1
|
Hoekstra M, Ren B, Laurila PP, Hildebrand RB, Soronen J, Frodermann V, Li Z, Boon MR, Geerling JJ, Rensen PCN, Jauhiainen M, Van Eck M. Hematopoietic upstream stimulating factor 1 deficiency is associated with increased atherosclerosis susceptibility in LDL receptor knockout mice. Sci Rep 2021; 11:16419. [PMID: 34385562 PMCID: PMC8361089 DOI: 10.1038/s41598-021-95858-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
Total body upstream stimulatory factor 1 (USF1) deficiency in mice is associated with brown adipose tissue activation and a marked protection against the development of obesity and atherosclerotic lesions. Functional expression of USF1 has also been detected in monocytes and monocyte-derived macrophages. In the current study we therefore tested whether selective hematopoietic USF1 deficiency can also beneficially impact the development of atherosclerosis. For this purpose, LDL receptor knockout mice were transplanted with bone marrow from USF1 knockout mice or their wild-type littermate controls and subsequently fed a Western-type diet for 20 weeks to stimulate atherosclerotic lesion development. Strikingly, absence of USF1 function in bone marrow-derived cells was associated with exacerbated blood leukocyte (+ 100%; P < 0.01) and peritoneal leukocyte (+ 50%; P < 0.05) lipid loading and an increased atherosclerosis susceptibility (+ 31%; P < 0.05). These effects could be attributed to aggravated hyperlipidemia, i.e. higher plasma free cholesterol (+ 33%; P < 0.001) and cholesteryl esters (+ 39%; P < 0.001), and the development of hepatosteatosis. In conclusion, we have shown that hematopoietic USF1 deficiency is associated with an increased atherosclerosis susceptibility in LDL receptor knockout mice. These findings argue against a contribution of macrophage-specific USF1 deficiency to the previously described beneficial effect of total body USF1 deficiency on atherosclerosis susceptibility in mice.
Collapse
Affiliation(s)
- Menno Hoekstra
- Gorlaeus Laboratories, Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| | - Baoyan Ren
- Gorlaeus Laboratories, Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Pirkka-Pekka Laurila
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland.,Genomics and Biobank Unit, National Institute for Health and Welfare, Biomedicum 1, Helsinki, Finland.,Institute for Molecular Medicine Finland, FIMM, Helsinki, Finland
| | - Reeni B Hildebrand
- Gorlaeus Laboratories, Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Jarkko Soronen
- Genomics and Biobank Unit, National Institute for Health and Welfare, Biomedicum 1, Helsinki, Finland.,Pharmaceuticals Division, Bayer Oy BOF-PH-MRA-MA, Medical Affairs PO, Espoo, Finland
| | - Vanessa Frodermann
- Gorlaeus Laboratories, Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Zhuang Li
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Mariëtte R Boon
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Janine J Geerling
- Gorlaeus Laboratories, Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Patrick C N Rensen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland
| | - Miranda Van Eck
- Gorlaeus Laboratories, Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
2
|
Di L, Balesano A, Jordan S, Shi SM. The Role of Alcohol Dehydrogenase in Drug Metabolism: Beyond Ethanol Oxidation. AAPS JOURNAL 2021; 23:20. [DOI: 10.1208/s12248-020-00536-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/17/2020] [Indexed: 02/08/2023]
|
3
|
Alcohol Metabolizing Enzymes, Microsomal Ethanol Oxidizing System, Cytochrome P450 2E1, Catalase, and Aldehyde Dehydrogenase in Alcohol-Associated Liver Disease. Biomedicines 2020; 8:biomedicines8030050. [PMID: 32143280 PMCID: PMC7148483 DOI: 10.3390/biomedicines8030050] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/20/2020] [Accepted: 02/29/2020] [Indexed: 12/12/2022] Open
Abstract
Once ingested, most of the alcohol is metabolized in the liver by alcohol dehydrogenase to acetaldehyde. Two additional pathways of acetaldehyde generation are by microsomal ethanol oxidizing system (cytochrome P450 2E1) and catalase. Acetaldehyde can form adducts which can interfere with cellular function, leading to alcohol-induced liver injury. The variants of alcohol metabolizing genes encode enzymes with varied kinetic properties and result in the different rate of alcohol elimination and acetaldehyde generation. Allelic variants of these genes with higher enzymatic activity are believed to be able to modify susceptibility to alcohol-induced liver injury; however, the human studies on the association of these variants and alcohol-associated liver disease are inconclusive. In addition to acetaldehyde, the shift in the redox state during alcohol elimination may also link to other pathways resulting in activation of downstream signaling leading to liver injury.
Collapse
|
4
|
Crabb DW, Matsumoto M, Chang D, You M. Overview of the role of alcohol dehydrogenase and aldehyde dehydrogenase and their variants in the genesis of alcohol-related pathology. Proc Nutr Soc 2007; 63:49-63. [PMID: 15099407 DOI: 10.1079/pns2003327] [Citation(s) in RCA: 339] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Alcohol dehydrogenase (ADH) and mitochondrial aldehyde dehydrogenase (ALDH2) are responsible for metabolizing the bulk of ethanol consumed as part of the diet and their activities contribute to the rate of ethanol elimination from the blood. They are expressed at highest levels in liver, but at lower levels in many tissues. This pathway probably evolved as a detoxification mechanism for environmental alcohols. However, with the consumption of large amounts of ethanol, the oxidation of ethanol can become a major energy source and, particularly in the liver, interferes with the metabolism of other nutrients. Polymorphic variants of the genes for these enzymes encode enzymes with altered kinetic properties. The pathophysiological effects of these variants may be mediated by accumulation of acetaldehyde; high-activity ADH variants are predicted to increase the rate of acetaldehyde generation, while the low-activity ALDH2 variant is associated with an inability to metabolize this compound. The effects of acetaldehyde may be expressed either in the cells generating it, or by delivery of acetaldehyde to various tissues by the bloodstream or even saliva. Inheritance of the high-activity ADH β2, encoded by theADH2*2gene, and the inactiveALDH2*2gene product have been conclusively associated with reduced risk of alcoholism. This association is influenced by gene–environment interactions, such as religion and national origin. The variants have also been studied for association with alcoholic liver disease, cancer, fetal alcohol syndrome, CVD, gout, asthma and clearance of xenobiotics. The strongest correlations found to date have been those between theALDH2*2allele and cancers of the oro-pharynx and oesophagus. It will be important to replicate other interesting associations between these variants and other cancers and heart disease, and to determine the biochemical mechanisms underlying the associations.
Collapse
Affiliation(s)
- David W Crabb
- Indiana University School of Medicine and Roudebush VA Medical Center, Emerson Hall Room 317, 545 Barnhill Drive, Indianapolis, IN 46202, USA.
| | | | | | | |
Collapse
|
5
|
Prinzen C, Müller U, Endres K, Fahrenholz F, Postina R. Genomic structure and functional characterization of the human ADAM10 promoter. FASEB J 2005; 19:1522-4. [PMID: 15972296 DOI: 10.1096/fj.04-3619fje] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The ADAM10 gene encodes a membrane-bound disintegrin-metalloproteinase, which, after overexpression in an Alzheimer disease (AD) mouse model, prevents amyloid pathology and improves long-term potentiation and memory. Because enhancing ADAM10 expression appears to be a reasonable approach for treatment of AD, we functionally analyzed the ADAM10 gene. Both human and mouse ADAM10 genes comprise approximately 160 kbp, are composed of 16 exons, and are evolutionarily highly conserved within 500 bp upstream of either translation initiation site. By using luciferase reporter assays, we demonstrate that nucleotides -2179 to -1 upstream of the human ADAM10 translation initiation site represent a functional TATA-less promoter. Within this region we identified and examined several single nucleotide polymorphisms, but did not detect significant differences in their appearance between AD and nondemented control subjects. By deletion analysis, site-directed mutagenesis, transcription factor overexpression and electrophoretic mobility shift assays, we identified nucleotides -508 to -300 as the core promoter and found Sp1, USF, and retinoic acid-responsive elements to modulate its activity. Finally, we identified vitamin A acid (RA) as an inducer of human ADAM10 promoter activity. This finding suggests that pharmacologic targeting of RA receptors may increase the expression of the alpha-secretase ADAM10 with beneficial effects on AD pathology.
Collapse
Affiliation(s)
- Claudia Prinzen
- Institute of Biochemistry, Johannes Gutenberg-University Mainz, Mainz, Germany
| | | | | | | | | |
Collapse
|
6
|
Sellak H, Choi C, Browner N, Lincoln TM. Upstream stimulatory factors (USF-1/USF-2) regulate human cGMP-dependent protein kinase I gene expression in vascular smooth muscle cells. J Biol Chem 2005; 280:18425-33. [PMID: 15741164 DOI: 10.1074/jbc.m500775200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclic GMP-dependent protein kinase I plays a pivotal role in regulating smooth muscle cell relaxation, growth, and differentiation. Expression of the enzyme varies greatly in smooth muscle and in other tissues and cell types, yet little is known regarding the mechanisms regulating cGMP-dependent protein kinase gene expression. The present work was undertaken to characterize the mechanisms controlling kinase gene expression in vascular smooth muscle cells. A 2-kb human cGMP-dependent protein kinase I 5'-noncoding promoter sequence was characterized by serial deletion, and functional studies demonstrated that a 591-bp 5'-promoter construct possessed the highest activity compared with all other constructs generated from the larger promoter. Analysis of the sequence between -472 and -591 bp from the transcriptional start site revealed the existence of two E-like boxes known to bind upstream stimulatory factors. Electrophoretic mobility shift assays and functional studies using luciferase reporter gene assays identified upstream stimulatory factors as the transcription factors bound to the E-boxes in the 591-bp promoter. Site-directed mutagenesis of the E-boxes abolished the binding of upstream stimulatory factor proteins and decreased the activity of the cGMP-dependent protein kinase I 591-bp promoter, thus confirming the involvement of these transcription factors in mediating gene expression. Cotransfection experiments demonstrated that overexpression of upstream stimulatory factors 1 and 2 increased cGMP-dependent protein kinase I promoter activity. Collectively, these data suggest that the human proximal cGMP-dependent protein kinase I promoter is regulated by tandem E-boxes that bind upstream stimulatory factors.
Collapse
Affiliation(s)
- Hassan Sellak
- Department of Physiology, University of South Alabama, College of Medicine, Mobile, Alabama 36688, USA
| | | | | | | |
Collapse
|
7
|
Appelbaum L, Anzulovich A, Baler R, Gothilf Y. Homeobox-clock protein interaction in zebrafish. A shared mechanism for pineal-specific and circadian gene expression. J Biol Chem 2005; 280:11544-51. [PMID: 15657039 DOI: 10.1074/jbc.m412935200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In non-mammalian vertebrates, the pineal gland is photoreceptive and contains an intrinsic circadian oscillator that drives rhythmic production and secretion of melatonin. These features require an accurate spatiotemporal expression of an array of specific genes in the pineal gland. Among these is the arylalkylamine N-acetyltransferase, a key enzyme in the melatonin production pathway. In zebrafish, pineal specificity of zfaanat2 is determined by a region designated the pineal-restrictive downstream module (PRDM), which contains three photoreceptor conserved elements (PCEs) and an E-box, elements that are generally associated with photoreceptor-specific and rhythmic expression, respectively. Here, by using in vivo and in vitro approaches, it was found that the PCEs and E-box of the PRDM mediate a synergistic effect of the photoreceptor-specific homeobox OTX5 and rhythmically expressed clock protein heterodimer, BMAL/CLOCK, on zfaanat2 expression. Furthermore, the distance between the PCEs and the E-box was found to be critical for PRDM function, suggesting a possible physical feature of this synergistic interaction. OTX5-BMAL/CLOCK may act through this mechanism to simultaneously control pineal-specific and rhythmic expression of zfaanat2 and possibly also other pineal and retinal genes.
Collapse
Affiliation(s)
- Lior Appelbaum
- Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | | | | | | |
Collapse
|
8
|
Selva DM, Hogeveen KN, Hammond GL. Repression of the human sex hormone-binding globulin gene in Sertoli cells by upstream stimulatory transcription factors. J Biol Chem 2004; 280:4462-8. [PMID: 15574421 DOI: 10.1074/jbc.m409616200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the sex hormone-binding globulin gene (SHBG) in the liver produces SHBG, which transports sex steroids in the blood. In rodents, the SHBG gene is also expressed in Sertoli cells giving rise to the testicular androgen-binding protein, which is secreted into the seminiferous tubule where it presumably controls testosterone action. Evidence that the SHBG gene functions in this way in the human testis is lacking, and mice containing a human SHBG transgene (shbg4) under the control of its own promoter sequence are characterized by SHBG gene expression in the liver but not in the testis. A potential cis-element, defined as footprint 4 (FP4) within the human SHBG promoter, is absent in SHBG promoters of mammals that produce the testicular androgen-binding protein, and we have produced mice harboring a shbg4 transgene in which FP4 was deleted to evaluate its functional significance. Remarkably, these mice express the modified human SHBG transgene in the testis as well as the liver. Human SHBG transcripts were found within their Sertoli cells, primary cultures of which secrete human SHBG, and this was increased by treatment with follicle-stimulating hormone, retinoic acid, and estradiol but not testosterone. We have also found that the upstream stimulatory factors (USF-1 and USF-2) bind FP4 in vitro by electromobility shift assay of Sertoli cell nuclear extracts and in vivo by chromatin immunoprecipitation assay and conclude that USF transcription factors repress human SHBG transcription in Sertoli cells through an interaction with FP4 within its proximal promoter.
Collapse
Affiliation(s)
- David M Selva
- Department of Obstetrics & Gynaecology, University of British Columbia and the B. C. Research Institute for Children's and Women's Health, Vancouver, British Columbia V5Z 4H4, Canada
| | | | | |
Collapse
|
9
|
Wijayanti N, Huber S, Samoylenko A, Kietzmann T, Immenschuh S. Role of NF-kappaB and p38 MAP kinase signaling pathways in the lipopolysaccharide-dependent activation of heme oxygenase-1 gene expression. Antioxid Redox Signal 2004; 6:802-10. [PMID: 15345139 DOI: 10.1089/ars.2004.6.802] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Heme oxygenase (HO)-1 is the inducible isoform of the rate-limiting enzyme of heme degradation, which is up-regulated by a host of stress stimuli. The bacterial cell membrane component lipopolysaccharide (LPS) is a prototypical activator of monocytic cells. Here, it is shown that LPS induced the endogenous HO-1 gene expression in RAW264.7 monocytic cells. To investigate the molecular mechanisms of HO-1 gene induction by LPS, we performed transfection experiments with reporter gene constructs containing sequences of the proximal rat HO-1 gene promoter. Deletion and mutation analysis indicated that a cyclic AMP response element/activator protein-1 site (-664/-657), but not an E-box motif (-47/-42), played a major role for LPS-dependent HO-1 gene induction. Up-regulation of HO-1 promoter activity by LPS was decreased by pharmacological nuclear factor-kappaB (NF-kappaB) inhibitors and by cotransfected expression vectors with dominant negative isoforms of NF-kappaB-inducing kinase, inhibitor of NF-kappaB (IkappaB) kinase beta, and IkappaBalpha. Moreover, the p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580 and overexpressed dominant negative p38beta decreased, whereas dominant negative p38delta increased, LPS-dependent induction of HO-1 gene expression. The results suggest that the NF-kappaB and p38 MAPK signaling pathways mediate the LPS-dependent induction of HO-1 gene expression via DNA sequences of the proximal promoter region.
Collapse
Affiliation(s)
- Nastiti Wijayanti
- Institut für Klinische Chemie und Pathobiochemie, Justus-Liebig-Universität Giessen, D-35392 Giessen, Germany
| | | | | | | | | |
Collapse
|
10
|
He L, Simmen FA, Ronis MJJ, Badger TM. Post-transcriptional Regulation of Sterol Regulatory Element-binding Protein-1 by Ethanol Induces Class I Alcohol Dehydrogenase in Rat Liver. J Biol Chem 2004; 279:28113-21. [PMID: 15123720 DOI: 10.1074/jbc.m400906200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the sterol regulatory element-binding protein (SREBP) family of transcription factors control the synthesis and uptake of cholesterol, fatty acids, triglycerides, and phospholipids. Continuous intragastric infusion of ethanol-containing diets as part of total enteral nutrition generates well defined 6-day cycles (pulses) of urine ethanol concentrations (UECs) in rats. Pulsatile UECs are the result of cyclical expression and activity of the principal alcohol-metabolizing enzyme, hepatic Class I alcohol dehydrogenase (ADH), and this mechanism involves regulated CCAAT/enhancer-binding protein-beta expression and binding to the ADH promoter. In this study, we further explore the molecular mechanism for ethanol-induced ADH expression during the UEC pulse in adult male rats fed ethanol by total enteral nutrition for 21-30 days. In hypophysectomized rats, in which the ADH protein increased by approximately 6-fold, the nuclear form of SREBP-1 decreased by approximately 7-fold. Because the ADH promoter contains two canonical sterol response element (SRE) sites (-63 to -53 and -52 to -40 relative to the transcription start site), electrophoretic mobility shift assays were conducted using an ADH-specific SRE site. Hepatic nuclear protein binding decreased by 2.4-fold on the ascending limbs and by 3.6-fold on the descending limbs of UEC pulses (p < 0.05). The specificity of nuclear protein binding to the ADH-SRE site was confirmed using antibody and UV cross-link assays. The in vivo binding status of SREBP-1 to ADH-SRE sites, as measured by the chromatin immunoprecipitation assay, had a pattern very similar to the electrophoretic mobility shift assay results. Functional analysis of the ADH-SREs demonstrated these sites to be essential for ADH transcription. In vitro transcription assays demonstrated that depletion of the SREBP-1 protein from nuclear extracts increased transcription activity by approximately 5-fold and that the liver X receptor agonist T0901317 (a known activator of SREBP-1c transcription) reduced in vitro expression of ADH mRNA by 2-fold. We conclude that SREBP-1 is a negative regulator of the ADH gene and may work in concert with the CCAAT/enhancer-binding proteins to mediate ethanol induction of ADH in vivo.
Collapse
MESH Headings
- Alcohol Dehydrogenase/biosynthesis
- Animals
- Anticholesteremic Agents/pharmacology
- Binding Sites
- Blotting, Northern
- Blotting, Western
- CCAAT-Enhancer-Binding Proteins/biosynthesis
- CCAAT-Enhancer-Binding Proteins/chemistry
- CCAAT-Enhancer-Binding Proteins/metabolism
- Cell Line, Tumor
- Cell Nucleus/metabolism
- Central Nervous System Depressants/pharmacology
- Cholesterol 7-alpha-Hydroxylase/biosynthesis
- Chromatin/metabolism
- DNA, Complementary/metabolism
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/metabolism
- Dose-Response Relationship, Drug
- Ethanol/pharmacology
- Fatty Acid Synthases/biosynthesis
- Hydrocarbons, Fluorinated
- Liver/enzymology
- Liver/metabolism
- Liver X Receptors
- Male
- Models, Genetic
- Orphan Nuclear Receptors
- Precipitin Tests
- Promoter Regions, Genetic
- RNA Processing, Post-Transcriptional
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Cytoplasmic and Nuclear/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Ribonucleases/metabolism
- Sterol Regulatory Element Binding Protein 1
- Sterol Regulatory Element Binding Protein 2
- Sulfonamides
- Time Factors
- Transcription Factors/biosynthesis
- Transcription, Genetic
- Ultraviolet Rays
Collapse
Affiliation(s)
- Ling He
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, 1120 Marshall Street, Little Rock, AR 72202, USA
| | | | | | | |
Collapse
|
11
|
Tang M, Potter JJ, Mezey E. Activation of the human alpha1(I) collagen promoter by leptin is not mediated by transforming growth factor beta responsive elements. Biochem Biophys Res Commun 2004; 312:629-33. [PMID: 14680811 DOI: 10.1016/j.bbrc.2003.10.167] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Indexed: 11/24/2022]
Abstract
Leptin increases human alpha1 (I) collagen mRNA and type I collagen production and enhances hepatic fibrosis in animal models of hepatic fibrosis. These effects of leptin on fibrogenesis may be mediated by TGFbeta1, since leptin increases the TGFbeta type II receptor and augments the effect of TGFbeta1 on collagen production by stellate cells. In this study, leptin increased the activity of the human alpha1 (I) collagen promoter in transfected stellate cells. Leptin did not further enhance the activation of the promoter induced by TGFbeta1. Leptin had no effects on the transfected TGFbeta-responsive p3TP-LUX plasmid, which contains 3 CAGA elements that are essential and sufficient for the induction by TGFbeta. Leptin did not increase significantly the binding of proteins to two TGFbeta1 responsive elements in the human alpha1 (I) collagen promoter. In conclusion, this study shows that leptin activates the alpha1 (I) collagen gene and that this effect is not mediated by TGFbeta responsive elements.
Collapse
Affiliation(s)
- Mei Tang
- Department of Medicine, The Johns Hopkins University School of Medicine, 710 Rutland Avenue, 921 Ross Research Building, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
12
|
Novitskiy G, Potter JJ, Rennie-Tankersley L, Mezey E. Identification of a novel NF-kappaB-binding site with regulation of the murine alpha2(I) collagen promoter. J Biol Chem 2004; 279:15639-44. [PMID: 14722113 DOI: 10.1074/jbc.m311499200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatic fibrosis is due to the increased synthesis and deposition of type I collagen. Acetaldehyde activates type I collagen promoters. Nuclear factor kappaB (NF-kappaB) was previously shown to inhibit expression of murine alpha(1)(I) and human alpha(2)(I) collagen promoters. The present study identifies binding of NF-kappaB, present in nuclear extracts of stellate cells, to a region between -553 and -537 of the murine alpha(2)(I) collagen promoter. The NF-kappaB (p65) expression vector inhibited promoter activity. Mutation of the promoter at the NF-kappaB-binding site increased basal promoter activity and abrogated the activating and inhibitory effects of transforming growth factor beta and tumor necrosis factor alpha, respectively, on promoter activity. Acetaldehyde increased IkappaB-alpha kinase activity and phosphorylated IkappaB-alpha, NF-kappaB nuclear protein, and its binding to the promoter. However, the activating effect of acetaldehyde was not affected by the mutation of the promoter. In conclusion, although acetaldehyde increases the binding of NF-kappaB to the murine alpha(2)(I) collagen promoter, this binding does not mediate the activating effect of acetaldehyde on promoter activity. The effects of acetaldehyde in increasing the translocation of NF-kappaB to the nucleus with increased DNA binding activity may be important in mediating the effects of acetaldehyde on other genes.
Collapse
Affiliation(s)
- Gennadiy Novitskiy
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2195, USA
| | | | | | | |
Collapse
|
13
|
Mezey E, Potter JJ, Rennie-Tankersley L, Caballeria J, Pares A. A randomized placebo controlled trial of vitamin E for alcoholic hepatitis. J Hepatol 2004; 40:40-6. [PMID: 14672612 DOI: 10.1016/s0168-8278(03)00476-8] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIMS The effect of vitamin E administration on clinical and laboratory parameters of liver function and on markers of fibrogenesis was assessed in patients with mild to moderate alcoholic hepatitis in a double blind placebo controlled randomized trial. METHODS Twenty-five patients received 1000 I.U. of vitamin E per day, while 26 patients received placebo for 3 months. The patients were followed for 1 year after entry into the trial. RESULTS Vitamin E did not result in significant greater decreases in serum aminotransferases and serum bilirubin or in greater increases in serum albumin as compared with placebo. Prothrombin time did not change, while serum creatinine remained in the normal range. Monocyte nuclear nuclear factor-kappa B binding activity decreased in patients who remained abstinent, regardless of whether they received vitamin E. As regards markers of hepatic fibrogenesis, vitamin E treatment decreased serum hyaluronic acid (P<0.05) while serum aminoterminal peptide of type III procollagen did not change in either group. Four patients in the treatment group and five in the placebo group died during the 1-year study. CONCLUSIONS Vitamin E treatment improves serum hyaluronic acid but has no beneficial effects on tests of liver function in patients with mild to moderate alcoholic hepatitis.
Collapse
Affiliation(s)
- Esteban Mezey
- Department of Medicine, 921 Ross Building, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| | | | | | | | | |
Collapse
|
14
|
Karban AS, Okazaki T, Panhuysen CIM, Gallegos T, Potter JJ, Bailey-Wilson JE, Silverberg MS, Duerr RH, Cho JH, Gregersen PK, Wu Y, Achkar JP, Dassopoulos T, Mezey E, Bayless TM, Nouvet FJ, Brant SR. Functional annotation of a novel NFKB1 promoter polymorphism that increases risk for ulcerative colitis. Hum Mol Genet 2003; 13:35-45. [PMID: 14613970 DOI: 10.1093/hmg/ddh008] [Citation(s) in RCA: 271] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Nuclear Factor-kappaB (NF-kappaB) is a major transcription regulator of immune response, apoptosis and cell-growth control genes, and is upregulated in inflammatory bowel disease (IBD), both ulcerative colitis (UC) and Crohn's disease. The NFKB1 gene encodes the NF-kappaB p105/p50 isoforms. Genome-wide screens in IBD families show evidence for linkage on chromosome 4q where NFKB1 maps. We sequenced the NFKB1 promoter, exon 1 and all coding exons in 10 IBD probands and two controls, and identified six nucleotide variants, including a common insertion/deletion promoter polymorphism (-94ins/delATTG). Using pedigree-based transmission disequilibrium tests, we observed modest evidence for linkage disequilibrium (LD), independent of linkage, between the -94delATTG allele and UC in 131 out of 235 IBD pedigrees with UC offspring (P=0.047-0.052). This allele was also more frequent in the 156 non-Jewish UC probands from the 235 IBD pedigrees than in 149 non-Jewish controls (P=0.015). The -94delATTG association with UC was replicated in a second set of 258 unrelated, non-Jewish UC cases and 653 new, non-Jewish controls (P=0.021). Nuclear proteins from normal human colon tissue and colonic cell lines, but not ileal tissue, showed significant binding to -94insATTG but not to -94delATTG containing oligonucleotides. NFKB1 promoter/exon 1 luciferase reporter plasmid constructs containing the -94delATTG allele and transfected into either HeLa or HT-29 cell lines showed less promoter activity than comparable constructs containing the -94insATTG allele. Therefore, we have identified the first potentially functional polymorphism of NFKB1 and demonstrated its genetic association with a common human disease, ulcerative colitis.
Collapse
Affiliation(s)
- Amir S Karban
- Johns Hopkins University School of Medicine, 1503 E. Jefferson Street, Room B136, Baltimore, MD 21231, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Saxena NK, Saliba G, Floyd JJ, Anania FA. Leptin induces increased alpha2(I) collagen gene expression in cultured rat hepatic stellate cells. J Cell Biochem 2003; 89:311-20. [PMID: 12704794 PMCID: PMC2925439 DOI: 10.1002/jcb.10494] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Leptin is a 16-kDa hormone with an array of biologic actions. We, and others, have demonstrated that leptin is critical to the development of liver fibrogenesis both in vitro and in the lean littermates of ob/ob mice exposed to carbon tetrachloride (CCl(4)). Controversy exists as to whether leptin can act as a direct cytokine in the development of increased collagen expression, and whether ob/ob mice are resistant to potential injury from CCl(4). Here, we provide evidence that strongly suggests that leptin acts to increase nascent production of mRNA for the alpha2(I) collagen gene based upon ribonuclease protection analysis (RPA). Actinomycin D, but not cyclohexamide, or the pan-neutralizing antibody to transforming growth factor beta one (TGFbeta1), significantly diminished the effect of leptin on total alpha2(I) collagen mRNA levels. Further evidence that leptin acts directly on HSCs to alter gene expression in liver wounding is demonstrated by enhanced binding of phosphorylated signal transduction and activator of transcription factor 3 (pStat3) to a cis-inducible element (SIE) oligonucleotide by electrophoretic mobility shift assay (EMSA). This consensus sequence is responsible for production of a critical collagen transcription factor, AP-1. Finally, we have demonstrated from the ob/ob mouse model that these animals are at least as sensitive to CCl(4) as their respective lean animals as assessed by serum alanine aminotransferase (ALT) measurements. Taken together, the current data provide a continued framework that leptin is a profibrogenic cytokine and plays a key role in liver fibrosis.
Collapse
Affiliation(s)
| | | | | | - Frank A. Anania
- Correspondence to: Frank A. Anania, Hepatology Section, Division of Gastroenterology, Department of Medicine, University of Maryland School of Medicine, Room N3W50, 22 South Greene Street, Baltimore, MD 21201.
| |
Collapse
|
16
|
Abstract
Life on earth has evolved on a photic carousel, spinning through alternating periods of light and darkness. This playful image belies the fact that only those organisms that learned how to benefit from the recurring features in their environment were allowed to ride on. This selection process has engendered many daily rhythms in our biosphere, most of which rely on the anticipatory power of an endogenously generated marker of phase: the biological clock. The basic mechanisms driving this remarkable device have been really tough to decode but are finally beginning to unravel as chronobiologists probe deeper and wider in and around the recently discovered gears of the clock. Like its chemical predecessors, biological circadian oscillators are characterized by interlaced positive and negative feedback loops, but with constants and variables carefully balanced to achieve an approximately 24h period. The loops at the heart of these biological oscillators are sustained by specific patterns of gene expression and precisely tuned posttranscriptional modifications. It follows that a molecular understanding of the biological clock hinges, in no small measure, on a better understanding of the cis-acting elements that bestow a given gene with its circadian properties. The present review summarizes what is known about these elements and what remains to be elucidated.
Collapse
Affiliation(s)
- Estela Muñoz
- Unit on Temporal Gene Expression, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
17
|
Potter JJ, Rennie-Tankersley L, Mezey E. Endotoxin enhances liver alcohol dehydrogenase by action through upstream stimulatory factor but not by nuclear factor-kappa B. J Biol Chem 2003; 278:4353-7. [PMID: 12454009 DOI: 10.1074/jbc.m210097200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Liver alcohol dehydrogenase (ADH) is increased by physiological stress and by chronic administration of growth hormone (GH). Endotoxin plays a role in the pathogenesis of alcoholic liver disease. The effect of lipopolysaccharide (LPS), the endotoxin component of Gram-negative bacteria, was determined on liver ADH. LPS given daily to rats for 3 days increased ADH mRNA, ADH protein, and ADH activity. Nuclear factor-kappaB (NF-kappaB) in the liver nuclear extracts bound to an oligonucleotide specifying region -226 to -194 of the ADH promoter, whereas upstream stimulatory factor (USF) was shown previously to bind to a more proximal site. LPS increased NF-kappaB and USF binding to the ADH promoter. The NF-kappaB (p65) and NF-kappaB (p50) expression vectors inhibited the transfected ADH promoter activity, which contrasts with the previously demonstrated stimulation by an USF expression vector. The binding activities of STAT5b and of C/EBPbeta, which mediate the effect of GH on ADH, were not changed or decreased, respectively, by LPS, indicating that GH plays no intermediary role in the effect of LPS. This study shows that LPS increases ADH and that this effect is mediated by increased binding of USF to the ADH promoter and not by NF-kappaB, which has an inhibitory action.
Collapse
Affiliation(s)
- James J Potter
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
18
|
Abstract
The E-Box is a widely used DNA control element. Despite its brevity and broad distribution the E-Box is a remarkably versatile sequence that affects many different genetic programs, including proliferation, differentiation, tissue-specific responses, and cell death. The circadian clock is one of the latest pathways shown to employ this element. In this context, E-Boxes are likely to play a key role in establishing the robust waves of gene expression characteristic of circadian transcription. The regulatory flexibility of the E-Box hinges on the sequence ambiguity allowed at its core, the strong influence of the surrounding sequences, and the recruitment of spatially and temporally regulated E-Box-binding factors. Therefore, understanding how a particular E-Box can accomplish a specific task entails the identification and systematic analysis of these cis- and trans-acting E-Box modifiers. In the present study we compared the E-Box-containing minimal promoters of vasopressin and cyclin B1, two genes that can respond to the transcriptional oscillators driving the circadian clock and cell cycle, respectively. Results of this comparison will help elucidate the manner in which discreet DNA modules associate to either augment or restrain the activation of potential circadian E-Boxes in response to competing regulatory signals.
Collapse
Affiliation(s)
- Estela Muñoz
- Unit on Temporal Gene Expression, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
19
|
Zhang W, Nisbet JW, Albrecht B, Ding W, Kashanchi F, Bartoe JT, Lairmore MD. Human T-lymphotropic virus type 1 p30(II) regulates gene transcription by binding CREB binding protein/p300. J Virol 2001; 75:9885-95. [PMID: 11559821 PMCID: PMC114560 DOI: 10.1128/jvi.75.20.9885-9895.2001] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2001] [Accepted: 07/18/2001] [Indexed: 11/20/2022] Open
Abstract
The highly conserved coadapters CREB binding protein (CBP) and p300 form complexes with CREB as well as other DNA binding transcription factors to modulate chromatin remodeling and thus transcription. Human T-lymphotropic virus type 1 (HTLV-1) transcription is controlled, in part, by the CREB/ATF family of transcription factors which bind promoter sequences and function as complexes with the viral oncogenic protein Tax. We have reported that the nuclear localizing protein p30(II) of HTLV-1 functions as a transcription factor, differentially modulates CREB-responsive promoters, and is critical for maintenance of proviral loads in rabbits. In this study, we tested whether p30(II) directly interacts with CBP/p300 to modulate gene transcription. Gal4(BD)-p30(II)-mediated transactivation was enhanced following exogenous expression of p300 and was competitively repressed by the p300 binding protein, adenovirus E1A, and E1ACR2 (mutated for retinoblastoma binding but retaining p300 binding). In contrast, E1ACR1 (mutated for p300 binding) failed to alter Gal4(BD)-p30(II)-mediated transactivation. In addition, Gal4(BD)-p30(II)-mediated transactivation was competitively inhibited by the cotransfection of CMV-p30(II)-HA and CMV-Tax but could be rescued by exogenous p300. Importantly, we demonstrate that p30(II) colocalizes with p300 in cell nuclei and directly binds to CBP/p300 in cells. Deletion mutants of CBP/p300 were used to localize the site critical for binding p30(II) to a highly conserved KIX region. DNA binding assays confirmed the interference of p30(II) with the assembly of CREB-Tax-p300/CBP multiprotein complexes on 21-bp repeat oligonucleotides in vitro. Collectively, our results demonstrate that CBP/p300 is a cellular protein target for HTLV-1 p30(II) and mediates its transcriptional effects in vivo.
Collapse
Affiliation(s)
- W Zhang
- Center for Retrovirus Research and Department of Veterinary Biosciences, The Arthur James Cancer Hospital and Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Growth hormone (GH) enhances rat liver alcohol dehydrogenase (ADH) due to an increase in enzyme synthesis, which is mediated at the level of transcription. Previous studies have shown that the effect of GH in enhancing activation of the ADH promoter is mediated by C/EBP beta binding to region -22 to -11 relative to the start of transcription. In this study, STAT5b and C/EBP beta were found to bind to adjacent nucleotide sequences on a region between -226 and -194. Expression vectors for both STAT5b and C/EBP beta independently activated the promoter. Furthermore, the expression vector for the GH receptor also activated the ADH promoter, and this effect was abrogated by mutations of the adjacent STAT5b and C/EBP beta binding sites. These observations indicate that the enhancing effect of GH is mediated by both STAT5b and C/EBP beta.
Collapse
Affiliation(s)
- J J Potter
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205-2195, USA
| | | |
Collapse
|
21
|
Zhang W, Nisbet JW, Bartoe JT, Ding W, Lairmore MD. Human T-lymphotropic virus type 1 p30(II) functions as a transcription factor and differentially modulates CREB-responsive promoters. J Virol 2000; 74:11270-7. [PMID: 11070026 PMCID: PMC113231 DOI: 10.1128/jvi.74.23.11270-11277.2000] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Human T-lymphotropic virus type 1 (HTLV-1), a complex retrovirus, causes adult T-cell lymphoma/leukemia and is linked to a variety of immune-mediated disorders. The roles of proteins encoded in the pX open reading frame (ORF) II gene region in HTLV-1 replication or in mediating virus-associated diseases remain to be defined. A nucleus-localizing 30-kDa protein, p30(II), encoded within pX ORF II has limited homology with the POU family of transcription factors. Recently, we reported that selected mutations in pX ORF II diminish the ability of HTLV-1 to maintain high viral loads in infected rabbits. Herein we have tested the transcriptional ability of p30(II) in mammalian cells by using yeast Gal4 fusion protein vectors and transfection of luciferase reporter genes driven by CREB-responsive promoters. p30(II) as a Gal4 DNA-binding domain (DBD) fusion protein transactivates Gal4-driven luciferase reporter gene activity up to 25-fold in 293 and HeLa-tat cells. We confirmed nuclear localization of p30(II) and demonstrate dose-dependent binding of p30(II)-Gal4(DBD) to Gal4 DNA-binding sites. The transcriptional activity of p30(II)-Gal4(DBD) was independent of TATA box flanking sequences, as shown by using two different Gal4 reporter systems. Studies of selected p30(II) mutants indicated that domains that mediate transcription are restricted to a central core region of the protein between amino acids 62 and 220. Transfection of a p30(II)-expressing plasmid repressed cellular CRE-driven reporter gene activity, with or without Tax expression. In contrast, p30(II) at lower concentrations enhanced HTLV-1 long terminal repeat-driven reporter gene activity independent of Tax expression. These data are the first to demonstrate a transcriptional function for p30(II) and suggest a mechanism by which this nuclear protein may influence HTLV-1 replication or cellular gene expression in vivo.
Collapse
Affiliation(s)
- W Zhang
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
22
|
Edenberg HJ. Regulation of the mammalian alcohol dehydrogenase genes. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2000; 64:295-341. [PMID: 10697413 DOI: 10.1016/s0079-6603(00)64008-4] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This review focuses on the regulation of the mammalian medium-chain alcohol dehydrogenase (ADH) genes. This family of genes encodes enzymes involved in the reversible oxidation of alcohols to aldehydes. Interest in these enzymes is increased because of their role in the metabolism of beverage alcohol as well as retinol, and their influence on the risk for alcoholism. There are six known classes ADH genes that evolved from a common ancestor. ADH genes differ in their patterns of expression: most are expressed in overlapping tissue-specific patterns, but class III ADH genes are expressed ubiquitously. All have proximal promoters with multiple cis-acting elements. These elements, and the transcription factors that can interact with them, are being defined. Subtle differences in sequence can affect affinity for these factors, and thereby influence the expression of the genes. This provides an interesting system in which to examine the evolution of tissue specificity. Among transcription factors that are important in multiple members of this gene family are the C/EBPs, Sp1,USF, and AP1, HNF-1, CTF/NF-1, glucocorticoid, and retinoic acid receptors, and several as-yet unidentified negative elements, are important in at least one of the genes. There is evidence that cis-acting elements located far from the proximal promoter are necessary for proper expression. Three of the genes have upstream AUGs in the 5' nontranslated regions of their mRNA, unusual for mammalian genes. The upstream AUGs have been shown to significantly affect expression of the human ADH5 gene.
Collapse
Affiliation(s)
- H J Edenberg
- Department of Biochemistry, Indiana University School of Medicine, Indianapolis 46202, USA
| |
Collapse
|
23
|
Ripperger JA, Shearman LP, Reppert SM, Schibler U. CLOCK, an essential pacemaker component, controls expression of the circadian transcription factor DBP. Genes Dev 2000. [DOI: 10.1101/gad.14.6.679] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
DBP, the founding member of the PAR leucine zipper transcription factor family, is expressed according to a robust daily rhythm in the suprachiasmatic nucleus and several peripheral tissues. Previous studies with mice deleted for the Dbp gene have established that DBP participates in the regulation of several clock outputs, including locomotor activity, sleep distribution, and liver gene expression. Here we present evidence that circadian Dbptranscription requires the basic helix–loop–helix–PAS protein CLOCK, an essential component of the negative-feedback circuitry generating circadian oscillations in mammals and fruit flies. Genetic and biochemical experiments suggest that CLOCK regulates Dbpexpression by binding to E-box motifs within putative enhancer regions located in the first and second introns. Similar E-box motifs have been found previously in the promoter sequence of the murine clock genemPeriod1. Hence, the same molecular mechanisms generating circadian oscillations in the expression of clock genes may directly control the rhythmic transcription of clock output regulators such asDbp.
Collapse
|
24
|
Sul HS, Wang D. Nutritional and hormonal regulation of enzymes in fat synthesis: studies of fatty acid synthase and mitochondrial glycerol-3-phosphate acyltransferase gene transcription. Annu Rev Nutr 1998; 18:331-51. [PMID: 9706228 DOI: 10.1146/annurev.nutr.18.1.331] [Citation(s) in RCA: 193] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The activities of critical enzymes in fatty acid and triacylglycerol biosynthesis are tightly controlled by different nutritional, hormonal, and developmental conditions. Feeding previously fasted animals high-carbohydrate, low-fat diets causes a dramatic induction of enzymes-such as fatty acid synthase (FAS) and mitochondrial glycerol-3-phosphate acyltransferase (GPAT)-involved in fatty acid and triacylglycerol synthesis. During fasting and refeeding, transcription of these two enzymes is coordinately regulated by nutrients and hormones, such as glucose, insulin, glucagon, glucocorticoids, and thyroid hormone. Insulin stimulates transcription of the FAS and mitochondrial GPAT genes, and glucagon antagonizes the insulin effect through the cis-acting elements within the promoters and their bound trans-acting factors. This review discusses advances made in the understanding of the transcriptional regulation of FAS and mitochondrial GPAT genes, with emphasis on elucidation of the mechanisms by which multiple nutrients and hormones achieve their effects.
Collapse
Affiliation(s)
- H S Sul
- Department of Nutritional Sciences, University of California, Berkeley 94720, USA.
| | | |
Collapse
|
25
|
Lanigan TM, Russo AF. Binding of upstream stimulatory factor and a cell-specific activator to the calcitonin/calcitonin gene-related peptide enhancer. J Biol Chem 1997; 272:18316-24. [PMID: 9218472 DOI: 10.1074/jbc.272.29.18316] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The calcitonin/calcitonin gene-related peptide (CT/CGRP) gene is selectively transcribed in thyroid C cells and neurons. We have previously shown that the rat CT/CGRP cell-specific enhancer is synergistically regulated by a helix-loop-helix (HLH) protein and the OB2 octamer-binding protein. In this report, we show that the HLH-OB2 enhancer is required for full promoter activity, even in the context of other HLH elements. Since this enhancer appears to be a major controlling element, we have characterized the HLH and OB2 DNA binding proteins. We have identified the major HLH complex as a heterodimer of the ubiquitous upstream stimulatory factor (USF)-1 and USF-2 proteins. USF bound the enhancer with a reasonably high affinity (KD 1.6 nM), comparable to other genes. Characterization of a series of mutations revealed that a portion of the HLH motif is also recognized by OB2 and confirmed that HLH activity requires OB2. We have shown that OB2 is a single DNA binding protein based on UV cross-linking studies. The 68-kDa protein-DNA complex was detected only in C cell lines, including a human C cell line that has robust HLH-OB2 enhancer activity. These results suggest that the calcitonin/CGRP gene is controlled by the combinatorial activity of a ubiquitous USF HLH heterodimer and an associated cell-specific activator.
Collapse
Affiliation(s)
- T M Lanigan
- Molecular Biology Program, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
26
|
Kenny JJ, Millhouse S, Wotring M, Wigdahl B. Upstream stimulatory factor family binds to the herpes simplex virus type 1 latency-associated transcript promoter. Virology 1997; 230:381-91. [PMID: 9143295 DOI: 10.1006/viro.1997.8501] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The herpes simplex virus type 1 (HSV-1) latency-associated transcript (LAT) promoter 1 (LP1) is the only viral promoter that exhibits detectable transcriptional activity during a latent HSV infection. The LAT promoter-binding factor (LPBF) regulatory sequence (nucleotides -65 to -72 relative to the transcriptional start site of the 8.3-kb primary transcript) closely resembles the core recognition sequence required for binding members of the upstream stimulatory factor (USF)/major late transcription factor (MLTF) family. In this analysis, we demonstrate that oligonucleotides containing either the LPBF recognition sequence or the USF/MLTF recognition sequences from previously described promoters bind cellular factors which exhibit very similar mobilities in electrophoretic mobility shift (EMS) analyses. We also observe a high degree of similarity in competition profiles obtained in competition EMS analyses utilizing oligonucleotides containing recognition sequences for either LPBF or USF/MLTF. Furthermore, antibody supershift EMS analyses have demonstrated that the factors binding the LPBF or USF/MLTF recognition sites in these oligonucleotides are antigenically related, if not identical, and that greater than 90% of the LPBF-binding activity is antigenically related to USF. In addition, we demonstrate that both forms of in vitro translated USF proteins (43 and 44 kDa) bind to the LPBF recognition sequence within HSV-1 LP1. Taken together, these data indicate that USF is capable of binding to the HSV-1 LPBF recognition sequence and that USF is a major LPBF-binding activity in cells of neuronal and nonneuronal lineage. These data further support the hypothesis that USF may indeed play a significant role in the transcriptional activity of HSV-1 LP1.
Collapse
Affiliation(s)
- J J Kenny
- Department of Microbiology and Immunology, Pennsylvania State University, College of Medicine, Hershey 17033, USA
| | | | | | | |
Collapse
|
27
|
Kaytor EN, Shih H, Towle HC. Carbohydrate regulation of hepatic gene expression. Evidence against a role for the upstream stimulatory factor. J Biol Chem 1997; 272:7525-31. [PMID: 9054457 DOI: 10.1074/jbc.272.11.7525] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Hepatic expression of the genes encoding L-type pyruvate kinase (L-PK) and S14 is induced in rats upon feeding them a high carbohydrate, low fat diet. A carbohydrate response element (ChoRE) containing two CACGTG-type E boxes has been mapped in the 5'-flanking region of both of these genes. The nature of the ChoRE suggests that a member of the basic/helix-loop-helix/leucine zipper family of proteins may be responsible for mediating the response to carbohydrate. Indeed, the upstream stimulatory factor (USF), a ubiquitous basic/helix-loop-helix/leucine zipper protein, is present in hepatic nuclear extracts and binds to the ChoREs of L-PK and S14 in vitro. We have conducted experiments to determine whether USF is involved in the carbohydrate-mediated regulation of L-PK and S14. For this purpose, dominant negative forms of USF that are capable of heterodimerizing with endogenous USF but not of binding to DNA were expressed in primary hepatocytes. Expression of these forms did not block either S14 or L-PK induction by glucose. In addition, we have constructed mutant ChoREs that retain their carbohydrate responsiveness but have lost the ability to bind USF. Together, these data suggest that USF is not the carbohydrate-responsive factor that stimulates S14 and L-PK expression and that a distinct hepatic factor is likely to be responsible for the transcriptional response.
Collapse
Affiliation(s)
- E N Kaytor
- Department of Biochemistry and Institute of Human Genetics, Medical School, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
28
|
Abstract
Diets high in simple carbohydrates and low in fats lead in the mammalian liver to induction of a set of enzymes involved in lipogenesis. This induction occurs, in part, through transcriptional mechanisms that lead to elevated levels of the mRNA for these enzymes. For most of the lipogenic enzymes, an increase in glucose metabolism is required to trigger the transcriptional response. The intracellular mediator of this signaling pathway is unknown, although evidence suggests either glucose-6-phosphate or xylulose-5-phosphate. Studies to map the regulatory sequences of lipogenic enzyme genes involved in the transcriptional response have been performed for the L-type pyruvate kinase, S14, and acetyl-coenzyme A carboxylase genes. These studies have identified the DNA sequences necessary to link the signal generated by carbohydrate metabolism to specific nuclear transcription factors.
Collapse
Affiliation(s)
- H C Towle
- Department of Biochemistry and the Institute of Human Genetics, University of Minnesota, Minneapolis 55455, USA
| | | | | |
Collapse
|
29
|
Brown CJ, Zhang L, Edenberg HJ. Gene expression in a young multigene family: tissue-specific differences in the expression of the human alcohol dehydrogenase genes ADH1, ADH2, and ADH3. DNA Cell Biol 1996; 15:187-96. [PMID: 8634148 DOI: 10.1089/dna.1996.15.187] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Three human alcohol dehydrogenase genes, ADH1, ADH2, and ADH3, were formed by tandem duplications and have diverged in their tissue-specific and developmental expression. Their proximal promoters remain 80-84% identical in sequence, approximately the same degree of identity as at synonymous sites in the coding regions of these three genes. To understand the evolution of tissue specificity, gene expression must be studied in many different cells and tissues. A systematic comparison of their promoters reveals the effects of subtle sequence differences on the binding of nuclear proteins to their cis-acting elements. There are differences in the affinity with which some proteins are bound to altered sites including C/EBP sites, USF/MLTF sites, and the G3T site (which binds Sp1). There are also differences in the sites that are occupied, e.g. CTF/NFI-related sites. These sequence differences are reflected in differences in gene expression in three cell lines. In H4IIE-C3 hepatoma cells, the ADH1 promoter was more active than the ADH2 promoter, and the ADH3 promoter was nearly nonfunctional. In HeLa cells, both ADH1 and ADH2 promoters directed expression; again the ADH3 promoter was extremely weak. None of the three promoters had much activity in CV-1 cells. Coexpression of C/EBP alpha greatly stimulated expression of the ADH1 promoter in HeLa cells and in CV-1 cells, but only weakly stimulated expression in H4IIE-C3 cells. The stimulation of the ADH1 promoter by C/EBP alpha was comparable to that of ADH2, despite the weaker binding to the C/EBP sites that flank the TATA box in ADH1. The ADH3 promoter was not greatly stimulated by C/EBP alpha, despite good binding of C/EBP alpha. These results demonstrate that small differences in the cis-acting elements affect affinity of binding by transcription factors and the pattern of gene expression.
Collapse
Affiliation(s)
- C J Brown
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5122, USA
| | | | | |
Collapse
|
30
|
Bourbonnière M, Nalbantoglu J. The helix-loop-helix transcription factor USF interacts with the basal promoter of human amyloid precursor protein. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 35:304-8. [PMID: 8717367 DOI: 10.1016/0169-328x(95)00208-a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nuclear factors from HeLa, PC12, NG108-15 and SK-N-SH cell lines recognized an oligonucleotide (-56 to -37: APP-E1) containing an E box (CANNTG) which had previously been characterized as a DNase I-protected sequence in the basal promoter of the human amyloid precursor protein (APP) gene. Binding to APP-E1 was competed with an oligonucleotide encompassing the recognition site of the transcription factor USF. Antibodies directed against USF interacted with the APP-E1-protein complex and in vitro synthesized USF could bind APP-E1. Co-expression of USF cDNA transactivated a human APP-reporter gene construct. These results suggest that USF may play a role in the expression of the APP gene.
Collapse
Affiliation(s)
- M Bourbonnière
- Department of Neurology and Neurosurgery, McGill University, Montreal, Que, Canada
| | | |
Collapse
|
31
|
Wang D, Sul HS. Upstream stimulatory factors bind to insulin response sequence of the fatty acid synthase promoter. USF1 is regulated. J Biol Chem 1995; 270:28716-22. [PMID: 7499393 DOI: 10.1074/jbc.270.48.28716] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Fatty acid synthase (FAS) plays a central role in de novo lipogenesis in mammals. The concentration or activity of FAS in liver and adipose tissue changes dramatically when animals are subjected to nutritional and hormonal manipulations. We previously reported that due to changes in transcription, FAS synthesis declines and increases in an insulin-dependent manner during fasting and refeeding, respectively, and that insulin administration of streptozotocin-diabetic mice stimulates FAS transcription. We previously mapped the FAS insulin response sequence (IRS) to the proximal promoter region from position -71 to position -50, which contains an E-box DNA binding motif. Here, using competition gel shift assays and specific upstream stimulatory factor (USF) antibodies, we identified USF1 and USF2 as major components of complexes that bind to the FAS IRS. UV-cross-linking experiments further supported that USFs bind the FAS IRS. We also found that the amount of the 43-kDa USF1 was dramatically increased in liver of refed rats. In contrast, the amount of USF2 remained the same in liver of fasted or refed rats. Moreover, a 17-kDa protein in both fasted and refed rat liver was recognized by anti-USF1 antibodies, and this 17-kDa USF1-related protein was expressed in a manner opposite to that of the 43-kDa USF1, i.e. high in liver of fasted rats and decreased in liver of refed rats. These data suggest that the regulation of USF expression may play an important role in the regulation of FAS transcription.
Collapse
Affiliation(s)
- D Wang
- Department of Nutritional Sciences, University of California, Berkeley 94720-3104, USA
| | | |
Collapse
|
32
|
Shih HM, Liu Z, Towle HC. Two CACGTG motifs with proper spacing dictate the carbohydrate regulation of hepatic gene transcription. J Biol Chem 1995; 270:21991-7. [PMID: 7665621 DOI: 10.1074/jbc.270.37.21991] [Citation(s) in RCA: 173] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Regulatory sequences involved in the transcriptional induction of the rat S14 gene in response to increased glucose metabolism in the hepatocyte were investigated and compared with those of the liver-type pyruvate kinase (L-PK) gene. The carbohydrate response element (ChoRE) of the S14 gene was found to consist of two motifs related to the consensus binding site for the c-myc family of transcription factors, CACGTG. These two motifs are separated by five base pairs, a similar arrangement to that found in the L-PK ChoRE. In its natural context, the S14 ChoRE requires a novel accessory factor to support the full response glucose. This factor, as well as the factor hepatic nuclear factor-4, are both capable of binding to the L-PK gene to enhance its carbohydrate regulation. The need for an accessory factor for supporting the glucose response can be overcome in two ways. First, multimers of the ChoREs of either the L-PK or S14 genes can function independently to support the glucose response. Second, mutations in the S14 ChoRE that create a perfect match to the consensus CACGTG motif at each locus no longer require an accessory factor site. The spacing of the two CACGTG motifs, but not the nature of the bases within the spacer, are critical for control. These observations suggest that a carbohydrate responsive factor binds to both motifs in a highly specific spatial orientation to confer the response to increased carbohydrate metabolism.
Collapse
Affiliation(s)
- H M Shih
- Department of Biochemistry, Medical School, University of Minnesota, Minneapolis 55455, USA
| | | | | |
Collapse
|
33
|
Oliva MM, Cortese JF, Yang VW. Promoter regulation of a differentially expressed gene in the human colonic epithelial cell lines HT29-18 and HT29-18-C1. Gene 1995; 159:151-7. [PMID: 7622043 DOI: 10.1016/0378-1119(95)00130-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Gene A4 is transcriptionally activated upon enterocyte differentiation of the human colonic epithelial cell line HT29-18 and its highly differentiated subclone HT29-18-C1 [Oliva et al., Arch. Biochem. Biophys. 302 (1993) 183-192]. To characterize the mechanisms regulating the differential transcription of A4, we analyzed its immediate 5'-flanking region for regulatory elements. Promoter-linked transfection experiments of progressively deleted A4 5'-flanking sequences fused to the bacterial cat reporter gene suggest the presence of one negative and two positive DNA elements within the first 371 bp of the A4 promoter (pA4). DNase I footprint and electrophoretic mobility shift assays demonstrate that one positive element which contains the core binding sequence for the transcription factor, Sp1, mediates an equal level of transcription in the two cell types. The second positive element, localized between nucleotide positions--169 and -152, contains a sequence previously unrecognized as a transcription factor-binding site. This element mediates a twofold increase in the activity of pA4 in HT29-18-C1, as compared to HT29-18. Furthermore, nuclear extracts obtained from HT29-18-C1 contain a higher binding activity for this element than those from HT29-18. Southwestern blot analysis suggests that the protein interacting with this element has an estimated molecular mass of 50 kDa. We conclude that this protein may be involved in the differential regulation of A4 in these intestinal cell lines.
Collapse
Affiliation(s)
- M M Oliva
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
34
|
Abstract
Molecular biological investigations have become a predominant methodology applied to the study of alcohol-induced liver disease. The enzymatic pathways responsible for ethanol metabolism, and their genetic as well as environmental control, have become the focus of detailed investigation. More recently, the significance of cytokines in the pathogenesis of alcohol-induced liver disease has also become a major area of speculation. This review focuses on the advances made in studies of two important enzymes responsible for alcohol metabolism, alcohol dehydrogenase and aldehyde dehydrogenase, as well as the investigation of the proinflammatory and profibrogenic cytokines involved in the process of hepatic fibrogenesis. The quality and quantity of new discoveries made in the field of alcohol-induced liver disease is impressive, especially when one realizes that molecular biological approaches have been employed in this area for only 15 years. However, in most cases the studies have been predominantly descriptive, with little direct relevance to the therapeutics of alcoholism and alcohol-induced organ injury. Because the groundwork has been laid, one hopes that the next 15 years will rectify this failure.
Collapse
Affiliation(s)
- R Arnon
- Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
35
|
Potter JJ, Mezey E, Yang VW. The adult enhancer factor-1, a Drosophila melanogaster transcriptional repressor, modulates the promoter activity of the rat class-I alcohol dehydrogenase-encoding gene. Gene X 1994; 149:325-30. [PMID: 7959011 DOI: 10.1016/0378-1119(94)90170-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Expression of the Drosophila melanogaster alcohol dehydrogenase-encoding gene (ADH) in the adult fat body is controlled by the ADH adult enhancer site (AAE). The D. melanogaster transcription repressor, adult enhancer factor-1 (AEF-1), binds to AAE at a site which overlaps with a sequence recognized by the mammalian transcription factor, CCAAT/enhancer-binding protein alpha [C/EBP alpha; Falb and Maniatis, Genes Dev. 6 (1992a) 454-465]. C/EBP alpha also activates the promoter of the rat class-I ADH gene in a sequence-specific manner [Potter et al., Arch. Biochem. Biophys. 285 (1991a) 246-251]. In this study, we explored the possibility that D. melanogaster AEF-1 influences transcription of the rat class-I ADH. By DNase I footprint analysis, bacterially produced AEF-1 protects a region of DNA between nucleotides (nt) -22 and -36 of the rat class-I ADH promoter (pADH), just 5' to the binding site of C/EBP alpha, a result confirmed by the electrophoretic mobility shift assay (EMSA). Co-transfection of a rat pADH-CAT reporter construct with expression vectors containing C/EBP alpha, AEF-1, or both, indicates that AEF-1 inhibits induction of the rat pADH by C/EBP alpha. Moreover, rat liver nuclear extracts appear to contain AEF-1-like-binding activities to AAE by EMSA. These experiments suggest an evolutionarily conserved mechanism by which AEF-1 modulates expression of the D. melanogaster and rat ADH genes.
Collapse
Affiliation(s)
- J J Potter
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | | |
Collapse
|
36
|
|
37
|
Cortese J, Majewski J, Crabb D, Edenberg H, Yang V. Characterization of the 5'-flanking sequence of rat class I alcohol dehydrogenase gene. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31887-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
38
|
Brown CJ, Zhang L, Edenberg HJ. Tissue-specific differences in the expression of the human ADH2 alcohol dehydrogenase gene and in binding of factors to cis-acting elements in its promoter. DNA Cell Biol 1994; 13:235-47. [PMID: 8172654 DOI: 10.1089/dna.1994.13.235] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The human alcohol dehydrogenase gene ADH2 is expressed at high levels in liver, at lower levels in kidney and several other tissues, and is not expressed in other tissues such as spleen. This pattern of expression suggests a complex regulatory region that responds to a variety of transcription factors in different cellular contexts. Seven cis-acting sequences in the proximal 271 bp of the ADH2 promoter were mapped. The occupancy of these sites differed markedly among extracts from liver, kidney, spleen, H4IIE-C3 cells, HeLa cells, and CV-1 cells. These differences in occupancy were accompanied by differences in gene expression in the three cell lines. The ADH2 promoter directed substantial CAT expression in H4IIE-C3 cells (rat hepatoma) and in HeLa cells, but only minimal expression in CV-1 cells (monkey kidney fibroblasts). The three cell lines differed in the effects of deletions within the promoter. An ADH2 promoter that contained both the USF/MLTF site and the G3T site gave four- to eight-fold higher expression in both H4IIE-C3 and HeLa cells than a smaller promoter that lacked these sites; in contrast, these sequences did not significantly stimulate transcription in CV-1 cells. A CTF/NF-I-related site acted as a negative element in all three cell lines. Coexpression of C/EBP alpha altered the cell specificity. The ADH2 promoter was moderately stimulated (two-fold) by coexpression of C/EBP alpha in H4IIE-C3 cells, but markedly stimulated in HeLa cells and in CV-1 cells (11- and 20-fold, respectively). These results demonstrate the differential importance of cis-acting sequences and of specific transcription factors in different cells, which allows regulated expression of ADH2 in multiple tissues.
Collapse
Affiliation(s)
- C J Brown
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202-5122
| | | | | |
Collapse
|
39
|
Shih H, Towle H. Definition of the carbohydrate response element of the rat S14 gene. Context of the CACGTG motif determines the specificity of carbohydrate regulation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37119-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
40
|
Edenberg HJ, Brown CJ, Zhang L. Regulation of the human alcohol dehydrogenases genes ADH1, ADH2 and ADH3: differences in cis-acting sequences at CTF/NF-I sites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1993; 328:561-70. [PMID: 8493936 DOI: 10.1007/978-1-4615-2904-0_59] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- H J Edenberg
- Dept. of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202-5122
| | | | | |
Collapse
|
41
|
Crabb DW. ADH1, 2 and 3: genes whose times have come. Hepatology 1992; 16:1501-3. [PMID: 1446903 DOI: 10.1002/hep.1840160630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- D W Crabb
- Department of Medicine, Indiana University School of Medicine, Indianapolis 46202-5121
| |
Collapse
|
42
|
Canto MF, Oliva MM, Potter JJ, Mezey E, Yang VW. Enhancer-site downstream binding protein activity is enriched in rat tissues that express the class I alcohol dehydrogenase gene. Biochem Biophys Res Commun 1992; 188:684-9. [PMID: 1280119 DOI: 10.1016/0006-291x(92)91110-c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The activity of the rat class I alcohol dehydrogenase (ADH) is enriched in certain tissues including the liver, intestine and testis. The tissue-specific expression of the gene encoding ADH in the rat was studied and found to closely correlate with tissue isozymic activity. A factor designated enhancer-site downstream binding protein (EDBP) was recently identified in the rat liver and found to interact with the proximal promoter of the class I ADH gene. The distribution of EDBP in nuclear extracts obtained from various tissues was examined based on its sequence-specific DNA binding property and found to correlate with tissue ADH expression. These findings suggest that EDBP is potentially a positive regulatory factor which is involved in controlling the tissue-specific expression of the ADH gene.
Collapse
Affiliation(s)
- M F Canto
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | | | | | |
Collapse
|
43
|
Shih H, Towle H. Definition of the carbohydrate response element of the rat S14 gene. Evidence for a common factor required for carbohydrate regulation of hepatic genes. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42198-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
44
|
Potter JJ, Mezey E, Cornelius P, Crabb DW, Yang VW. The first 22 base pairs of the proximal promoter of the rat class I alcohol dehydrogenase gene is bipartite and interacts with multiple DNA-binding proteins. Arch Biochem Biophys 1992; 295:360-8. [PMID: 1586166 DOI: 10.1016/0003-9861(92)90529-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The rat class I alcohol dehydrogenase (ADH) gene is primarily expressed in the liver. We previously showed that the liver-enriched transcription factor, the CCAAT/enhancer binding protein (C/EBP), binds to the proximal promoter of the rat class I ADH gene between positions -11 and -22 relative to the start site of transcription. We now demonstrate that another transcription factor, the liver activator protein (LAP), also interacts with the same region of the promoter based on the following observations: (1) LAP synthesized by in vitro transcription and translation of cloned cDNA sequence forms complexes with an oligonucleotide containing the C/EBP-binding sequence within the ADH promoter as determined by the electrophoretic mobility shift assay (EMSA), (2) purified LAP interacts with the proximal ADH promoter when analyzed by the DNase I protection assay, and (3) an ADH promoter-reporter gene construct containing the C/EBP-binding site is transactivated by an eukaryotic expression vector containing the LAP sequence. EMSA of an oligonucleotide containing the first 22 base pairs (between positions -1 and -22) of the ADH promoter with rat liver nuclear extracts (RLNE) resulted in the formation of two major complexes. Complex 1 was competed away by a heterologous oligonucleotide containing a C/EBP-binding site within the promoter of the adipocyte 422 (aP2) gene, while complex 2 was not. Additional competition experiments with the ADH or 422 (aP2) oligonucleotide using either RLNE or extracts from 3T3-L1 adipocytes demonstrated that complex 1 contains either C/EBP or LAP, while complex 2 contains a DNA-binding protein that binds to a novel sequence 5'-TGGCCCAGTT-3' between positions -1 and -10 of the ADH promoter. Ultraviolet cross-linking between RLNE and a labeled oligonucleotide containing the above sequence indicates that this protein, designated EDBP (for enhancer-site downstream binding protein), has an estimated molecular weight of 47 kDa, which is larger than that reported for either C/EBP (42 kDa) or LAP (36 kDa).
Collapse
Affiliation(s)
- J J Potter
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | | | | | |
Collapse
|