1
|
Tse HM, Gardner G, Dominguez-Bendala J, Fraker CA. The Importance of Proper Oxygenation in 3D Culture. Front Bioeng Biotechnol 2021; 9:634403. [PMID: 33859979 PMCID: PMC8042214 DOI: 10.3389/fbioe.2021.634403] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/09/2021] [Indexed: 12/15/2022] Open
Abstract
Cell culture typically employs inexpensive, disposable plasticware, and standard humidified CO2/room air incubators (5% CO2, ∼20% oxygen). These methods have historically proven adequate for the maintenance of viability, function, and proliferation of many cell types, but with broad variation in culture practices. With technological advances it is becoming increasingly clear that cell culture is not a “one size fits all” procedure. Recently, there is a shift toward comprehension of the individual physiological niches of cultured cells. As scale-up production of single cell and 3D aggregates for therapeutic applications has expanded, researchers have focused on understanding the role of many environmental metabolites/forces on cell function and viability. Oxygen, due to its role in cell processes and the requirement for adequate supply to maintain critical energy generation, is one such metabolite gaining increased focus. With the advent of improved sensing technologies and computational predictive modeling, it is becoming evident that parameters such as cell seeding density, culture media height, cellular oxygen consumption rate, and aggregate dimensions should be considered for experimental reproducibility. In this review, we will examine the role of oxygen in 3D cell culture with particular emphasis on primary islets of Langerhans and stem cell-derived insulin-producing SC-β cells, both known for their high metabolic demands. We will implement finite element modeling (FEM) to simulate historical and current culture methods in referenced manuscripts and innovations focusing on oxygen distribution. Our group and others have shown that oxygen plays a key role in proliferation, differentiation, and function of these 3D aggregates. Their culture in plastic consistently results in core regions of hypoxia/anoxia exacerbated by increased media height, aggregate dimensions, and oxygen consumption rates. Static gas permeable systems ameliorate this problem. The use of rotational culture and other dynamic culture systems also have advantages in terms of oxygen supply but come with the caveat that these endocrine aggregates are also exquisitely sensitive to mechanical perturbation. As recent work demonstrates, there is a strong rationale for the use of alternate in vitro systems to maintain physio-normal environments for cell growth and function for better phenotypic approximation of in vivo counterparts.
Collapse
Affiliation(s)
- Hubert M Tse
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Graeme Gardner
- Department of Surgery, Diabetes Research Institute, Leonard M. Miller School of Medicine, University of Miami, Coral Gables, FL, United States
| | - Juan Dominguez-Bendala
- Department of Surgery, Diabetes Research Institute, Leonard M. Miller School of Medicine, University of Miami, Coral Gables, FL, United States.,Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Christopher A Fraker
- Department of Surgery, Diabetes Research Institute, Leonard M. Miller School of Medicine, University of Miami, Coral Gables, FL, United States
| |
Collapse
|
2
|
Abstract
The circulation of the lung is unique both in volume and function. For example, it is the only organ with two circulations: the pulmonary circulation, the main function of which is gas exchange, and the bronchial circulation, a systemic vascular supply that provides oxygenated blood to the walls of the conducting airways, pulmonary arteries and veins. The pulmonary circulation accommodates the entire cardiac output, maintaining high blood flow at low intravascular arterial pressure. As compared with the systemic circulation, pulmonary arteries have thinner walls with much less vascular smooth muscle and a relative lack of basal tone. Factors controlling pulmonary blood flow include vascular structure, gravity, mechanical effects of breathing, and the influence of neural and humoral factors. Pulmonary vascular tone is also altered by hypoxia, which causes pulmonary vasoconstriction. If the hypoxic stimulus persists for a prolonged period, contraction is accompanied by remodeling of the vasculature, resulting in pulmonary hypertension. In addition, genetic and environmental factors can also confer susceptibility to development of pulmonary hypertension. Under normal conditions, the endothelium forms a tight barrier, actively regulating interstitial fluid homeostasis. Infection and inflammation compromise normal barrier homeostasis, resulting in increased permeability and edema formation. This article focuses on reviewing the basics of the lung circulation (pulmonary and bronchial), normal development and transition at birth and vasoregulation. Mechanisms contributing to pathological conditions in the pulmonary circulation, in particular when barrier function is disrupted and during development of pulmonary hypertension, will also be discussed.
Collapse
Affiliation(s)
- Karthik Suresh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Larissa A. Shimoda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Cechin S, Alvarez-Cubela S, Giraldo JA, Molano RD, Villate S, Ricordi C, Pileggi A, Inverardi L, Fraker CA, Domínguez-Bendala J. Influence of in vitro and in vivo oxygen modulation on β cell differentiation from human embryonic stem cells. Stem Cells Transl Med 2013; 3:277-89. [PMID: 24375542 DOI: 10.5966/sctm.2013-0160] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The possibility of using human embryonic stem (hES) cell-derived β cells as an alternative to cadaveric islets for the treatment of type 1 diabetes is now widely acknowledged. However, current differentiation methods consistently fail to generate meaningful numbers of mature, functional β cells. In order to address this issue, we set out to explore the role of oxygen modulation in the maturation of pancreatic progenitor (PP) cells differentiated from hES cells. We have previously determined that oxygenation is a powerful driver of murine PP differentiation along the endocrine lineage of the pancreas. We hypothesized that targeting physiological oxygen partial pressure (pO2) levels seen in mature islets would help the differentiation of PP cells along the β-cell lineage. This hypothesis was tested both in vivo (by exposing PP-transplanted immunodeficient mice to a daily hyperbaric oxygen regimen) and in vitro (by allowing PP cells to mature in a perfluorocarbon-based culture device designed to carefully adjust pO2 to a desired range). Our results show that oxygen modulation does indeed contribute to enhanced maturation of PP cells, as evidenced by improved engraftment, segregation of α and β cells, body weight maintenance, and rate of diabetes reversal in vivo, and by elevated expression of pancreatic endocrine makers, β-cell differentiation yield, and insulin production in vitro. Our studies confirm the importance of oxygen modulation as a key variable to consider in the design of β-cell differentiation protocols and open the door to future strategies for the transplantation of fully mature β cells.
Collapse
Affiliation(s)
- Sirlene Cechin
- Diabetes Research Institute, Department of Surgery, Department of Microbiology and Immunology, Department of Biomedical Engineering, Department of Medicine, and Department of Cell Biology and Anatomy, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Grzenda A, Shannon J, Fisher J, Arkovitz MS. Timing and expression of the angiopoietin-1-Tie-2 pathway in murine lung development and congenital diaphragmatic hernia. Dis Model Mech 2012; 6:106-14. [PMID: 22917924 PMCID: PMC3529343 DOI: 10.1242/dmm.008821] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Congenital diaphragmatic hernia (CDH) is one of the most common congenital abnormalities. Children born with CDH suffer a number of co-morbidities, the most serious of which is respiratory insufficiency from a combination of alveolar hypoplasia and pulmonary vascular hypertension. All children born with CDH display some degree of pulmonary hypertension, the severity of which has been correlated with mortality. The molecular mechanisms responsible for the development of pulmonary hypertension in CDH remain poorly understood. Angiopoitein-1 (Ang-1), a central mediator in angiogenesis, participates in the vascular development of many tissues, including the lung. Although previous studies have demonstrated that Ang-1 might play an important role in the development of familial pulmonary hypertension, the role of Ang-1 in the development of the pulmonary hypertension associated with CDH is poorly understood. The aim of this study was to examine the role of the Ang-1 pathway in a murine model of CDH. Here, we report that Ang-1 appears important in normal murine lung development, and have established its tissue-level expression and localization patterns at key time-points. Additionally, our data from a nitrofen and bisdiamine-induced murine model of CDH suggests that altered expression patterns of Ang-1, its receptor Tie-2 and one of its transcription factors (epithelium-specific Ets transcription factor 1) might be responsible for development of the pulmonary vasculopathy seen in the setting of CDH.
Collapse
Affiliation(s)
- Adrienne Grzenda
- Charles Edison Laboratory for Pediatric Surgery Research, Department of Surgery, Division of Pediatric Surgery, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | |
Collapse
|
5
|
Calderari S, Chougnet C, Clemessy M, Kempf H, Corvol P, Larger E. Angiopoietin 2 alters pancreatic vascularization in diabetic conditions. PLoS One 2012; 7:e29438. [PMID: 22272235 PMCID: PMC3260141 DOI: 10.1371/journal.pone.0029438] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 11/28/2011] [Indexed: 01/25/2023] Open
Abstract
Aims/hypothesis Islet vascularization, by controlling beta-cell mass expansion in response to increased insulin demand, is implicated in the progression to glucose intolerance and type 2 diabetes. We investigated how hyperglycaemia impairs expansion and differentiation of the growing pancreas. We have grafted xenogenic (avian) embryonic pancreas in severe combined immuno-deficient (SCID) mouse and analyzed endocrine and endothelial development in hyperglycaemic compared to normoglycaemic conditions. Methods 14 dpi chicken pancreases were grafted under the kidney capsule of normoglycaemic or hyperglycaemic, streptozotocin-induced, SCID mice and analyzed two weeks later. Vascularization was analyzed both quantitatively and qualitatively using either in situ hybridization with both mouse- and chick-specific RNA probes for VEGFR2 or immunohistochemistry with an antibody to nestin, a marker of endothelial cells that is specific for murine cells. To inhibit angiopoietin 2 (Ang2), SCID mice were treated with 4 mg/kg IP L1–10 twice/week. Results In normoglycaemic condition, chicken-derived endocrine and exocrine cells developed well and intragraft vessels were lined with mouse endothelial cells. When pancreases were grafted in hyperglycaemic mice, growth and differentiation of the graft were altered and we observed endothelial discontinuities, large blood-filled spaces. Vessel density was decreased. These major vascular anomalies were associated with strong over-expression of chick-Ang2. To explore the possibility that Ang2 over-expression could be a key step in vascular disorganization induced by hyperglycaemia, we treated mice with L1–10, an Ang-2 specific inhibitor. Inhibition of Ang2 improved vascularization and beta-cell density. Conclusions This work highlighted an important role of Ang2 in pancreatic vascular defects induced by hyperglycaemia.
Collapse
|
6
|
Abstract
During the development of the pulmonary vasculature in the fetus, many structural and functional changes occur to prepare the lung for the transition to air breathing. The development of the pulmonary circulation is genetically controlled by an array of mitogenic factors in a temporo-spatial order. With advancing gestation, pulmonary vessels acquire increased vasoreactivity. The fetal pulmonary vasculature is exposed to a low oxygen tension environment that promotes high intrinsic myogenic tone and high vasocontractility. At birth, a dramatic reduction in pulmonary arterial pressure and resistance occurs with an increase in oxygen tension and blood flow. The striking hemodynamic differences in the pulmonary circulation of the fetus and newborn are regulated by various factors and vasoactive agents. Among them, nitric oxide, endothelin-1, and prostaglandin I2 are mainly derived from endothelial cells and exert their effects via cGMP, cAMP, and Rho kinase signaling pathways. Alterations in these signaling pathways may lead to vascular remodeling, high vasocontractility, and persistent pulmonary hypertension of the newborn.
Collapse
Affiliation(s)
- Yuansheng Gao
- Department of Physiology and Pathophysiology, Peking University, Health Science Center, Beijing, China; and Department of Pediatrics, University of Illinois, College of Medicine at Chicago, Chicago, Illinois
| | - J. Usha Raj
- Department of Physiology and Pathophysiology, Peking University, Health Science Center, Beijing, China; and Department of Pediatrics, University of Illinois, College of Medicine at Chicago, Chicago, Illinois
| |
Collapse
|
7
|
Park K, Shim E, Choi B, Moon C, Kim S, Kim Y, Kwon C, Joh J, Koh G, Kim S. Cartilage Oligomeric Matrix Protein–Angiopoientin-1 Enhances Angiogenesis of Isolated Islet and Maintains Normoglycemia Following Transplantation. Transplant Proc 2010; 42:2653-7. [DOI: 10.1016/j.transproceed.2010.04.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 12/08/2009] [Accepted: 04/08/2010] [Indexed: 11/25/2022]
|
8
|
Abstract
Beyond its role as an electron acceptor in aerobic respiration, oxygen is also a key effector of many developmental events. The oxygen-sensing machinery and the very fabric of cell identity and function have been shown to be deeply intertwined. Here we take a first look at how oxygen might lie at the crossroads of at least two of the major molecular pathways that shape pancreatic development. Based on recent evidence and a thorough review of the literature, we present a theoretical model whereby evolving oxygen tensions might choreograph to a large extent the sequence of molecular events resulting in the development of the organ. In particular, we propose that lower oxygenation prior to the expansion of the vasculature may favour HIF (hypoxia inducible factor)-mediated activation of Notch and repression of Wnt/beta-catenin signalling, limiting endocrine cell differentiation. With the development of vasculature and improved oxygen delivery to the developing organ, HIF-mediated support for Notch signalling may decline while the beta-catenin-directed Wnt signalling is favoured, which would support endocrine cell differentiation and perhaps exocrine cell proliferation/differentiation.
Collapse
|
9
|
|
10
|
Cornillie P, Van Den Broeck W, Simoens P. Three-dimensional reconstruction of the remodeling of the systemic vasculature in early pig embryos. Microsc Res Tech 2008; 71:105-11. [DOI: 10.1002/jemt.20531] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
11
|
Fraker CA, Alvarez S, Papadopoulos P, Giraldo J, Gu W, Ricordi C, Inverardi L, Domínguez-Bendala J. Enhanced Oxygenation Promotes β-Cell Differentiation In Vitro. Stem Cells 2007; 25:3155-64. [PMID: 17761759 DOI: 10.1634/stemcells.2007-0445] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite progress in our knowledge about pancreatic islet specification, most attempts at differentiating stem/progenitor cells into functional, transplantable beta cells have met only with moderate success thus far. A major challenge is the intrinsic simplicity of in vitro culture systems, which cannot approximate the physiological complexity of in vivo microenvironments. Oxygenation is a critical limitation of standard culture methods, and one of special relevance for the development of beta cells, known for their high O(2) requirements. Based on our understanding of islet physiology, we have tested the hypothesis that enhanced O(2) delivery (as provided by novel perfluorocarbon-based culture devices) may result in higher levels of beta-cell differentiation from progenitor cells in vitro. Using a mouse model of pancreatic development, we demonstrate that a physiological-like mode of O(2) delivery results in a very significant upregulation of endocrine differentiation markers (up to 30-fold for insulin one and 2), comparable to relevant in vivo controls. This effect was not observed by merely increasing environmental O(2) concentrations in conventional settings. Our findings indicate that O(2) plays an important role in the differentiation of beta cells from their progenitors and may open the door to more efficient islet differentiation protocols from embryonic and/or adult stem cells. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Christopher A Fraker
- Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Su D, Zhang N, He J, Qu S, Slusher S, Bottino R, Bertera S, Bromberg J, Dong HH. Angiopoietin-1 production in islets improves islet engraftment and protects islets from cytokine-induced apoptosis. Diabetes 2007; 56:2274-83. [PMID: 17596403 DOI: 10.2337/db07-0371] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Successful islet transplantation depends on the infusion of sufficiently large quantities of islets, but only a small fraction of implanted islets become engrafted. The underlying mechanisms remain elusive. To probe the mechanism of islet revascularization, we determined the effect of angiopoietin-1 (Ang-1), a proangiogenic and antiapoptotic factor, on the survival, function, and revascularization of transplanted islets using a syngeneic model. Islets were transduced with adenoviruses expressing Ang-1 or control LacZ, followed by transplantation under the renal capsule. Diabetic mice receiving a marginal mass of 150 islets pretransduced with Ang-1 vector exhibited near normoglycemia posttransplantation. In contrast, diabetic mice receiving an equivalent islet mass pretransduced with control vector remained hyperglycemic. At 30 days posttransplantation, mice were killed and islet grafts retrieved for immunohistochemistry. Islet grafts with elevated Ang-1 production retained significantly increased microvascular density, improved glucose profiles, and increased glucose-stimulated insulin release. Cultured islets expressing Ang-1 displayed improved viability and enhanced glucose-stimulated insulin secretion in the presence of cytokines. In contrast, control islets exhibited increased apoptosis and diminished glucose-stimulated insulin release in response to cytokine treatment. These results indicate that Ang-1 confers a cytoprotective effect on islets, enhancing islet engraftment and preserving functional islet mass in transplants.
Collapse
Affiliation(s)
- Dongming Su
- Department of Pediatrics, Rangos Research Center, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
The maladaptive response of the pulmonary vasculature that occurs in patients with congenital diaphragmatic hernia significantly impacts outcome. Muscularized distal pulmonary arterioles inhibit the ability of the neonate to adjust to extrauterine circulation, resulting in severe pulmonary hypertension. This review summarizes the current state of knowledge regarding normal and abnormal development of the lung vascular system and identifies current and potential therapies directed toward preserving or restoring proper pulmonary vascular function.
Collapse
Affiliation(s)
- Doug Miniati
- Division of Pediatric Surgery, Department of Surgery, University of California, San Francisco School of Medicine, San Francisco, California, USA.
| |
Collapse
|
14
|
Galambos C, deMello DE. Molecular mechanisms of pulmonary vascular development. Pediatr Dev Pathol 2007; 10:1-17. [PMID: 17378630 DOI: 10.2350/06-06-0122.1] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Accepted: 10/04/2006] [Indexed: 11/20/2022]
Abstract
In this era of rapidly advancing vascular biology research, a vast array of growth factors and signaling molecules have been recognized as key players in the mechanisms that control lung vascular development. In the lung, vascular development is a complex, multistep process that includes specialization of primitive cells to vascular progenitors; formation of primitive vascular networks; remodeling with local regression and branching; specialization toward arteries, veins, and lymphatics; stabilization of vessels by matrix production and recruitment of supporting cells; and maintenance of the vascular structure. This complex, highly organized process requires exquisite orchestration of the regulatory activity of multiple molecules in a specific temporospatial order. Most of these molecules are members of 3 major growth factor families that have been recently identified. They are the vascular endothelial growth factor, angiopoietin, and ephrin families. Understanding the functional reach of several members of these growth factor families is integral to an appreciation of the etiology and pathogenesis of developmental lung vascular disorders affecting newborns. This review summarizes recent advances in the molecular bases of lung vascular development and some of the pulmonary diseases resulting from aberrant vascular growth, including bronchopulmonary dysplasia, alveolar capillary dysplasia, congenital cystic pulmonary disorders, congenital pulmonary hemangiomatosis, and lung hypoplasia.
Collapse
Affiliation(s)
- Csaba Galambos
- Department of Pathology, Children's Hospital of Pittsburgh, University of Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
15
|
Geutskens SB, Otonkoski T, Pulkkinen MA, Drexhage HA, Leenen PJM. Macrophages in the murine pancreas and their involvement in fetal endocrine development in vitro. J Leukoc Biol 2005; 78:845-52. [PMID: 16037409 DOI: 10.1189/jlb.1004624] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Macrophages are a heterogeneous population of cells that belong to the mononuclear phagocyte system. They play an important role in tissue homeostasis and remodeling and are also potent immune regulators. Pancreatic macrophages are critically involved in the development and pathogenesis of autoimmune diabetes. To elucidate the ontogeny of pancreatic macrophages, we characterized in this study the macrophages present in the adult and developing fetal pancreas of normal mice. We additionally examined the presence of local macrophage precursors and the involvement of macrophages in the growth of endocrine tissue in the fetal pancreas. We identified two phenotypically distinct macrophage subsets in the adult pancreas. The majority of macrophages was CD45(+)ER-MP23(+)MOMA-1(+). Under noninflammatory conditions, only a minority ( approximately 5%) of the pancreatic macrophages additionally expressed the macrophage marker F4/80. In contrast, in the fetal pancreas, phenotypically, mature macrophages were identified exclusively by their expression of F4/80 and lacked detectable staining with ER-MP23 and MOMA-1 antibodies. In fetal pancreas organ cultures, we could show that macrophages develop from pre-existing precursors, which are present in the fetal pancreas at embryonic age 12.5. Moreover, the number of macrophages increased significantly when macrophage-colony stimulating factor was added to these cultures. It is important that this increase of F4/80-positive cells was paralleled by an increase in the number of insulin-producing cells, suggesting that macrophages support the growth of these endocrine cells.
Collapse
Affiliation(s)
- S B Geutskens
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
16
|
Parera MC, van Dooren M, van Kempen M, de Krijger R, Grosveld F, Tibboel D, Rottier R. Distal angiogenesis: a new concept for lung vascular morphogenesis. Am J Physiol Lung Cell Mol Physiol 2005; 288:L141-9. [PMID: 15377499 DOI: 10.1152/ajplung.00148.2004] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although several molecular players have been described that play a role during the early phases of lung development, it is still unknown how the vasculature develops in relation to the airways. Two opposing models describe development of lung vasculature: one suggests that both vasculogenesis and angiogenesis are involved, whereas the second describes vasculogenesis as the primary mechanism. Therefore, we examined the development of the murine pulmonary vasculature through a morphological analysis from the onset of lung development [9.5 days postcoital (dpc)] until the pseudoglandular stage (13.5 dpc). We analyzed fetal lungs of Tie2-LacZ transgenic mice as well as serial sections of wild-type lungs stained with endothelial-specific antibodies (Flk-1, Fli-1, and PECAM-1). Embryos were processed with intact blood circulation to maintain the integrity of the vasculature; hence individual vessels could be identified with accuracy through serial section analysis. Furthermore, circulating primitive erythrocytes, formed exclusively by the blood islands in the yolk sac, are trapped in vessels during fixation, which proves the connection with the embryonic circulation. We report that from the first morphological sign of lung development, a clear vascular network exists that is in contact with the embryonic circulation. We propose distal angiogenesis as a new concept for early pulmonary vascular morphogenesis. In this model, capillary networks surround the terminal buds and expand by formation of new capillaries from preexisting vessels as the lung bud grows. The fact that at an early embryonic stage a complete vascular network exists may be important for the general understanding of embryonic development.
Collapse
Affiliation(s)
- Marta Canis Parera
- Department of Pediatric Surgery, Sophia Children's Hospital, Erasms Medical Center Rotterdam, 3000 DR Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Bloomston M, Durkin A, Yang I, Rojiani M, Rosemurgy AS, Enkmann S, Yeatman TJ, Zervos EE. Identification of molecular markers specific for pancreatic neuroendocrine tumors by genetic profiling of core biopsies. Ann Surg Oncol 2004; 11:413-9. [PMID: 15070602 DOI: 10.1245/aso.2004.03.077] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND There is a paucity of known molecular markers that distinguish pancreatic neuroendocrine tumors from other pancreatic tumor types. We hypothesized that novel markers for pancreatic neuroendocrine tumors could be identified with molecular fingerprinting of pooled RNA samples from core biopsies. METHODS Total RNA was harvested from nine core biopsies of normal pancreas, pancreatitis, pancreatic adenocarcinoma, pancreatic adenocarcinoma metastases, and pancreatic neuroendocrine tumors. RNA from each group of samples was pooled and hybridized to an oligonucleotide-based microarray. Four genes (ANG2, NPDC1, ELOVL4, and CALCR) were selected for further investigation by reverse transcriptase polymerase chain reaction from the top 20 highest expressed genes, on the basis of potential as novel markers. RESULTS Neuroendocrine tumors were most unique from normal pancreas. Pancreatitis, pancreatic adenocarcinoma, and metastases are more closely related to each other and to normal pancreas. ANG2 was overexpressed in 89% of neuroendocrine tumors, compared with 22% of normal pancreas, making it the best potential molecular marker or therapeutic target of the four genes selected for analysis. CONCLUSION We have identified a specific set of molecular markers for pancreatic neuroendocrine tumors distinct from pancreatitis and pancreatic adenocarcinoma. These novel markers may prove useful as molecular markers or therapeutic targets unique to pancreatic neuroendocrine tumors.
Collapse
Affiliation(s)
- Mark Bloomston
- Surgery, Moffitt Cancer Center, Tampa, Florida 33612, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Affiliation(s)
- Ian Copland
- The Hospital for Sick Children Research Institute, Departments of Laboratory Medicine and Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
20
|
Affiliation(s)
- Michelle Haynes Pauling
- Department of Medicine and Lung Biology Center, University of California, San Francisco 94143, USA
| | | |
Collapse
|
21
|
Akeson AL, Wetzel B, Thompson FY, Brooks SK, Paradis H, Gendron RL, Greenberg JM. Embryonic vasculogenesis by endothelial precursor cells derived from lung mesenchyme. Dev Dyn 2000; 217:11-23. [PMID: 10679926 DOI: 10.1002/(sici)1097-0177(200001)217:1<11::aid-dvdy2>3.0.co;2-l] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
During development, the lung mesenchyme has a dynamic relationship with the branching airway. Embryonic lung mesenchyme is loosely packed and composed of indistinguishable cells, yet it is the source of vascular progenitors that will become endothelial cells, smooth muscle cells and fibroblasts. In the lung, vessel development in the periphery proceeds first through vasculogenesis, the migration and assembly of cells into a primitive network, and subsequently, through angiogenesis, the sprouting of vessels from this network. As a way to assess the cellular and molecular mechanisms of lung vascularization, we have isolated and cloned cell lines from mouse fetal lung mesenchyme (MFLM). Two of these MFLM cell lines, MFLM-4 and MFLM-91U, display characteristics of an endothelial lineage. RNA analysis demonstrates transcripts for the vascular endothelial growth factor receptors R1 and R2, the receptor tyrosine kinases, Tie-1 and Tie-2, as well as the Tie-2 ligands, Ang-1 and -2. The MFLM cell lines form extensive networks of capillary-like structures with lumens when cultured on a reconstituted basement membrane. In vivo, following blastocyst injection, the MFLM cells chimerize endothelium of the lung and areas of the heart vasculature. The results from these studies suggest that MFLM-4 and MFLM-91U, derived from embryonic lung mesenchyme, can function in vitro and in vivo as endothelial precursors and as models of cardiopulmonary vascularization. Dev Dyn 2000;217:11-23.
Collapse
Affiliation(s)
- A L Akeson
- Children's Hospital Medical Center, Division of Pulmonary Biology, Cincinnati, OH 45229-3039, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The elucidation of the molecular mechanisms of mammalian organogenesis is the foundation on which we can build an improved understanding of organ pathology and pathophysiology. This paper uses the lung and the pancreas as paradigms to demonstrate how advances in basic molecular developmental biology research has translated into new appreciation of, and even novel potential treatment strategies for, congenital anomalies and mature diseases of these organs.
Collapse
Affiliation(s)
- C A Crisera
- Laboratory of Developmental Biology and Repair, New York University Medical Center, NY 10016, USA
| | | | | |
Collapse
|