1
|
Visser EA, Moons SJ, Timmermans SBPE, de Jong H, Boltje TJ, Büll C. Sialic acid O-acetylation: From biosynthesis to roles in health and disease. J Biol Chem 2021; 297:100906. [PMID: 34157283 PMCID: PMC8319020 DOI: 10.1016/j.jbc.2021.100906] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/05/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Sialic acids are nine-carbon sugars that frequently cap glycans at the cell surface in cells of vertebrates as well as cells of certain types of invertebrates and bacteria. The nine-carbon backbone of sialic acids can undergo extensive enzymatic modification in nature and O-acetylation at the C-4/7/8/9 position in particular is widely observed. In recent years, the detection and analysis of O-acetylated sialic acids have advanced, and sialic acid-specific O-acetyltransferases (SOATs) and O-acetylesterases (SIAEs) that add and remove O-acetyl groups, respectively, have been identified and characterized in mammalian cells, invertebrates, bacteria, and viruses. These advances now allow us to draw a more complete picture of the biosynthetic pathway of the diverse O-acetylated sialic acids to drive the generation of genetically and biochemically engineered model cell lines and organisms with altered expression of O-acetylated sialic acids for dissection of their roles in glycoprotein stability, development, and immune recognition, as well as discovery of novel functions. Furthermore, a growing number of studies associate sialic acid O-acetylation with cancer, autoimmunity, and infection, providing rationale for the development of selective probes and inhibitors of SOATs and SIAEs. Here, we discuss the current insights into the biosynthesis and biological functions of O-acetylated sialic acids and review the evidence linking this modification to disease. Furthermore, we discuss emerging strategies for the design, synthesis, and potential application of unnatural O-acetylated sialic acids and inhibitors of SOATs and SIAEs that may enable therapeutic targeting of this versatile sialic acid modification.
Collapse
Affiliation(s)
- Eline A Visser
- Institute for Molecules and Materials, Department of Synthetic Organic Chemistry, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Sam J Moons
- Institute for Molecules and Materials, Department of Synthetic Organic Chemistry, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Suzanne B P E Timmermans
- Institute for Molecules and Materials, Department of Synthetic Organic Chemistry, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Heleen de Jong
- Institute for Molecules and Materials, Department of Synthetic Organic Chemistry, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Thomas J Boltje
- Institute for Molecules and Materials, Department of Synthetic Organic Chemistry, Radboud University Nijmegen, Nijmegen, the Netherlands.
| | - Christian Büll
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Hubrecht Institute, Utrecht, the Netherlands.
| |
Collapse
|
2
|
Yang H, Lu L, Chen X. An overview and future prospects of sialic acids. Biotechnol Adv 2020; 46:107678. [PMID: 33285252 DOI: 10.1016/j.biotechadv.2020.107678] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/25/2020] [Revised: 11/11/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022]
Abstract
Sialic acids (Sias) are negatively charged functional monosaccharides present in a wide variety of natural sources (plants, animals and microorganisms). Sias play an important role in many life processes, which are widely applied in the medical and food industries as intestinal antibacterials, antivirals, anti-oxidative agents, food ingredients, and detoxification agents. Most Sias are composed of N-acetylneuraminic acid (Neu5Ac, >99%), and Sia is its most commonly used name. In this article, we review Sias in terms of their structures, applications, determination methods, metabolism, and production strategies. In particular, we summarise and compare different production strategies, including extraction from natural sources, chemical synthesis, polymer decomposition, enzymatic synthesis, whole-cell catalysis, and de novo biosynthesis via microorganism fermentation. We also discuss research on their physiological functions and applications, barriers to efficient production, and strategies for overcoming these challenges. We focus on efficient de novo biosynthesis strategies for Neu5Ac via microbial fermentation using novel synthetic biology tools and methods that may be applied in future. This work provides a comprehensive overview of recent advances on Sias, and addresses future challenges regarding their functions, applications, and production.
Collapse
Affiliation(s)
- Haiquan Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Liping Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; College of life Science and Engineering, Northwest Minzu University, Lanzhou 730030, China
| | - Xianzhong Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Lim MYX, LaMonte G, Lee MC, Reimer C, Tan BH, Corey V, Tjahjadi BF, Chua A, Nachon M, Wintjens R, Gedeck P, Malleret B, Renia L, Bonamy GM, Ho PCL, Yeung BKS, Chow ED, Lim L, Fidock DA, Diagana TT, Winzeler EA, Bifani P. UDP-galactose and acetyl-CoA transporters as Plasmodium multidrug resistance genes. Nat Microbiol 2016; 1:16166. [PMID: 27642791 PMCID: PMC5575994 DOI: 10.1038/nmicrobiol.2016.166] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/03/2016] [Accepted: 08/08/2016] [Indexed: 01/08/2023]
Abstract
A molecular understanding of drug resistance mechanisms enables surveillance of the effectiveness of new antimicrobial therapies during development and deployment in the field. We used conventional drug resistance selection as well as a regime of limiting dilution at early stages of drug treatment to probe two antimalarial imidazolopiperazines, KAF156 and GNF179. The latter approach permits the isolation of low-fitness mutants that might otherwise be out-competed during selection. Whole-genome sequencing of 24 independently derived resistant Plasmodium falciparum clones revealed four parasites with mutations in the known cyclic amine resistance locus (pfcarl) and a further 20 with mutations in two previously unreported P. falciparum drug resistance genes, an acetyl-CoA transporter (pfact) and a UDP-galactose transporter (pfugt). Mutations were validated both in vitro by CRISPR editing in P. falciparum and in vivo by evolution of resistant Plasmodium berghei mutants. Both PfACT and PfUGT were localized to the endoplasmic reticulum by fluorescence microscopy. As mutations in pfact and pfugt conveyed resistance against additional unrelated chemical scaffolds, these genes are probably involved in broad mechanisms of antimalarial drug resistance.
Collapse
Affiliation(s)
- Michelle Yi-Xiu Lim
- Novartis Institute for Tropical Diseases, 138670 Singapore
- Department of Pharmacy, Faculty of Science, National University of Singapore, 119077 Singapore
| | - Gregory LaMonte
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Marcus C.S. Lee
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, New York 10032, USA
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, United Kingdom
| | - Christin Reimer
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Bee Huat Tan
- Novartis Institute for Tropical Diseases, 138670 Singapore
| | - Victoria Corey
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Bianca F. Tjahjadi
- Novartis Institute for Tropical Diseases, 138670 Singapore
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System
| | - Adeline Chua
- Novartis Institute for Tropical Diseases, 138670 Singapore
| | - Marie Nachon
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - René Wintjens
- Laboratory of Biopolymers and Supramolecular Nanomaterials, Faculty of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium
| | - Peter Gedeck
- Novartis Institute for Tropical Diseases, 138670 Singapore
| | - Benoit Malleret
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System
- Singapore Immunology Network (SIgN), A*Star, Singapore
| | - Laurent Renia
- Singapore Immunology Network (SIgN), A*Star, Singapore
| | | | - Paul Chi-Lui Ho
- Department of Pharmacy, Faculty of Science, National University of Singapore, 119077 Singapore
| | | | - Eric D. Chow
- Center for Advanced Technology, Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143, USA
| | - Liting Lim
- Novartis Institute for Tropical Diseases, 138670 Singapore
| | - David A. Fidock
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, New York 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, New York 10032, USA
| | - Thierry T. Diagana
- Novartis Institute for Tropical Diseases, 138670 Singapore
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System
| | - Elizabeth A. Winzeler
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Pablo Bifani
- Novartis Institute for Tropical Diseases, 138670 Singapore
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System
| |
Collapse
|
4
|
Baumann AMT, Bakkers MJG, Buettner FFR, Hartmann M, Grove M, Langereis MA, de Groot RJ, Mühlenhoff M. 9-O-Acetylation of sialic acids is catalysed by CASD1 via a covalent acetyl-enzyme intermediate. Nat Commun 2015; 6:7673. [PMID: 26169044 PMCID: PMC4510713 DOI: 10.1038/ncomms8673] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/21/2015] [Accepted: 06/01/2015] [Indexed: 12/13/2022] Open
Abstract
Sialic acids, terminal sugars of glycoproteins and glycolipids, play important roles in development, cellular recognition processes and host–pathogen interactions. A common modification of sialic acids is 9-O-acetylation, which has been implicated in sialoglycan recognition, ganglioside biology, and the survival and drug resistance of acute lymphoblastic leukaemia cells. Despite many functional implications, the molecular basis of 9-O-acetylation has remained elusive thus far. Following cellular approaches, including selective gene knockout by CRISPR/Cas genome editing, we here show that CASD1—a previously identified human candidate gene—is essential for sialic acid 9-O-acetylation. In vitro assays with the purified N-terminal luminal domain of CASD1 demonstrate transfer of acetyl groups from acetyl-coenzyme A to CMP-activated sialic acid and formation of a covalent acetyl-enzyme intermediate. Our study provides direct evidence that CASD1 is a sialate O-acetyltransferase and serves as key enzyme in the biosynthesis of 9-O-acetylated sialoglycans. 9-O-Acetylation is one of the most common modifications of sialic acids, implicated in sialoglycan recognition and ganglioside biology. Here, the authors show that the key enzyme for the biosynthesis of 9-O-acetylated sialoglycans is CASD1, which uses CMP-activated sialic acid as acceptor substrate.![]()
Collapse
Affiliation(s)
- Anna-Maria T Baumann
- Institute of Cellular Chemistry, Hannover Medical School, D-30623 Hannover, Germany
| | - Mark J G Bakkers
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Falk F R Buettner
- Institute of Cellular Chemistry, Hannover Medical School, D-30623 Hannover, Germany
| | - Maike Hartmann
- Institute of Cellular Chemistry, Hannover Medical School, D-30623 Hannover, Germany
| | - Melanie Grove
- Institute of Cellular Chemistry, Hannover Medical School, D-30623 Hannover, Germany
| | - Martijn A Langereis
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Raoul J de Groot
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Martina Mühlenhoff
- Institute of Cellular Chemistry, Hannover Medical School, D-30623 Hannover, Germany
| |
Collapse
|
5
|
Potelle S, Klein A, Foulquier F. Golgi post-translational modifications and associated diseases. J Inherit Metab Dis 2015; 38:741-51. [PMID: 25967285 DOI: 10.1007/s10545-015-9851-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 02/16/2015] [Revised: 04/02/2015] [Accepted: 04/08/2015] [Indexed: 11/24/2022]
Abstract
For non specialists, Golgi is a very well known subcellular compartment involved in secretion and correct targeting of soluble and transmembrane proteins. Nevertheless, Golgi is also specifically involved in many different and diverse post-translational modifications. Through its diverse functions, Golgi is not only able to modify secreted and transmembrane proteins but also cytoplasmic proteins. The Golgi apparatus research field is so broad that an exhaustive review of this organelle is not doable here. The goal of this review is to cover the main post-translational modifications occurring at the Golgi level and present the identified associated diseases.
Collapse
Affiliation(s)
- Sven Potelle
- CNRS-UMR 8576, Structural and Functional Glycobiology unit, FRABIO, University of Lille, 59655, Villeneuve d'Ascq, France
| | | | | |
Collapse
|
6
|
Hirabayashi Y, Nomura KH, Nomura K. The acetyl-CoA transporter family SLC33. Mol Aspects Med 2013; 34:586-9. [PMID: 23506891 DOI: 10.1016/j.mam.2012.05.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/21/2012] [Accepted: 03/29/2012] [Indexed: 11/16/2022]
Abstract
The acetyl-CoA (Ac-CoA) transporter, ACATN is a multiple (11 or 12) transmembrane protein in the endoplasmic reticulum. Ac-CoA is transported into the lumen of the endoplasmic reticulum/Golgi apparatus, where it serves as the substrate of acetyltransferases that modify a variety of molecules including the sialic acid residues of gangliosides and lysine residues of membrane proteins. The ACATN gene, assigned as SLC33A1, was cloned from human melanoma cells and encodes the ACATN/ACATN1 (Acetyl-CoA Transporter 1) protein. Although homologs of this family of proteins have been identified in lower organisms such as Escherichia coli, Drosophila melanogaster and Caenorhabditis elegans, only one member of this SLC33A1 family has been identified. Although acetylated gangliosides are synthesized in the luminal Golgi membrane and show a highly tissue-specific distribution, ACATN1 is enriched in the ER membrane and is ubiquitously expressed. Phylogenetically, the SLC33A1 gene is highly conserved, suggesting that it is particularly significant. In fact, ACATN1 is essential for motor neuron viability. SLC33A1 is associated with neurodegenerative disorders such as sporadic amyotrophic lateral sclerosis (ALS) and Spastic Paraplegia 42, in the Chinese population.
Collapse
Affiliation(s)
- Yoshio Hirabayashi
- Laboratory for Molecular Membrane Neuroscience, RIKEN Brain Science Institute, Wako-shi, Saitama 351-0198, Japan.
| | | | | |
Collapse
|
7
|
Sialic acid metabolism and sialyltransferases: natural functions and applications. Appl Microbiol Biotechnol 2012; 94:887-905. [PMID: 22526796 DOI: 10.1007/s00253-012-4040-1] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/30/2012] [Revised: 03/16/2012] [Accepted: 03/16/2012] [Indexed: 12/17/2022]
Abstract
Sialic acids are a family of negatively charged monosaccharides which are commonly presented as the terminal residues in glycans of the glycoconjugates on eukaryotic cell surface or as components of capsular polysaccharides or lipooligosaccharides of some pathogenic bacteria. Due to their important biological and pathological functions, the biosynthesis, activation, transfer, breaking down, and recycle of sialic acids are attracting increasing attention. The understanding of the sialic acid metabolism in eukaryotes and bacteria leads to the development of metabolic engineering approaches for elucidating the important functions of sialic acid in mammalian systems and for large-scale production of sialosides using engineered bacterial cells. As the key enzymes in biosynthesis of sialylated structures, sialyltransferases have been continuously identified from various sources and characterized. Protein crystal structures of seven sialyltransferases have been reported. Wild-type sialyltransferases and their mutants have been applied with or without other sialoside biosynthetic enzymes for producing complex sialic acid-containing oligosaccharides and glycoconjugates. This mini-review focuses on current understanding and applications of sialic acid metabolism and sialyltransferases.
Collapse
|
8
|
Mandal C, Srinivasan GV, Chowdhury S, Chandra S, Mandal C, Schauer R, Mandal C. High level of sialate-O-acetyltransferase activity in lymphoblasts of childhood acute lymphoblastic leukaemia (ALL): enzyme characterization and correlation with disease status. Glycoconj J 2008; 26:57-73. [PMID: 18677580 DOI: 10.1007/s10719-008-9163-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/08/2008] [Revised: 06/13/2008] [Accepted: 06/16/2008] [Indexed: 11/27/2022]
Abstract
Previous studies had established an over-expression of 9-O-acetylated sialoglycoproteins (Neu5,9Ac(2)-GPs) on lymphoblasts of childhood acute lymphoblastic leukaemia (ALL). Here, we report the discovery and characterization of sialate-O-acetyltransferase enzyme in ALL-cell lines and lymphoblasts from bone marrow of children diagnosed with B- and T-ALL. We observed a positive correlation between the enhanced sialate-O-acetyltransferase activity and the enhanced expression of Neu5,9Ac(2)-GPs in these lymphoblasts. Sialate-O-acetyltransferase activity in cell lysates or microsomal fractions of lymphoblasts of patients was always higher than that in healthy donors reaching up to 22-fold in microsomes. Additionally, the V (max) of this enzymatic reaction with AcCoA was over threefold higher in microsomal fractions of lymphoblasts. The enzyme bound to the microsomal fractions showed high activity with CMP-N-acetylneuraminic acid, ganglioside GD3 and endogenous sialic acid as substrates. N-acetyl-7-O-acetylneuraminic acid was the main reaction product, as detected by radio-thin-layer chromatography and fluorimetrically coupled radio-high-performance liquid chromatography. CMP and coenzyme A inhibited the microsomal enzyme. Sialate-O-acetyltransferase activity increased at the diagnosis of leukaemia, decreased with clinical remission and sharply increased again in relapsed patients as determined by radiometric-assay. A newly-developed non-radioactive ELISA can quickly detect sialate-O-acetyltransferase, and thus, may become a suitable tool for ALL-monitoring in larger scale. This is the first report on sialate-O-acetyltransferase in ALL being one of the few descriptions of an enzyme of this type in human.
Collapse
Affiliation(s)
- Chandan Mandal
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | | | | | | | | | | | | |
Collapse
|
9
|
Lewis AL, Cao H, Patel SK, Diaz S, Ryan W, Carlin AF, Thon V, Lewis WG, Varki A, Chen X, Nizet V. NeuA sialic acid O-acetylesterase activity modulates O-acetylation of capsular polysaccharide in group B Streptococcus. J Biol Chem 2007; 282:27562-71. [PMID: 17646166 PMCID: PMC2588433 DOI: 10.1074/jbc.m700340200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/15/2023] Open
Abstract
Group B Streptococcus (GBS) is a common cause of neonatal sepsis and meningitis. A major GBS virulence determinant is its sialic acid (Sia)-capped capsular polysaccharide. Recently, we discovered the presence and genetic basis of capsular Sia O-acetylation in GBS. We now characterize a GBS Sia O-acetylesterase that modulates the degree of GBS surface O-acetylation. The GBS Sia O-acetylesterase operates cooperatively with the GBS CMP-Sia synthetase, both part of a single polypeptide encoded by the neuA gene. NeuA de-O-acetylation of free 9-O-acetyl-N-acetylneuraminic acid (Neu5,9Ac(2)) was enhanced by CTP and Mg(2+), the substrate and co-factor, respectively, of the N-terminal GBS CMP-Sia synthetase domain. In contrast, the homologous bifunctional NeuA esterase from Escherichia coli K1 did not display cofactor dependence. Further analyses showed that in vitro, GBS NeuA can operate via two alternate enzymatic pathways: de-O-acetylation of Neu5,9Ac(2) followed by CMP activation of Neu5Ac or activation of Neu5,9Ac(2) followed by de-O-acetylation of CMP-Neu5,9Ac(2). Consistent with in vitro esterase assays, genetic deletion of GBS neuA led to accumulation of intracellular O-acetylated Sias, and overexpression of GBS NeuA reduced O-acetylation of Sias on the bacterial surface. Site-directed mutagenesis of conserved asparagine residue 301 abolished esterase activity but preserved CMP-Sia synthetase activity, as evidenced by hyper-O-acetylation of capsular polysaccharide Sias on GBS expressing only the N301A NeuA allele. These studies demonstrate a novel mechanism regulating the extent of capsular Sia O-acetylation in intact bacteria and provide a genetic strategy for manipulating GBS O-acetylation in order to explore the role of this modification in GBS pathogenesis and immunogenicity.
Collapse
Affiliation(s)
- Amanda L. Lewis
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Hongzhi Cao
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Silpa K. Patel
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Sandra Diaz
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California, USA
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
- Department of Cellular & Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Wesley Ryan
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Aaron F. Carlin
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
| | - Vireak Thon
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Warren G. Lewis
- The Scripps Research Institute, Biochemistry Department, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
- Genomics Institute of the Novartis Research Foundation, University of California, Davis, CA 95616, USA
| | - Ajit Varki
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California, USA
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
- Department of Cellular & Molecular Medicine, University of California, San Diego, La Jolla, California, USA
- Address Correspondence to: Ajit Varki, UCSD School of Medicine, La Jolla, CA 92093-0687 Phone: (858) 534-2214; Fax: (858) 534-5611;
| | - Xi Chen
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Victor Nizet
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, California, USA
- School of Medicine, Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
10
|
Csala M, Marcolongo P, Lizák B, Senesi S, Margittai E, Fulceri R, Magyar JE, Benedetti A, Bánhegyi G. Transport and transporters in the endoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1325-41. [PMID: 17466261 DOI: 10.1016/j.bbamem.2007.03.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/28/2006] [Revised: 03/08/2007] [Accepted: 03/15/2007] [Indexed: 12/12/2022]
Abstract
Enzyme activities localized in the luminal compartment of the endoplasmic reticulum are integrated into the cellular metabolism by transmembrane fluxes of their substrates, products and/or cofactors. Most compounds involved are bulky, polar or even charged; hence, they cannot be expected to diffuse through lipid bilayers. Accordingly, transport processes investigated so far have been found protein-mediated. The selective and often rate-limiting transport processes greatly influence the activity, kinetic features and substrate specificity of the corresponding luminal enzymes. Therefore, the phenomenological characterization of endoplasmic reticulum transport contributes largely to the understanding of the metabolic functions of this organelle. Attempts to identify the transporter proteins have only been successful in a few cases, but recent development in molecular biology promises a better progress in this field.
Collapse
Affiliation(s)
- Miklós Csala
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
The expression of O-acetylated sialic acids in human colonic mucins is developmentally regulated, and a reduction of O-acetylation has been found to be associated with the early stages of colorectal cancer. Despite this, however, little is known about the enzymatic process of sialic acid O-acetylation in human colonic mucosa. Recently, we have reported on a human colon sialate-7(9)-O-acetyltransferase capable of incorporating acetyl groups into sialic acids at the nucleotide-sugar level [Shen et al., Biol. Chem. 383 (2002), 307-317]. In this report, we show that the CMP-N-acetyl-neuraminic acid (CMP-Neu5Ac) and acetyl-CoA (AcCoA) transporters are critical components for the O-acetylation of CMP-Neu5Ac in Golgi lumen, with specific inhibition of either transporter leading to a reduction in the formation of CMP-5-N-acetyl-9-O-acetyl-neuraminic acid (CMP-Neu5,9Ac2). Moreover, the finding that 5-N-acetyl-9-O-acetyl-neuraminic acid (Neu5,9Ac2 could be transferred from neo-synthesised CMP-Neu5,9Ac2 to endogenous glycoproteins in the same Golgi vesicles, together with the observation that asialofetuin and asialo-human colon mucin are much better acceptors for Neu5,9Ac2 than asialo-bovine submandibular gland mucin, suggests that a sialyltransferase exists that preferentially utilises CMP-Neu5,9Ac2 as the donor substrate, transferring Neu5,9Ac2 to terminal Galbeta1,3(4)R- residues.
Collapse
Affiliation(s)
- Yanqin Shen
- Biochemisches Institut, Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
| | | | | | | |
Collapse
|
12
|
Shen Y, Tiralongo J, Iwersen M, Sipos B, Kalthoff H, Schauer R. Characterization of the sialate-7(9)-O-acetyltransferase from the microsomes of human colonic mucosa. Biol Chem 2002; 383:307-17. [PMID: 11934269 DOI: 10.1515/bc.2002.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022]
Abstract
Sialic acids present on human colonic mucins are highly O-acetylated, however, little is known about the underlying enzymatic activity required for O-acetylation in this tissue. Here we report on the substrate specificity, subcellular localization and characterization of the sialate-7(9)-O-acetyltransferase in normal human colonic mucosa. Using CMP-Neu5Ac, the most efficient acceptor substrate of all those tested, the enzymatic activity was found to be optimal at 37 degrees C, with a pH optimum of 7.0. Activity was also found to be dependent on protein, CMP-Neu5Ac (Km: 59.2 microM) and AcCoA (Km: 6.1 microM) concentrations, as well as membrane integrity. The enzyme's activity could be inhibited by CoA with a Ki of 11.9 microM. In addition, enzymatic activity was found to be localized in the Golgi-enriched membrane fraction. The nature of the O-acetylated products formed were verified with the aid of chromatographic and enzymatic techniques. The main product was 9-O-acetylated Neu5Ac, with a significant amount of oligo-O-acetylated Neu5Ac also being detected. The utilization of CMP-Neu5Ac as the acceptor substrate was confirmed by the isolation and characterization of the putative product, CMP-Neu5,9Ac2, using ion-exchange chromatography. The ability of CMP-Neu5,9Ac2 to act as a sialic acid donor for sialyltransferases represents the conclusive demonstration for the formation of CMP-Neu5,9Ac2.
Collapse
Affiliation(s)
- Yanqin Shen
- Biochemisches Institut, Christian-Albrechts-Universität zu Kiel, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Schauer R, Schmid H, Pommerencke J, Iwersen M, Kohla G. Metabolism and role of O-acetylated sialic acids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 491:325-42. [PMID: 14533806 DOI: 10.1007/978-1-4615-1267-7_21] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/03/2022]
Affiliation(s)
- R Schauer
- Biochemisches Institut, Christian-Albrechts-Universität Olshausenstrasse 40, D-24098 Kiel, Germany.
| | | | | | | | | |
Collapse
|
14
|
Kanamori A, Nakayama J, Fukuda MN, Stallcup WB, Sasaki K, Fukuda M, Hirabayashi Y. Expression cloning and characterization of a cDNA encoding a novel membrane protein required for the formation of O-acetylated ganglioside: a putative acetyl-CoA transporter. Proc Natl Acad Sci U S A 1997; 94:2897-902. [PMID: 9096318 PMCID: PMC20294 DOI: 10.1073/pnas.94.7.2897] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/21/1996] [Accepted: 01/29/1997] [Indexed: 02/04/2023] Open
Abstract
By expression cloning using COS-1 cells stably transfected with GD3-synthase (COS-1/GD3+) as a recipient cell line, we have isolated a cDNA, termed AT-1, encoding a novel protein required for the formation of O-acetylated (Ac) gangliosides. The cDNA encodes a protein with multitransmembrane spanning domains with a leucine zipper motif. It consists of 549 amino acids and has a molecular mass of 60.9 kDa. Although both O-Ac-GD3 and O-Ac-GT3 were barely detectable in recipient cells or cells transfected with the vector alone, their amount increased significantly in transfectants containing AT-1. When semi-intact cells prepared by treatment with streptolysin O were incubated with [Ac-14C]-Ac-CoA, increased incorporation of radioactivity was found in those cells transfected with AT-1 when compared with the mock transfectants. Northern blot analysis showed two major transcripts of 3.3 and 4.3 kb in all tissues examined. Immunohistochemical study with an antibody specific to the AT-1 protein suggested that it is most probably expressed in the endoplasmic reticulum membrane. Based on these results, the protein encoded by AT-1 is suggested to be an Ac-CoA transporter that is involved in the process of O-acetylation.
Collapse
Affiliation(s)
- A Kanamori
- Laboratory for Cellular Glycobiology, The Institute of Physical and Chemical Research, Wako, Saitama, Japan
| | | | | | | | | | | | | |
Collapse
|
15
|
Kleineidam RG, Hofmann O, Reuter G, Schauer R. Indications for the enzymatic synthesis of 9-O-lactoyl-N-acetylneuraminic acid in equine liver. Glycoconj J 1993; 10:116-9. [PMID: 8358222 DOI: 10.1007/bf00731195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/30/2023]
Abstract
Fractionation of horse liver homogenate by centrifugation into heavy membranes at 10,000 x g, microsomal fraction at 105,000 x g, and the supernatant revealed sialate 9-O-lactoyltransferase activity only in the latter fraction. For the enzyme assay, the various fractions were incubated with 14C labelled CMP-N-acetylneuraminic acid, N-acetylneuramimic acid and glycoconjugate-bound N-acetylneuramimic acid. Lactoylation was identified in three different TLC systems after acid hydrolysis and purification of the sialic acids in the incubation mixtures. Enzyme activity was found only in the supernatant fraction. Glycoconjugate-bound N-acetylneuramimic acid was the best substrate tested, although some lactoylation was also found when using CMP-N-acetylneuraminic acid.
Collapse
Affiliation(s)
- R G Kleineidam
- Biochemisches Institut, Christian-Albrechts-Universität, Kiel, Germany
| | | | | | | |
Collapse
|
16
|
|
17
|
|
18
|
|
19
|
Green ED, Baenziger JU. Characterization of oligosaccharides by lectin affinity high-performance liquid chromatography. Trends Biochem Sci 1989; 14:168-72. [PMID: 2773039 DOI: 10.1016/0968-0004(89)90267-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/02/2023]
Abstract
Alterations of the oligosaccharide structures of glycoproteins are associated with differentiation, malignant transformation, and expression of the same protein in different cell types. The potential biological importance of oligosaccharides has resulted in a growing need for detailed structural information. When glycoproteins are available in limited quantities and/or bear highly heterogeneous oligosaccharides, characterization of their oligosaccharides is difficult. We have developed an efficient approach for obtaining detailed information about oligosaccharides by determining structural 'fingerprints' using lectin affinity high-performance liquid chromatography.
Collapse
|
20
|
|
21
|
Higa HH, Varki A. Acetyl-coenzyme A:polysialic acid O-acetyltransferase from K1-positive Escherichia coli. The enzyme responsible for the O-acetyl plus phenotype and for O-acetyl form variation. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68389-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/27/2022] Open
|
22
|
Schauer R, Casals-stenzel J, Corfield AP, Veh RW. Subcellular site of the biosynthesis ofO-acetylated sialic acids in bovine submandibular gland. Glycoconj J 1988. [DOI: 10.1007/bf01049086] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/17/2022]
|
23
|
Higa HH, Diaz S, Varki A. Biochemical and genetic evidence for distinct membrane-bound and cytosolic sialic acid O-acetyl-esterases: serine-active-site enzymes. Biochem Biophys Res Commun 1987; 144:1099-108. [PMID: 3107561 DOI: 10.1016/0006-291x(87)91425-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/04/2023]
Abstract
A cytosolic sialic acid-specific O-acetyl-esterase was previously described that can remove O-acetyl esters from the 9-position of sialic acids. We show that rat liver Golgi vesicles contain a distinct sialic acid-esterase located within the lumen of the same vesicles that add O-acetyl esters to sialic acids. Studies of a retinoblastoma cell line genetically deficient in the cytosolic enzyme also confirm the existence of distinct membrane-associated sialic acid esterase activity. We developed a sensitive, specific and facile assay, which measures release of [3H]acetyl groups from [3H-acetyl]9-O-acetyl-N-acetylneuraminic acid. Using this assay, we show that rat liver membranes may contain different sialic acid O-acetyl-esterases. The membrane-associated enzyme(s) bind to Concanavalin A Sepharose, whereas the cytosolic enzyme does not. Membrane-bound and cytosolic esterases are inactivated by di-isopropyl-fluorophosphate, showing they are serine-active-site enzymes.
Collapse
|
24
|
|
25
|
|
26
|
Diaz S, Varki A. Metabolic labeling of sialic acids in tissue culture cell lines: methods to identify substituted and modified radioactive neuraminic acids. Anal Biochem 1985; 150:32-46. [PMID: 4083483 DOI: 10.1016/0003-2697(85)90438-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/08/2023]
Abstract
The parent sialic acid N-acetylneuraminic acid can be modified or substituted in various ways, giving rise to a family of more than 25 compounds. The definitive identification of these compounds has previously required isolation of nanomole amounts for mass spectrometry or NMR. We have explored the possibility of using the known metabolic precursors of the sialic acids, particularly N-acetyl-[6-3H]mannosamine, to label and identify various forms of sialic acids in tissue culture cells. Firstly, we defined several variables that affect the labeling of sialic acids with N-acetyl-[6-3H]mannosamine. Secondly, we have devised a simple screening method to identify cell lines that synthesize substituted or modified sialic acids. We next demonstrate that it is possible to definitively identify the natures of the various labeled sialic acids without the use of mass spectrometry, even though they are present only in tracer amounts. The methods used include paper chromatography, analytical de-O-acetylation, periodate release of the 9-3H as [3H]formaldehyde (which is subsequently converted to a specific 3H-labeled chromophore), acylneuraminate pyruvate lyase treatment with identification of [3H]acylmannosamines, gas-liquid chromatography with radioactive detection, and two new high-pressure liquid chromatography methods utilizing the amine-adsorption:ion suppression and ion-pair principles. The use of an internal N-acetyl-[4-14C]neuraminic acid standard in each of these methods assures precision and accuracy. The combined use of these methods now allows the identification of radioactive tracer amounts of the various types of sialic acids in well-defined populations of tissue culture cells; it may also allow the identification of hitherto unknown forms of sialic acids.
Collapse
|