1
|
Campolo M, Casili G, Lanza M, Filippone A, Cordaro M, Ardizzone A, Scuderi SA, Cuzzocrea S, Esposito E, Paterniti I. The inhibition of mammalian target of rapamycin (mTOR) in improving inflammatory response after traumatic brain injury. J Cell Mol Med 2021; 25:7855-7866. [PMID: 34245104 PMCID: PMC8358860 DOI: 10.1111/jcmm.16702] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 11/27/2022] Open
Abstract
Traumatic brain injury (TBI) provokes primary and secondary damage on endothelium and brain parenchyma, leading neurons die rapidly by necrosis. The mammalian target of rapamycin signalling pathway (mTOR) manages numerous aspects of cellular growth, and it is up-regulated after moderate to severe traumatic brain injury (TBI). Currently, the significance of this increased signalling event for the recovery of brain function is unclear; therefore, we used two different selective inhibitors of mTOR activity to discover the functional role of mTOR inhibition in a mouse model of TBI performed by a controlled cortical impact injury (CCI). Treatment with KU0063794, a dual mTORC1 and mTORC2 inhibitor, and with rapamycin as well-known inhibitor of mTOR, was performed 1 and 4 hours subsequent to TBI. Results proved that mTOR inhibitors, especially KU0063794, significantly improved cognitive and motor recovery after TBI, reducing lesion volumes. Also, treatment with mTOR inhibitors ameliorated the neuroinflammation associated with TBI, showing a diminished neuronal death and astrogliosis after trauma. Our findings propose that the involvement of selective mTORC1/2 inhibitor may represent a therapeutic strategy to improve recovery after brain trauma.
Collapse
Affiliation(s)
- Michela Campolo
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Marika Lanza
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Alessio Ardizzone
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy.,Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
2
|
Gerbatin RDR, Cassol G, Dobrachinski F, Ferreira APO, Quines CB, Pace IDD, Busanello GL, Gutierres JM, Nogueira CW, Oliveira MS, Soares FA, Morsch VM, Fighera MR, Royes LFF. Guanosine Protects Against Traumatic Brain Injury-Induced Functional Impairments and Neuronal Loss by Modulating Excitotoxicity, Mitochondrial Dysfunction, and Inflammation. Mol Neurobiol 2016; 54:7585-7596. [PMID: 27830534 DOI: 10.1007/s12035-016-0238-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/17/2016] [Indexed: 12/22/2022]
Abstract
Traumatic brain injury (TBI) is one of the most common types of brain injuries that cause death or persistent neurological disturbances in survivors. Most of the promising experimental drugs were not effective in clinical trials; therefore, the development of TBI drugs represents a huge unmet need. Guanosine, an endogenous neuroprotective nucleoside, has not been evaluated in TBI to the best of our knowledge. Therefore, the present study evaluated the effect of guanosine on TBI-induced neurological damage. Our findings showed that a single dose of guanosine (7.5 mg/kg, intraperitoneally (i.p.) injected 40 min after fluid percussion injury (FPI) in rats protected against locomotor and exploratory impairments 8 h after injury. The treatment also protected against neurochemical damage to the ipsilateral cortex, glutamate uptake, Na+/K+-ATPase, glutamine synthetase activity, and alterations in mitochondrial function. The inflammatory response and brain edema were also reduced by this nucleoside. In addition, guanosine protected against neuronal death and caspase 3 activation. Therefore, this study suggests that guanosine plays a neuroprotective role in TBI and can be exploited as a new pharmacological strategy.
Collapse
Affiliation(s)
- Rogério da Rosa Gerbatin
- Laboratório de Bioquímica do Exercício, Centro de Educação Física e Desportos, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Gustavo Cassol
- Laboratório de Bioquímica do Exercício, Centro de Educação Física e Desportos, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Fernando Dobrachinski
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Ana Paula O Ferreira
- Laboratório de Bioquímica do Exercício, Centro de Educação Física e Desportos, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Caroline B Quines
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Iuri D Della Pace
- Laboratório de Bioquímica do Exercício, Centro de Educação Física e Desportos, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Guilherme L Busanello
- Laboratório de Bioquímica do Exercício, Centro de Educação Física e Desportos, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Jessié M Gutierres
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Cristina W Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Mauro S Oliveira
- Laboratório de Neurotoxicidade e Psicofarmacologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Félix A Soares
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Vera M Morsch
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Michele R Fighera
- Laboratório de Bioquímica do Exercício, Centro de Educação Física e Desportos, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Departamento de Neuropsiquiatria, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Luiz Fernando F Royes
- Laboratório de Bioquímica do Exercício, Centro de Educação Física e Desportos, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
3
|
Riew TR, Shin YJ, Kim HL, Cho JM, Pak HJ, Lee MY. Spatiotemporal Progression of Microcalcification in the Hippocampal CA1 Region following Transient Forebrain Ischemia in Rats: An Ultrastructural Study. PLoS One 2016; 11:e0159229. [PMID: 27414398 PMCID: PMC4945069 DOI: 10.1371/journal.pone.0159229] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/29/2016] [Indexed: 11/19/2022] Open
Abstract
Calcification in areas of neuronal degeneration is a common finding in several neuropathological disorders including ischemic insults. Here, we performed a detailed examination of the onset and spatiotemporal profile of calcification in the CA1 region of the hippocampus, where neuronal death has been observed after transient forebrain ischemia. Histopathological examinations showed very little alizarin red staining in the CA1 pyramidal cell layer until day 28 after reperfusion, while prominent alizarin red staining was detected in CA1 dendritic subfields, particularly in the stratum radiatum, by 14 days after reperfusion. Electron microscopy using the osmium/potassium dichromate method and electron probe microanalysis revealed selective calcium deposits within the mitochondria of degenerating dendrites at as early as 7 days after reperfusion, with subsequent complete mineralization occurring throughout the dendrites, which then coalesced to form larger mineral conglomerates with the adjacent calcifying neurites by 14 days after reperfusion. Large calcifying deposits were frequently observed at 28 days after reperfusion, when they were closely associated with or completely engulfed by astrocytes. In contrast, no prominent calcification was observed in the somata of CA1 pyramidal neurons showing the characteristic features of necrotic cell death after ischemia, although what appeared to be calcified mitochondria were noted in some degenerated neurons that became dark and condensed. Thus, our data indicate that intrahippocampal calcification after ischemic insults initially occurs within the mitochondria of degenerating dendrites, which leads to the extensive calcification that is associated with ischemic injuries. These findings suggest that in degenerating neurons, the calcified mitochondria in the dendrites, rather than in the somata, may serve as the nidus for further calcium precipitation in the ischemic hippocampus.
Collapse
Affiliation(s)
- Tae-Ryong Riew
- Department of Anatomy, Catholic Neuroscience Institute, Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, 137-701, Seoul, Korea
| | - Yoo-Jin Shin
- Department of Anatomy, Catholic Neuroscience Institute, Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, 137-701, Seoul, Korea
| | - Hong Lim Kim
- Integrative Research Support Center, Laboratory of Electron Microscope, College of Medicine, The Catholic University of Korea, Seoul, Korea, 137-701, Seoul, Korea
| | - Jeong Min Cho
- Department of Anatomy, Catholic Neuroscience Institute, Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, 137-701, Seoul, Korea
| | - Ha-Jin Pak
- Department of Anatomy, Catholic Neuroscience Institute, Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, 137-701, Seoul, Korea
| | - Mun-Yong Lee
- Department of Anatomy, Catholic Neuroscience Institute, Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, 137-701, Seoul, Korea
- * E-mail:
| |
Collapse
|
4
|
Tsitsopoulos PP, Marklund N. Amyloid-β Peptides and Tau Protein as Biomarkers in Cerebrospinal and Interstitial Fluid Following Traumatic Brain Injury: A Review of Experimental and Clinical Studies. Front Neurol 2013; 4:79. [PMID: 23805125 PMCID: PMC3693096 DOI: 10.3389/fneur.2013.00079] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 06/11/2013] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) survivors frequently suffer from life-long deficits in cognitive functions and a reduced quality of life. Axonal injury, observed in many severe TBI patients, results in accumulation of amyloid precursor protein (APP). Post-injury enzymatic cleavage of APP can generate amyloid-β (Aβ) peptides, a hallmark finding in Alzheimer’s disease (AD). At autopsy, brains of AD and a subset of TBI victims display some similarities including accumulation of Aβ peptides and neurofibrillary tangles of hyperphosphorylated tau proteins. Most epidemiological evidence suggests a link between TBI and AD, implying that TBI has neurodegenerative sequelae. Aβ peptides and tau may be used as biomarkers in interstitial fluid (ISF) using cerebral microdialysis and/or cerebrospinal fluid (CSF) following clinical TBI. In the present review, the available clinical and experimental literature on Aβ peptides and tau as potential biomarkers following TBI is comprehensively analyzed. Elevated CSF and ISF tau protein levels have been observed following severe TBI and suggested to correlate with clinical outcome. Although Aβ peptides are produced by normal neuronal metabolism, high levels of long and/or fibrillary Aβ peptides may be neurotoxic. Increased CSF and/or ISF Aβ levels post-injury may be related to neuronal activity and/or the presence of axonal injury. The heterogeneity of animal models, clinical cohorts, analytical techniques, and the complexity of TBI in the available studies make the clinical value of tau and Aβ as biomarkers uncertain at present. Additionally, the link between early post-injury changes in tau and Aβ peptides and the future risk of developing AD remains unclear. Future studies using methods such as rapid biomarker sampling combined with enhanced analytical techniques and/or novel pharmacological tools could provide additional information on the importance of Aβ peptides and tau protein in both the acute pathophysiology and long-term consequences of TBI.
Collapse
Affiliation(s)
- Parmenion P Tsitsopoulos
- Department of Neurosurgery, Hippokratio General Hospital, Faculty of Medicine, Aristotle University , Thessaloniki , Greece ; Department of Neuroscience, Division of Neurosurgery, Uppsala University , Uppsala , Sweden
| | | |
Collapse
|
5
|
Logan TT, Villapol S, Symes AJ. TGF-β superfamily gene expression and induction of the Runx1 transcription factor in adult neurogenic regions after brain injury. PLoS One 2013; 8:e59250. [PMID: 23555640 PMCID: PMC3605457 DOI: 10.1371/journal.pone.0059250] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 02/13/2013] [Indexed: 12/17/2022] Open
Abstract
Traumatic brain injury (TBI) increases neurogenesis in the forebrain subventricular zone (SVZ) and the hippocampal dentate gyrus (DG). Transforming growth factor-β (TGF-β) superfamily cytokines are important regulators of adult neurogenesis, but their involvement in the regulation of this process after brain injury is unclear. We subjected adult mice to controlled cortical impact (CCI) injury, and isolated RNA from the SVZ and DG at different post-injury time points. qPCR array analysis showed that cortical injury caused significant alterations in the mRNA expression of components and targets of the TGF-β, BMP, and activin signaling pathways in the SVZ and DG after injury, suggesting that these pathways could regulate post-injury neurogenesis. In both neurogenic regions, the injury also induced expression of Runt-related transcription factor-1 (Runx1), which can interact with intracellular TGF-β Smad signaling pathways. CCI injury strongly induced Runx1 expression in activated and proliferating microglial cells throughout the neurogenic regions. Runx1 protein was also expressed in a subset of Nestin- and GFAP-expressing putative neural stem or progenitor cells in the DG and SVZ after injury. In the DG only, these Runx1+ progenitors proliferated. Our data suggest potential roles for Runx1 in the processes of microglial cell activation and proliferation and in neural stem cell proliferation after TBI.
Collapse
Affiliation(s)
- Trevor T. Logan
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Sonia Villapol
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Aviva J. Symes
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
6
|
Abstract
In vitro models of traumatic brain injury (TBI) are helping elucidate the pathobiological mechanisms responsible for dysfunction and delayed cell death after mechanical stimulation of the brain. Researchers have identified compounds that have the potential to break the chain of molecular events set in motion by traumatic injury. Ultimately, the utility of in vitro models in identifying novel therapeutics will be determined by how closely the in vitro cascades recapitulate the sequence of cellular events that play out in vivo after TBI. Herein, the major in vitro models are reviewed, and a discussion of the physical injury mechanisms and culture preparations is employed. A comparison between the efficacy of compounds tested in vitro and in vivo is presented as a critical evaluation of the fidelity of in vitro models to the complex pathobiology that is TBI. We conclude that in vitro models were greater than 88% predictive of in vivo results.
Collapse
Affiliation(s)
- Barclay Morrison
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | | | | | | |
Collapse
|
7
|
Gilmer LK, Roberts KN, Joy K, Sullivan PG, Scheff SW. Early mitochondrial dysfunction after cortical contusion injury. J Neurotrauma 2010; 26:1271-80. [PMID: 19637966 DOI: 10.1089/neu.2008.0857] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Following traumatic brain injury, mitochondria sustain structural and functional impairment, which contributes to secondary damage that can continue for days after the initial injury. The present study investigated mitochondrial bioenergetic changes in the rat neocortex at 1 and 3 h after mild, moderate, and severe injuries. Brains from young adult Sprague-Dawley rats were harvested from the injured and contralateral cortex to assess possible changes in mitochondrial respiration abilities following a unilateral cortical contusion injury. Differential centrifugation was used to isolate synaptic and extrasynaptic mitochondria from cortical tissue. Bioenergetics was assessed using a Clark-type electrode and results were graphed as a function of injury severity and time post-injury. Respiration was significantly affected by all injury severity levels compared to uninjured tissue. Complex 1- and complex 2-driven respirations were affected proportionally to the severity of the injury, indicating that damage to mitochondria may occur on a gradient. Total oxygen utilization, respiratory control ratio, ATP production, and maximal respiration capabilities were all significantly decreased in the injured cortex at both 1 and 3 h post-trauma. Although mitochondria displayed bioenergetic deficits at 1 h following injury, damage was not exacerbated by 3 h. This study stresses the importance of early therapeutic intervention and suggests a window of approximately 1-3 h before greater dysfunction occurs.
Collapse
Affiliation(s)
- Lesley K Gilmer
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY 40536-0230, USA
| | | | | | | | | |
Collapse
|
8
|
Shahlaie K, Lyeth BG, Gurkoff GG, Muizelaar JP, Berman RF. Neuroprotective effects of selective N-type VGCC blockade on stretch-injury-induced calcium dynamics in cortical neurons. J Neurotrauma 2010; 27:175-87. [PMID: 19772476 DOI: 10.1089/neu.2009.1003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Acute elevation in intracellular calcium ([Ca(2+)](i)) following traumatic brain injury (TBI) can trigger cellular mechanisms leading to neuronal dysfunction and death. The mechanisms underlying these processes are not completely understood, but calcium influx through N-type voltage-gated calcium channels (VGCCs) appears to play a central role. The present study examined the time course of [Ca(2+)](i) flux, glutamate release, and loss of cell viability following injury using an in vitro neuronal-glial cortical cell-culture model of TBI. The effects of N-channel blockade with SNX-185 (e.g. omega-conotoxin TVIA) before or after injury were also examined. Neuronal injury produced a transient elevation in [Ca(2+)](i), increased glutamate release, and resulted in neuronal and glial death. SNX-185 administered before or immediately after cell injury reduced glutamate release and increased the survival of neurons and astrocytes, whereas delayed treatment did not improve cell survival but significantly facilitated the return of [Ca(2+)](i) to baseline levels. The new findings that N-type VGCCs are critically involved in injury-induced glutamate release and recovery of [Ca(2+)](i) argue for continued investigation of this treatment strategy for the clinical management of TBI. In particular, SNX-185 may represent an effective class of drugs that can significantly protect injured neurons from the secondary insults that commonly occur after TBI.
Collapse
Affiliation(s)
- Kiarash Shahlaie
- Department of Neurological Surgery, School of Medicine, University of California, Davis, Sacramento, California 95817, USA.
| | | | | | | | | |
Collapse
|
9
|
Abstract
The use of therapeutic hypothermia (TH) in acute care medicine has evolved over the past 2 centuries, and its use over the past decade has increased in emergency departments, intensive care units, and operating rooms. Therapeutic hypothermia has several potential clinical applications based on its putative mechanisms of action. It appears to improve oxygen supply to ischemic areas of the brain and decreases intracranial pressure. Mild-to-moderate TH (33 degrees C +/- 1 degrees C) after resuscitation from cardiac arrest is neuroprotective, and also acts on the cardiovascular system with evidence of a decrease in heart rate and increase in systemic vascular resistance. Therapeutic hypothermia decreases cardiac output by 7% for each 1 degrees C decrease in core body temperature, but maintains the stroke volume and the mean arterial pressure. Despite a growing amount of data, this life-saving technique is underutilized in hospitals worldwide. The purpose of this comprehensive review is to show the evolution and the clinical use of TH as it pertains to acute care practitioners.
Collapse
Affiliation(s)
- Joseph Varon
- The University of Texas Health Science Center at Houston, 2219 Dorrington St., Houston, TX 77030, USA.
| |
Collapse
|
10
|
Mahfouz RZ, Sharma RK, Poenicke K, Jha R, Paasch U, Grunewald S, Agarwal A. Evaluation of poly(ADP-ribose) polymerase cleavage (cPARP) in ejaculated human sperm fractions after induction of apoptosis. Fertil Steril 2009; 91:2210-20. [DOI: 10.1016/j.fertnstert.2008.02.173] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 02/28/2008] [Accepted: 02/28/2008] [Indexed: 10/22/2022]
|
11
|
Thompson CM, Quinn CA, Hergenrother PJ. Total Synthesis and Cytoprotective Properties of Dykellic Acid. J Med Chem 2008; 52:117-25. [DOI: 10.1021/jm801169s] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Christina M. Thompson
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, Illinois 61801
| | - Catherine A. Quinn
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, Illinois 61801
| | - Paul J. Hergenrother
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, Illinois 61801
| |
Collapse
|
12
|
Abstract
Cardiac arrest causes devastating neurologic morbidity and mortality. The preservation of the brain function is the final goal of resuscitation. Therapeutic hypothermia (TH) has been considered as an effective method for reducing ischemic injury of the brain. The therapeutic use of hypothermia has been utilized for millennia, and over the last 50 years has been routinely employed in the operating room. TH gained recognition in the past 6 years as a neuroprotective agent in victims of cardiac arrest after two large, randomized, prospective clinical trials demonstrated its benefits in the postresuscitation setting. Extensive research has been done at the cellular and molecular levels and in animal models. There are a number of proposed applications of TH, including traumatic brain injury, acute encephalitis, stroke, neonatal hypoxemia, and near-drowning, among others. Several devices are being designed with the purpose of decreasing temperature at a fast and steady rate, and trying to avoid potential complications. This article reviews the historical development of TH, and its current indications, methods of induction, and potential future.
Collapse
Affiliation(s)
- Joseph Varon
- University of Texas Health Science Center at Houston, Houston, Texas, USA.
| | | |
Collapse
|