1
|
Liu YM, Punckt C, Pope MA, Gelperin A, Aksay IA. Electrochemical sensing of nitric oxide with functionalized graphene electrodes. ACS APPLIED MATERIALS & INTERFACES 2013; 5:12624-12630. [PMID: 24206401 DOI: 10.1021/am403983g] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The intrinsic electrocatalytic properties of functionalized graphene sheets (FGSs) in nitric oxide (NO) sensing are determined by cyclic voltammetry with FGS monolayer electrodes. The degrees of reduction and defectiveness of the FGSs are varied by employing different heat treatments during their fabrication. FGSs with intermediate degrees of reduction and high Raman ID to IG peak ratios exhibit an NO oxidation peak potential of 794 mV (vs 1 M Ag/AgCl), closely matching values obtained with a platinized Pt control (791 mV) as well as recent results from the literature on porous or biofunctionalized electrodes. We show that the peak potential obtained with FGS electrodes can be further reduced to 764 mV by incorporation of electrode porosity using a drop-casting approach, indicating a stronger apparent electrocatalytic effect on porous FGS electrodes as compared to platinized Pt. Taking into consideration effects of electrode morphology, we thereby demonstrate that FGSs are intrinsically as catalytic toward NO oxidation as platinum. The lowered peak potential of porous FGS electrodes is accompanied by a significant increase in peak current, which we attribute either to pore depletion effects or an amplification effect due to subsequent electrooxidation reactions. Our results suggest that the development of sensor electrodes with higher sensitivity and lower detection limits should be feasible with FGSs.
Collapse
Affiliation(s)
- Yifei M Liu
- Department of Chemical and Biological Engineering and §Program in Neuroscience, Department of Molecular Biology, Princeton University , Princeton, New Jersey 08544, United States
| | | | | | | | | |
Collapse
|
2
|
Crespi F. In vivo voltammetric evidence that cerebral nitric oxide (NO) is influenced by drugs of abuse: is NO implicated in their neurotoxicity? RSC Adv 2013. [DOI: 10.1039/c3ra40804c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
3
|
Crespi F. The selective serotonin reuptake inhibitor fluoxetine reduces striatal in vivo levels of voltammetric nitric oxide (NO): A feature of its antidepressant activity? Neurosci Lett 2010; 470:95-9. [DOI: 10.1016/j.neulet.2009.12.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 12/16/2009] [Accepted: 12/19/2009] [Indexed: 10/20/2022]
|
4
|
Hall CN, Garthwaite J. What is the real physiological NO concentration in vivo? Nitric Oxide 2009; 21:92-103. [PMID: 19602444 PMCID: PMC2779337 DOI: 10.1016/j.niox.2009.07.002] [Citation(s) in RCA: 279] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 07/06/2009] [Indexed: 01/10/2023]
Abstract
Clarity about the nitric oxide (NO) concentrations existing physiologically is essential for developing a quantitative understanding of NO signalling, for performing experiments with NO that emulate reality, and for knowing whether or not NO concentrations become abnormal in disease states. A decade ago, a value of about 1 μM seemed reasonable based on early electrode measurements and a provisional estimate of the potency of NO for its guanylyl cyclase-coupled receptors, which mediate physiological NO signal transduction. Since then, numerous efforts to measure NO concentrations directly using electrodes in cells and tissues have yielded an irreconcilably large spread of values. In compensation, data from several alternative approaches have now converged to provide a more coherent picture. These approaches include the quantitative analysis of NO-activated guanylyl cyclase, computer modelling based on the type, activity and amount of NO synthase enzyme contained in cells, the use of novel biosensors to monitor NO release from single endothelial cells and neurones, and the use of guanylyl cyclase as an endogenous NO biosensor in tissue subjected to a variety of challenges. All these independent lines of evidence suggest the physiological NO concentration range to be 100 pM (or below) up to ∼5 nM, orders of magnitude lower than was once thought.
Collapse
Affiliation(s)
- Catherine N Hall
- Department of Neuroscience, Physiology and Pharmacology, University College London, UK
| | | |
Collapse
|
5
|
Ondracek JM, Dec A, Hoque KE, Lim SAO, Rasouli G, Indorkar RP, Linardakis J, Klika B, Mukherji SJ, Burnazi M, Threlfell S, Sammut S, West AR. Feed-forward excitation of striatal neuron activity by frontal cortical activation of nitric oxide signaling in vivo. Eur J Neurosci 2008; 27:1739-54. [PMID: 18371082 DOI: 10.1111/j.1460-9568.2008.06157.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The gaseous neurotransmitter nitric oxide plays an important role in the modulation of corticostriatal synaptic transmission. This study examined the impact of frontal cortex stimulation on striatal nitric oxide efflux and neuron activity in urethane-anesthetized rats using amperometric microsensor and single-unit extracellular recordings, respectively. Systemic administration of the neuronal nitric oxide synthase inhibitor 7-nitroindazole decreased spontaneous spike activity without affecting activity evoked by single-pulse stimulation of the ipsilateral cortex. Train (30 Hz) stimulation of the contralateral frontal cortex transiently increased nitric oxide efflux in a robust and reproducible manner. Evoked nitric oxide efflux was attenuated by systemic administration of 7-nitroindazole and the non-selective nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester. Train stimulation of the contralateral cortex, in a manner identical to that used to evoke nitric oxide efflux, had variable effects on spike activity assessed during the train stimulation trial, but induced a short-term depression of cortically evoked activity in the first post-train stimulation trial. Interestingly, 7-nitroindazole potently decreased cortically evoked activity recorded during the train stimulation trial. Moreover, the short-term depression of spike activity induced by train stimulation was enhanced following pretreatment with 7-nitroindazole and attenuated after systemic administration of the dopamine D2 receptor antagonist eticlopride. These results demonstrate that robust activation of frontal cortical afferents in the intact animal activates a powerful nitric oxide-mediated feed-forward excitation which partially offsets concurrent D2 receptor-mediated short-term inhibitory influences on striatal neuron activity. Thus, nitric oxide signaling is likely to play an important role in the integration of corticostriatal sensorimotor information in striatal networks.
Collapse
Affiliation(s)
- Janie M Ondracek
- The Chicago Medical School at Rosalind Franklin University of Medicine and Science, Department of Neuroscience, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Sammut S, Park DJ, West AR. Frontal cortical afferents facilitate striatal nitric oxide transmission in vivo via a NMDA receptor and neuronal NOS-dependent mechanism. J Neurochem 2007; 103:1145-56. [PMID: 17666041 DOI: 10.1111/j.1471-4159.2007.04811.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Striatal nitric oxide (NO) signaling plays a critical role in modulating neural processing and motor behavior. Nitrergic interneurons receive synaptic inputs from corticostriatal neurons and are activated via ionotropic glutamate receptor stimulation. However, the afferent regulation of NO signaling is poorly characterized. The role of frontal cortical afferents in regulating NO transmission was assessed in anesthetized rats using amperometric microsensor measurements of NO efflux and local field potential recordings. Low frequency (3 Hz) electrical stimulation of the ipsilateral cortex did not consistently evoke detectable changes in striatal NO efflux. In contrast, train stimulation (30 Hz) of frontal cortical afferents facilitated NO efflux in a stimulus intensity-dependent manner. Nitric oxide efflux evoked by train stimulation was transient, reproducible over time, and attenuated by systemic administration of either the NMDA receptor antagonist MK-801 or the neuronal NO synthase inhibitors 7-nitroindazole and NG-propyl-L-arginine. The interaction between NO efflux evoked via train stimulation and local striatal neuron activity was assessed using dual microsensor and local field potential recordings carried out concurrently in the contralateral and ipsilateral striatum, respectively. Systemic administration of the non-specific NO synthase inhibitor methylene blue attenuated both evoked NO efflux and the peak oscillation frequency (within the delta band) of local field potentials recorded immediately after train stimulation. Taken together, these observations indicate that feed-forward activation of neuronal NO signaling by phasic activation of frontal cortical afferents facilitates the synchronization of glutamate driven oscillations in striatal neurons. Thus, NO signaling may act to amplify coherent corticostriatal transmission and synchronize striatal output.
Collapse
Affiliation(s)
- Stephen Sammut
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064, USA
| | | | | |
Collapse
|
7
|
Sammut S, Dec A, Mitchell D, Linardakis J, Ortiguela M, West AR. Phasic dopaminergic transmission increases NO efflux in the rat dorsal striatum via a neuronal NOS and a dopamine D(1/5) receptor-dependent mechanism. Neuropsychopharmacology 2006; 31:493-505. [PMID: 16012530 DOI: 10.1038/sj.npp.1300826] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dysfunctional neurotransmission within striatal networks is believed to underlie the pathophysiology of several neurological and psychiatric disorders. Nitric oxide (NO)-producing interneurons have been shown to play a critical role in modulating striatal synaptic transmission. These interneurons receive synaptic contacts from midbrain dopamine (DA) neurons and may be regulated by DA receptor activation. In the current study, striatal NO efflux was measured in anesthetized male rats using an NO-selective electrochemical microsensor and the role of DA in modulating NO synthase (NOS) activity was assessed during electrical or chemical (bicuculline) stimulation of the substantia nigra (SN). Electrical stimuli were patterned to approximate the natural single spike or burst firing activity of midbrain DA neurons. Electrical stimulation of the SN at low frequencies induced modest increases in striatal NO efflux. In contrast, train stimulation of the SN robustly increased NO efflux in a stimulus intensity-dependent manner. NO efflux evoked by SN stimulation was similar in chloral hydrate- and urethane-anesthetized rats. The facilitatory effect of train stimulation on striatal NO efflux was transient and attenuated by systemic administration of the neuronal NOS inhibitor 7-nitroindazole and the nonselective NOS inhibitor methylene blue. Moreover, the increase in NO efflux observed during chemical and train stimulation of the SN was attenuated following systemic administration of the DA D(1/5) receptor antagonist SCH 23390. SCH 23390 also blocked NO efflux induced by systemic administration of the D(1/5) agonist SKF 81297. These results indicate that neuronal NOS is activated in vivo by nigrostriatal DA cell burst firing via a DA D(1/5)-like receptor-dependent mechanism.
Collapse
Affiliation(s)
- Stephen Sammut
- Department of Neuroscience, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Crespi F, Dalessandro D, Annovazzi-Lodi V, Heidbreder C, Norgia M. In vivo voltammetry: from wire to wireless measurements. J Neurosci Methods 2005; 140:153-61. [PMID: 15589345 DOI: 10.1016/j.jneumeth.2004.06.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Accepted: 06/11/2004] [Indexed: 12/27/2022]
Abstract
A novel telemetric system based on either differential pulse voltammetry (DPV) or direct current amperometry (DCA) by using a diffused infrared transmission channel is presented. Unlike similar pre-existing instruments based on infrared transmission, the present system works on a single-way communication, thus avoiding problems related to cross-talking between two-way channels. The infrared channel is also immune from electromagnetic interferences from the surrounding environment. Further advancement is the development of an original miniaturised system (dimension 1cm x 1.2 cm x 0.5 cm) with reduced weight (5-6 g), suitable for affixing to the rat head and allowing real time telemetric monitoring using DCA sampling of neurotransmitters such as dopamine or serotonin every 100 ms. The set-up is based on a transmitter (TX) circuit mounted on the animal's head and connected to the electrodes inserted into its brain. The TX circuit generates the proper electrical signals for DPV or DCA, collects the electrical response of the brain and transmits it, via an infrared channel, to a receiving station (RX) interfaced with a personal computer. The PC performs the sampling and elaboration of polarographic traces in a flexible and programmable way.
Collapse
Affiliation(s)
- Francesco Crespi
- Department of Biology, Psychiatry CEDD, GlaxoSmithKline, Verona, Italy
| | | | | | | | | |
Collapse
|
9
|
Ferreira NR, Ledo A, Frade JG, Gerhardt GA, Laranjinha J, Barbosa RM. Electrochemical measurement of endogenously produced nitric oxide in brain slices using Nafion/o-phenylenediamine modified carbon fiber microelectrodes. Anal Chim Acta 2005. [DOI: 10.1016/j.aca.2004.12.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Abstract
OBJECTIVE Previous studies indicate that the nitric oxide (NO(.)) pathway is involved in the acute or chronic effects of ethanol on the central nervous system. However, direct evidence for the effect of ethanol on NO(.) production in vivo is lacking, and it is not clear whether it is inhibition or stimulation of the NO(.) pathway that contributes to the behavioral effects of ethanol. Herein the release of NO(.) in the rat striatum in vivo in response to NMDA receptor activation--the dominant mechanism controlling NO(.) formation-has been investigated after systemic or local injections of ethanol. METHODS NMDA-induced release of authentic NO(.) was measured directly in the striatum of urethane-anesthetized (1.2 g/kg intraperitoneally) male Sprague-Dawley rats by using a direct-current amperometric method coupled to an electrically modified carbon microelectrode. An injector cannula was implanted in the proximity of the electrode (250 microm apart) for focal drugs application. RESULTS Local application of NMDA (1 microl, 100 microM) produced a sharp and transient NO(.) signal. Systemic ethanol, 1 or 2.5 g/kg intraperitoneally, caused a long-lasting, dose-dependent inhibition of NMDA-induced NO(.) release to 12.2 +/- 5.9 and 6.4 +/- 3.7% of control, respectively, 60 min after ethanol administration. Dizocilpine (0.5 mg/kg intraperitoneally) mimicked the ethanol effect, inhibiting NO release to 1.6 +/- 0.66% of control. Local application of ethanol (1 microl, 2.5% v/v) in the striatum reduced the NMDA-induced response to 28.6 +/- 3.8% of control. Focal application of the competitive NMDA receptor antagonist D-(-)-2-amino-5-phosphonopentanoic acid (100 microM) or the nonselective NO synthase inhibitor L-N(G)-nitro-arginine methyl esther (100 microM) also caused inhibition of NMDA-induced NO(.) release to 2.4 +/- 0.7 and 4.3 +/- 0.9% of control, respectively. CONCLUSIONS Ethanol, at pharmacologically significant doses, strongly inhibits striatal NO(.) production and release apparently through inhibition of NMDA receptor function. Inhibition of NMDA receptor-mediated activation of the NO(.) pathway could be a primary neurobiological mechanism contributing to the effects of ethanol.
Collapse
Affiliation(s)
- Zvani L Rossetti
- Department of Neuroscience and CNR Institute of Neuroscience, University of Cagliari, Cittadella di Monserrato, 09042 Monserrato, Italy.
| | | |
Collapse
|
11
|
Crespi F, Rossetti ZL. Pulse of nitric oxide release in response to activation of N-methyl-D-aspartate receptors in the rat striatum: rapid desensitization, inhibition by receptor antagonists, and potentiation by glycine. J Pharmacol Exp Ther 2004; 309:462-8. [PMID: 14724219 DOI: 10.1124/jpet.103.061069] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Increased activity of glutamate N-methyl-d-aspartate (NMDA) receptors is the dominant mechanism by which nitric oxide (NO.) is generated. By using a selective direct-current amperometry method, we characterized real time NO* release in vivo in response to chemical stimulation of NMDA receptors in the rat striatum. The application of NMDA caused the appearance of a sharp and transient oxidation signal. Concentration-response studies (10-500 microM) indicated an EC(50) of 48 microM. The NMDA-induced amperometric signal was suppressed by focal application of the nitric-oxide synthase inhibitor L-nitro-arginine methyl ester (L-NAME, 100 microM) or D-(-)-2-amino-5-phosphonopentanoic acid (AP-5, 100 microM) or by systemic injection of dizocilpine (1 mg/kg i.p.), drugs that, when given alone, had no effect on baseline oxidation current. Repeated injections of NMDA at short intervals (approximately 80 s) resulted in a progressive reduction of the amperometric signal with a decay half-life of 1.36 min. Sixty min after the last NMDA application the amperometric response was restored to initial levels. Finally, the coapplication of glycine (50 or 100 microM), which, when given alone had no effect, potentiated the NMDA-induced response. Thus, NMDA receptor-mediated activation of striatal NO* system shuts off quickly and undergoes rapid desensitization, suggesting a feedback inhibition of NMDA receptor function. To the extent of NO* release can represent a correlate of NMDA receptor activity, its amperometric detection could be useful to assess in vivo the state of excitatory transmission under physiological, pharmacological, or pathological conditions.
Collapse
Affiliation(s)
- Francesco Crespi
- CEDD Psychiatry, Department of Biology, GlaxoSmithKline, Verona, Italy
| | | |
Collapse
|
12
|
Ledo A, Barbosa RM, Frade J, Laranjinha J. Nitric oxide monitoring in hippocampal brain slices using electrochemical methods. Methods Enzymol 2003; 359:111-25. [PMID: 12481564 DOI: 10.1016/s0076-6879(02)59176-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Affiliation(s)
- Ana Ledo
- Center for Neurosciences, University of Coimbra, 3000 Coimbra, Portugal
| | | | | | | |
Collapse
|
13
|
Shah AJ, Crespi F, Heidbreder C. Amino acid neurotransmitters: separation approaches and diagnostic value. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 781:151-63. [PMID: 12450657 DOI: 10.1016/s1570-0232(02)00621-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Amino acids in the central nervous system can be divided into non-neurotransmitter or neurotransmitter depending on their function. The measurement of these small molecules in brain tissue and extracellular fluid has been used to develop effective treatment strategies for neuropsychiatric and neurodegenerative diseases and for the diagnosis of such pathologies. Here we describe the separation and detection techniques that have been used for the measurement of amino acids at trace levels in brain tissue and dialysates. An overview of the function of amino acid transmitters in the brain is given. In addition, the type of sampling techniques that are used for the determination of amino acid levels in the brain is described.
Collapse
Affiliation(s)
- Ajit J Shah
- Computational, Analytical and Structural Sciences, GlaxoSmithKline, New Frontiers Science Park, Third Avenue, Harlow, Essex CM19 5AW, UK.
| | | | | |
Collapse
|
14
|
González-Mora JL, Martín FA, Rojas-Díaz D, Hernández S, Ramos-Pérez I, Rodríguez VD, Castellano MA. In vivo spectroscopy: a novel approach for simultaneously estimating nitric oxide and hemodynamic parameters in the rat brain. J Neurosci Methods 2002; 119:151-61. [PMID: 12323419 DOI: 10.1016/s0165-0270(02)00175-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Nitric oxide (NO) is a versatile molecule involved in a wide range of biological processes. Under physiological conditions, NO reacts with oxyhemoglobin (OxyHb) to form methemoglobin (MetHb) at a very high rate. Microdialysis studies have used hemoglobin solutions as a trapping method to quantify NO in vivo. The methodology described here uses the microcapillary network with endogenous OxyHb instead of microdialysis probe with exogenous OxyHb for monitoring MetHb as an indirect index of NO levels by in vivo spectroscopy using optical fibers. This new method has been validated in rat cerebral cortex by the infusion of NO or well-known drug-induced changes in NO concentration (NMDA agonists and a NO-synthase inhibitor) and by comparing results with simultaneous voltammetric recordings. Results indicate that this spectroscopy technique is able to record large increases in MetHb levels and to detect reductions of its basal levels. In addition, data show that similar changes and kinetics can be observed with both techniques. Thus, intravascular MetHb can be used as an indirect index of NO levels. It is proposed that in vivo spectroscopy may be a useful tool to gain insight into the roles of NO in hemodynamic parameters and in other physiological processes such as the regulation of the mitochondrial respiratory chain.
Collapse
Affiliation(s)
- Jose L González-Mora
- Departamento de Fisiología, Facultad de Medicina, Universidad de La Laguna, Tenerife 38071, Canary Islands, Spain.
| | | | | | | | | | | | | |
Collapse
|
15
|
Mas M, Escrig A, Gonzalez-Mora JL. In vivo electrochemical measurement of nitric oxide in corpus cavernosum penis. J Neurosci Methods 2002; 119:143-50. [PMID: 12323418 DOI: 10.1016/s0165-0270(02)00173-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A wealth of pharmacological studies suggest that nitric oxide (NO) generated in the corpus cavernosum is a main molecular mediator of penile erection. However, the physiological levels of NO in the corpora and their possible changes during penile erection have remained unknown for want of suitable methodologies. We have adapted a voltammetric procedure, derived from Malinski's method, for assessing NO levels in the penis in vivo. Differential normal pulse voltammetry with carbon fiber electrodes (30 microm) coated with a polymeric porphyrin and Nafion was used to measure the NO oxidation current in the corpora cavernosa of urethane-anesthetized rats. The intracavernous pressure was monitored simultaneously. A NO oxidation peak was consistently detected at approximately 650 mV both in NO solutions and in the corpora in vivo. The changes in the NO signals observed in vitro were consistent with the concentration values measured by chemiluminescence. The NO signal recorded in vivo increased following cavernous nerve stimulation and was greatly decreased by intracavernous injections of several inhibitors of the neuronal and endothelial NO synthase isoenzymes. Such results agree with our previous studies using this methodology and substantiate further its validity for monitoring the physiological changes in NO levels in the penis.
Collapse
Affiliation(s)
- Manuel Mas
- Department of Physiology and CESEX, School of Medicine, University of La Laguna, 38071 Tenerife, Spain.
| | | | | |
Collapse
|