| | - Joohong Ahnn
- b Department of Life Science , Kwangju Institute of Science and Technology , Gwangju , 500–712 , Korea
| |
Collapse
|
49
|
Brulle F, Morgan AJ, Cocquerelle C, Vandenbulcke F. Transcriptomic underpinning of toxicant-mediated physiological function alterations in three terrestrial invertebrate taxa: a review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:2793-2808. [PMID: 20619942 DOI: 10.1016/j.envpol.2010.06.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/16/2010] [Revised: 06/09/2010] [Accepted: 06/12/2010] [Indexed: 05/29/2023]
Abstract
Diverse anthropogenic activities often lead to the accumulation of inorganic and organic residues in topsoils. Biota living in close contact with contaminated soils may experience stress at different levels of biological organisation throughout the continuum from the molecular-genetic to ecological and community levels. To date, the relationship between changes at the molecular (mRNA expression) and biochemical/physiological levels evoked by exposures to chemical compounds has been partially established in a limited number of terrestrial invertebrate species. Recently, the advent of a family of transcriptomic tools (e.g. Real-time PCR, Subtractive Suppressive Hybridization, Expressed Sequence Tag sequencing, pyro-sequencing technologies, Microarray chips), together with supporting informatic and statistical procedures, have permitted the robust analyses of global gene expression changes within an ecotoxicological context. This review focuses on how transcriptomics is enlightening our understanding of the molecular-genetic responses of three contrasting terrestrial macroinvertebrate taxa (nematodes, earthworms, and springtails) to inorganics, organics, and agrochemicals.
Collapse
|
50
|
Zeitoun-Ghandour S, Charnock JM, Hodson ME, Leszczyszyn OI, Blindauer CA, Stürzenbaum SR. The two Caenorhabditis elegans metallothioneins (CeMT-1 and CeMT-2) discriminate between essential zinc and toxic cadmium. FEBS J 2010; 277:2531-42. [PMID: 20553489 DOI: 10.1111/j.1742-4658.2010.07667.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Abstract
The nematode Caenorhabditis elegans expresses two metallothioneins (MTs), CeMT-1 and CeMT-2, that are believed to be key players in the protection against metal toxicity. In this study, both isoforms were expressed in vitro in the presence of either Zn(II) or Cd(II). Metal binding stoichiometries and affinities were determined by ESI-MS and NMR, respectively. Both isoforms had equal zinc binding ability, but differed in their cadmium binding behaviour, with higher affinity found for CeMT-2. In addition, wild-type C. elegans, single MT knockouts and a double MT knockout allele were exposed to zinc (340 microm) or cadmium (25 microm) to investigate effects in vivo. Zinc levels were significantly increased in all knockout strains, but were most pronounced in the CeMT-1 knockout, mtl-1 (tm1770), while cadmium accumulation was highest in the CeMT-2 knockout, mtl-2 (gk125) and the double knockout mtl-1;mtl-2 (zs1). In addition, metal speciation was assessed by X-ray absorption fine-structure spectroscopy. This showed that O-donating, probably phosphate-rich, ligands play a dominant role in maintaining the physiological concentration of zinc, independently of metallothionein status. In contrast, cadmium was shown to coordinate with thiol groups, and the cadmium speciation of the wild-type and the CeMT-2 knockout strain was distinctly different to the CeMT-1 and double knockouts. Taken together, and supported by a simple model calculation, these findings show for the first time that the two MT isoforms have differential affinities towards Cd(II) and Zn(II) at a cellular level, and this is reflected at the protein level. This suggests that the two MT isoforms have distinct in vivo roles.
Collapse
|