1
|
Wu T, Wei W, Gao C, Wu J, Gao C, Chen X, Liu L, Song W. Synthesis of C-N bonds by nicotinamide-dependent oxidoreductase: an overview. Crit Rev Biotechnol 2024:1-25. [PMID: 39229892 DOI: 10.1080/07388551.2024.2390082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/08/2023] [Revised: 11/05/2023] [Accepted: 11/25/2023] [Indexed: 09/05/2024]
Abstract
Compounds containing chiral C-N bonds play a vital role in the composition of biologically active natural products and small pharmaceutical molecules. Therefore, the development of efficient and convenient methods for synthesizing compounds containing chiral C-N bonds is a crucial area of research. Nicotinamide-dependent oxidoreductases (NDOs) emerge as promising biocatalysts for asymmetric synthesis of chiral C-N bonds due to their mild reaction conditions, exceptional stereoselectivity, high atom economy, and environmentally friendly nature. This review aims to present the structural characteristics and catalytic mechanisms of various NDOs, including imine reductases/ketimine reductases, reductive aminases, EneIRED, and amino acid dehydrogenases. Additionally, the review highlights protein engineering strategies employed to modify the stereoselectivity, substrate specificity, and cofactor preference of NDOs. Furthermore, the applications of NDOs in synthesizing essential medicinal chemicals, such as noncanonical amino acids and chiral amine compounds, are extensively examined. Finally, the review outlines future perspectives by addressing challenges and discussing the potential of utilizing NDOs to establish efficient biosynthesis platforms for C-N bond synthesis. In conclusion, NDOs provide an economical, efficient, and environmentally friendly toolbox for asymmetric synthesis of C-N bonds, thus contributing significantly to the field of pharmaceutical chemical development.
Collapse
Affiliation(s)
- Tianfu Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Wanqing Wei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Changzheng Gao
- Department of Cardiology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Cong Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Liming Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Miles CO, McCarron P, Thomas K, Al-Sinawi B, Liu T, Neilan BA. Microcystins with Modified Adda 5-Residues from a Heterologous Microcystin Expression System. ACS OMEGA 2024; 9:27618-27631. [PMID: 38947807 PMCID: PMC11209926 DOI: 10.1021/acsomega.4c03332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 04/07/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024]
Abstract
Microcystins are hepatotoxic cyclic heptapeptides produced by some cyanobacterial species and usually contain the unusual β-amino acid 3S-amino-9S-methoxy-2S,6,8S-trimethyl-10-phenyl-4E,6E-decadienoic acid (Adda) at position-5. The full microcystin gene cluster from Microcystis aeruginosa PCC 7806 has been expressed in Escherichia coli. In an earlier study, the engineered strain was shown to produce MC-LR and [d-Asp3]MC-LR, the main microcystins reported in cultures of M. aeruginosa PCC 7806. However, analysis of the engineered strain of E. coli using semitargeted liquid chromatography with high-resolution tandem mass spectrometry (LC-HRMS/MS) and thiol derivatization revealed the presence of 15 additional microcystin analogues, including four linear peptide variants and, in total, 12 variants with modifications to the Adda moiety. Four of the Adda-variants lacked the phenyl group at the Adda-terminus, a modification that has not previously been reported in cyanobacteria. Their HRMS/MS spectra contained the product-ion from Adda at m/z 135.1168, but the commonly observed product-ion at m/z 135.0804 from Adda-containing microcystins was almost completely absent. In contrast, three of the variants were missing a methyl group between C-2 and C-8 of the Adda moiety, and their LC-HRMS/MS spectra displayed the product-ion from Adda at m/z 135.0804. However, instead of the product-ion at m/z 135.1168, these three variants gave product-ions at m/z 121.1011. These observations, together with spectra from microcystin standards using in-source fragmentation, showed that the product-ion at m/z 135.1168 found in the HRMS/MS spectra of most microcystins originated from the C-2 to C-8 region of the Adda moiety. Identification of the fragmentation pathways for the Adda side chain will facilitate the detection of microcystins containing modifications in their Adda moieties that could otherwise easily be overlooked with standard LC-MS screening methods. Microcystin variants containing Abu at position-1 were also prominent components of the microcystin profile of the engineered bacterium. Microcystin variants with Abu1 or without the phenyl group on the Adda side chain were not detected in the original host cyanobacterium. This suggests not only that the microcystin synthase complex may be affected by substrate availability within its host organism but also that it possesses an unexpected degree of biosynthetic flexibility.
Collapse
Affiliation(s)
- Christopher O. Miles
- Biotoxin
Metrology, National Research Council Canada, Halifax, Nova Scotia B3H 3Z1, Canada
- Norwegian
Veterinary Institute, Postboks 64, 1431 Ås, Norway
| | - Pearse McCarron
- Biotoxin
Metrology, National Research Council Canada, Halifax, Nova Scotia B3H 3Z1, Canada
| | - Krista Thomas
- Biotoxin
Metrology, National Research Council Canada, Halifax, Nova Scotia B3H 3Z1, Canada
| | - Bakir Al-Sinawi
- Diagnostic
Technology Pty. Ltd., Sydney 2085, NSW, Australia
- School
of Environmental and Life Sciences, The
University of Newcastle, Callaghan 2308, NSW, Australia
| | - Tianzhe Liu
- Diagnostic
Technology Pty. Ltd., Sydney 2085, NSW, Australia
- Department
of Chemistry and Food Chemistry, Technical
University of Dresden, 01069 Dresden, Germany
| | - Brett A. Neilan
- School
of Environmental and Life Sciences, The
University of Newcastle, Callaghan 2308, NSW, Australia
- ARC Centre
of Excellence in Synthetic Biology, Sydney, NSW 2019, Australia
| |
Collapse
|
3
|
Notz S, Scharf S, Lang H. Jumping in the Chiral Pool: Asymmetric Hydroaminations with Early Metals. Molecules 2023; 28:molecules28062702. [PMID: 36985673 PMCID: PMC10058505 DOI: 10.3390/molecules28062702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
The application of early-metal-based catalysts featuring natural chiral pool motifs, such as amino acids, terpenes and alkaloids, in hydroamination reactions is discussed and compared to those beyond the chiral pool. In particular, alkaline (Li), alkaline earth (Mg, Ca), rare earth (Y, La, Nd, Sm, Lu), group IV (Ti, Zr, Hf) metal-, and tantalum-based catalytic systems are described, which in recent years improved considerably and have become more practical in their usability. Additional emphasis is directed towards their catalytic performance including yields and regio- as well as stereoselectivity in comparison with the group IV and V transition metals and more widely used rare earth metal-based catalysts.
Collapse
|
4
|
Meng X, Yang L, Liu Y, Wang H, Shen Y, Wei D. Identification and Rational Engineering of a High Substrate‐Tolerant Leucine Dehydrogenase Effective for the Synthesis of L‐
tert
‐Leucine. ChemCatChem 2021. [DOI: 10.1002/cctc.202100414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xiangqi Meng
- State Key Laboratory of Bioreactor Engineering New World Institute of Biotechnology East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Lin Yang
- State Key Laboratory of Bioreactor Engineering New World Institute of Biotechnology East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Yan Liu
- State Key Laboratory of Bioreactor Engineering New World Institute of Biotechnology East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Hualei Wang
- State Key Laboratory of Bioreactor Engineering New World Institute of Biotechnology East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Yaling Shen
- State Key Laboratory of Bioreactor Engineering New World Institute of Biotechnology East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering New World Institute of Biotechnology East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| |
Collapse
|
5
|
Abdel-Hady GN, Ikeda T, Ishida T, Funabashi H, Kuroda A, Hirota R. Engineering Cofactor Specificity of a Thermostable Phosphite Dehydrogenase for a Highly Efficient and Robust NADPH Regeneration System. Front Bioeng Biotechnol 2021; 9:647176. [PMID: 33869158 PMCID: PMC8047080 DOI: 10.3389/fbioe.2021.647176] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/29/2020] [Accepted: 03/15/2021] [Indexed: 11/13/2022] Open
Abstract
Nicotinamide adenine dinucleotide phosphate (NADP)-dependent dehydrogenases catalyze a range of chemical reactions useful for practical applications. However, their dependence on the costly cofactor, NAD(P)H remains a challenge which must be addressed. Here, we engineered a thermotolerant phosphite dehydrogenase from Ralstonia sp. 4506 (RsPtxD) by relaxing the cofactor specificity for a highly efficient and robust NADPH regeneration system. The five amino acid residues, Cys174-Pro178, located at the C-terminus of β7-strand region in the Rossmann-fold domain of RsPtxD, were changed by site-directed mutagenesis, resulting in four mutants with a significantly increased preference for NADP. The catalytic efficiency of mutant RsPtxDHARRA for NADP (K cat/K M)NADP was 44.1 μM-1 min-1, which was the highest among the previously reported phosphite dehydrogenases. Moreover, the RsPtxDHARRA mutant exhibited high thermostability at 45°C for up to 6 h and high tolerance to organic solvents, when bound with NADP. We also demonstrated the applicability of RsPtxDHARRA as an NADPH regeneration system in the coupled reaction of chiral conversion of 3-dehydroshikimate to shikimic acid by the thermophilic shikimate dehydrogenase of Thermus thermophilus HB8 at 45°C, which could not be supported by the parent RsPtxD enzyme. Therefore, the RsPtxDHARRA mutant might be a promising alternative NADPH regeneration system for practical applications.
Collapse
Affiliation(s)
- Gamal Nasser Abdel-Hady
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Hiroshima, Japan.,Department of Genetics, Faculty of Agriculture, Minia University, Minia, Egypt
| | - Takeshi Ikeda
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Hiroshima, Japan.,Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Takenori Ishida
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Hiroshima, Japan.,Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Hisakage Funabashi
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Hiroshima, Japan.,Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Akio Kuroda
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Hiroshima, Japan.,Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Ryuichi Hirota
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Hiroshima, Japan.,Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
6
|
Abstract
Reductions play a key role in organic synthesis, producing chiral products with new functionalities. Enzymes can catalyse such reactions with exquisite stereo-, regio- and chemoselectivity, leading the way to alternative shorter classical synthetic routes towards not only high-added-value compounds but also bulk chemicals. In this review we describe the synthetic state-of-the-art and potential of enzymes that catalyse reductions, ranging from carbonyl, enone and aromatic reductions to reductive aminations.
Collapse
Affiliation(s)
- Frank Hollmann
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelftThe Netherlands
- Department of BiotechnologyUniversity of the Free State205 Nelson Mandela DriveBloemfontein9300South Africa
| | - Diederik J. Opperman
- Department of BiotechnologyUniversity of the Free State205 Nelson Mandela DriveBloemfontein9300South Africa
| | - Caroline E. Paul
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelftThe Netherlands
| |
Collapse
|
7
|
Luo Z, Yu S, Zeng W, Zhou J. Comparative analysis of the chemical and biochemical synthesis of keto acids. Biotechnol Adv 2021; 47:107706. [PMID: 33548455 DOI: 10.1016/j.biotechadv.2021.107706] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/10/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/28/2022]
Abstract
Keto acids are essential organic acids that are widely applied in pharmaceuticals, cosmetics, food, beverages, and feed additives as well as chemical synthesis. Currently, most keto acids on the market are prepared via chemical synthesis. The biochemical synthesis of keto acids has been discovered with the development of metabolic engineering and applied toward the production of specific keto acids from renewable carbohydrates using different metabolic engineering strategies in microbes. In this review, we provide a systematic summary of the types and applications of keto acids, and then summarize and compare the chemical and biochemical synthesis routes used for the production of typical keto acids, including pyruvic acid, oxaloacetic acid, α-oxobutanoic acid, acetoacetic acid, ketoglutaric acid, levulinic acid, 5-aminolevulinic acid, α-ketoisovaleric acid, α-keto-γ-methylthiobutyric acid, α-ketoisocaproic acid, 2-keto-L-gulonic acid, 2-keto-D-gluconic acid, 5-keto-D-gluconic acid, and phenylpyruvic acid. We also describe the current challenges for the industrial-scale production of keto acids and further strategies used to accelerate the green production of keto acids via biochemical routes.
Collapse
Affiliation(s)
- Zhengshan Luo
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shiqin Yu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
8
|
Okada CY, dos Santos CY, Jurberg ID. Blue light-promoted N–H insertion of amides, isatins, sulfonamides and imides into aryldiazoacetates: Synthesis of unnatural α-aryl amino acid derivatives. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131316] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022]
|
9
|
Affiliation(s)
- Frank Hollmann
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft Niederlande
- Department of Biotechnology University of the Free State 205 Nelson Mandela Drive Bloemfontein 9300 Südafrika
| | - Diederik J. Opperman
- Department of Biotechnology University of the Free State 205 Nelson Mandela Drive Bloemfontein 9300 Südafrika
| | - Caroline E. Paul
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft Niederlande
| |
Collapse
|
10
|
Martínez-Rodríguez S, Torres JM, Sánchez P, Ortega E. Overview on Multienzymatic Cascades for the Production of Non-canonical α-Amino Acids. Front Bioeng Biotechnol 2020; 8:887. [PMID: 32850740 PMCID: PMC7431475 DOI: 10.3389/fbioe.2020.00887] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/07/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
The 22 genetically encoded amino acids (AAs) present in proteins (the 20 standard AAs together with selenocysteine and pyrrolysine), are commonly referred as proteinogenic AAs in the literature due to their appearance in ribosome-synthetized polypeptides. Beyond the borders of this key set of compounds, the rest of AAs are generally named imprecisely as non-proteinogenic AAs, even when they can also appear in polypeptide chains as a result of post-transductional machinery. Besides their importance as metabolites in life, many of D-α- and L-α-"non-canonical" amino acids (NcAAs) are of interest in the biotechnological and biomedical fields. They have found numerous applications in the discovery of new medicines and antibiotics, drug synthesis, cosmetic, and nutritional compounds, or in the improvement of protein and peptide pharmaceuticals. In addition to the numerous studies dealing with the asymmetric synthesis of NcAAs, many different enzymatic pathways have been reported in the literature allowing for the biosynthesis of NcAAs. Due to the huge heterogeneity of this group of molecules, this review is devoted to provide an overview on different established multienzymatic cascades for the production of non-canonical D-α- and L-α-AAs, supplying neophyte and experienced professionals in this field with different illustrative examples in the literature. Whereas the discovery of new or newly designed enzymes is of great interest, dusting off previous enzymatic methodologies by a "back and to the future" strategy might accelerate the implementation of new or improved multienzymatic cascades.
Collapse
|
11
|
Li T, Cui X, Cui Y, Sun J, Chen Y, Zhu T, Li C, Li R, Wu B. Exploration of Transaminase Diversity for the Oxidative Conversion of Natural Amino Acids into 2-Ketoacids and High-Value Chemicals. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01895] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tao Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Xuexian Cui
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Yinglu Cui
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jinyuan Sun
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Yanchun Chen
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Tong Zhu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Chuijian Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Ruifeng Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Bian Wu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| |
Collapse
|
12
|
Kuhn B, Barber DM, Dietrich H, Döller U, Hoffmann MG, Schmutzler D, Schnatterer S, Maier ME, Kocakaya T, Morkunas M. Total Synthesis of the Natural Herbicide MBH‐001 and Analogues. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/15/2023]
Affiliation(s)
- Birgit Kuhn
- Bayer AG Crop Science Division Research & Development (R&D), SMol Industriepark Höchst 65926 Frankfurt am Main Germany
| | - David M. Barber
- Bayer AG Crop Science Division Research & Development (R&D), SMol Industriepark Höchst 65926 Frankfurt am Main Germany
| | - Hansjörg Dietrich
- Bayer AG Crop Science Division Research & Development (R&D), SMol Industriepark Höchst 65926 Frankfurt am Main Germany
| | - Uwe Döller
- Bayer AG Crop Science Division Research & Development (R&D), SMol Industriepark Höchst 65926 Frankfurt am Main Germany
| | - Michael G. Hoffmann
- Bayer AG Crop Science Division Research & Development (R&D), SMol Industriepark Höchst 65926 Frankfurt am Main Germany
| | - Dirk Schmutzler
- Bayer AG Crop Science Division Research & Development (R&D), SMol Industriepark Höchst 65926 Frankfurt am Main Germany
| | - Stefan Schnatterer
- Bayer AG Crop Science Division Research & Development (R&D), SMol Industriepark Höchst 65926 Frankfurt am Main Germany
| | - Martin E. Maier
- Institut für Organische Chemie Crop Science Division Eberhard‐Karls‐Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Tamer Kocakaya
- Institut für Organische Chemie Crop Science Division Eberhard‐Karls‐Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Marius Morkunas
- Institut für Organische Chemie Crop Science Division Eberhard‐Karls‐Universität Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| |
Collapse
|
13
|
Song T, Ma Z, Ren P, Yuan Y, Xiao J, Yang Y. A Bifunctional Iron Nanocomposite Catalyst for Efficient Oxidation of Alkenes to Ketones and 1,2-Diketones. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05197] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tao Song
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Laoshan District, Qingdao 266101, China
| | - Zhiming Ma
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Laoshan District, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Ren
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Laoshan District, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youzhu Yuan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, National Engineering Laboratory for Green Chemical Production of Alcohols-Ethers-Esters, College of Chemistry and Chemical Engineering, Xiamen 361005, P. R. China
| | - Jianliang Xiao
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - Yong Yang
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Laoshan District, Qingdao 266101, China
| |
Collapse
|
14
|
Narancic T, Almahboub SA, O’Connor KE. Unnatural amino acids: production and biotechnological potential. World J Microbiol Biotechnol 2019; 35:67. [DOI: 10.1007/s11274-019-2642-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/23/2018] [Accepted: 03/28/2019] [Indexed: 01/01/2023]
|
15
|
Yin X, Liu Y, Meng L, Zhou H, Wu J, Yang L. Rational Molecular Engineering of Glutamate Dehydrogenases for Enhancing Asymmetric Reductive Amination of Bulky α-Keto Acids. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801251] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xinjian Yin
- Institute of Bioengineering, College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Yayun Liu
- Institute of Bioengineering, College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Lijun Meng
- Institute of Bioengineering, College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Haisheng Zhou
- Institute of Bioengineering, College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Jianping Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 People's Republic of China
| |
Collapse
|
16
|
Roca M, Ruiz-Pernía JJ, Castillo R, Oliva M, Moliner V. Temperature dependence of dynamic, tunnelling and kinetic isotope effects in formate dehydrogenase. Phys Chem Chem Phys 2018; 20:25722-25737. [PMID: 30280169 DOI: 10.1039/c8cp04244f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022]
Abstract
The origin of the catalytic power of enzymes has been a question of debate for a long time. In this regard, the possible contribution of protein dynamics in enzymatic catalysis has become one of the most controversial topics. In the present work, the hydride transfer step in the formate dehydrogenase (FDH EC 1.2.1.2) enzyme is studied by means of molecular dynamic (MD) simulations with quantum mechanics/molecular mechanics (QM/MM) potentials in order to explore any correlation between dynamics, tunnelling effects and the rate constant. The temperature dependence of the kinetic isotope effects (KIEs), which is one of the few tests that can be studied by experiments and simulations to shed light on this debate, has been computed and the results have been compared with previous experimental data. The classical mechanical free energy barrier and the number of recrossing trajectories seem to be temperature-independent while the quantum vibrational corrections and the tunnelling effects are slightly temperature-dependent over the interval of 5-45 °C. The computed primary KIEs are in very good agreement with previous experimental data, being almost temperature-independent within the standard deviations. The modest dependence on the temperature is due to just the quantum vibrational correction contribution. These results, together with the analysis of the evolution of the collective variables such as the electrostatic potential or the electric field created by the protein on the key atoms involved in the reaction, confirm that while the protein is well preorganised, some changes take place along the reaction that favour the hydride transfer and the product release. Coordinates defining these movements are, in fact, part of the real reaction coordinate.
Collapse
Affiliation(s)
- Maite Roca
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castellón, Spain.
| | | | - Raquel Castillo
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castellón, Spain.
| | - Mónica Oliva
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castellón, Spain.
| | - Vicent Moliner
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castellón, Spain.
| |
Collapse
|
17
|
Bezsudnova EY, Boyko KM, Popov VO. Properties of Bacterial and Archaeal Branched-Chain Amino Acid Aminotransferases. BIOCHEMISTRY (MOSCOW) 2018. [PMID: 29523060 DOI: 10.1134/s0006297917130028] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/23/2022]
Abstract
Branched-chain amino acid aminotransferases (BCATs) catalyze reversible stereoselective transamination of branched-chain amino acids (BCAAs) L-leucine, L-isoleucine, and L-valine. BCATs are the key enzymes of BCAA metabolism in all organisms. The catalysis proceeds through the ping-pong mechanism with the assistance of the cofactor pyridoxal 5'-phosphate (PLP). BCATs differ from other (S)-selective transaminases (TAs) in 3D-structure and organization of the PLP-binding domain. Unlike other (S)-selective TAs, BCATs belong to the PLP fold type IV and are characterized by the proton transfer on the re-face of PLP, in contrast to the si-specificity of proton transfer in fold type I (S)-selective TAs. Moreover, BCATs are the only (S)-selective enzymes within fold type IV TAs. Dual substrate recognition in BCATs is implemented via the "lock and key" mechanism without side-chain rearrangements of the active site residues. Another feature of the active site organization in BCATs is the binding of the substrate α-COOH group on the P-side of the active site near the PLP phosphate group. Close localization of two charged groups seems to increase the effectiveness of external aldimine formation in BCAT catalysis. In this review, the structure-function features and the substrate specificity of bacterial and archaeal BCATs are analyzed. These BCATs differ from eukaryotic ones in the wide substrate specificity, optimal temperature, and reactivity toward pyruvate as the second substrate. The prospects of biotechnological application of BCATs in stereoselective synthesis are discussed.
Collapse
Affiliation(s)
- E Yu Bezsudnova
- Bach Institute of Biochemistry, The Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | |
Collapse
|
18
|
Yin X, Wu J, Yang L. Efficient reductive amination process for enantioselective synthesis of L-phosphinothricin applying engineered glutamate dehydrogenase. Appl Microbiol Biotechnol 2018; 102:4425-4433. [DOI: 10.1007/s00253-018-8910-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/20/2017] [Revised: 02/25/2018] [Accepted: 02/28/2018] [Indexed: 11/24/2022]
|
19
|
Abstract
This review summarizes the progress achieved in the enzymatic asymmetric synthesis of chiral amino acids from prochiral substrates.
Collapse
Affiliation(s)
- Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Cheng-Hao Cao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- China
| |
Collapse
|
20
|
Jiang W, Xu CZ, Jiang SZ, Zhang TD, Wang SZ, Fang BS. Establishing a Mathematical Equations and Improving the Production of L-tert-Leucine by Uniform Design and Regression Analysis. Appl Biochem Biotechnol 2016; 181:1454-1464. [PMID: 27866308 DOI: 10.1007/s12010-016-2295-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/15/2016] [Accepted: 10/18/2016] [Indexed: 11/27/2022]
Abstract
L-tert-Leucine (L-Tle) and its derivatives are extensively used as crucial building blocks for chiral auxiliaries, pharmaceutically active ingredients, and ligands. Combining with formate dehydrogenase (FDH) for regenerating the expensive coenzyme NADH, leucine dehydrogenase (LeuDH) is continually used for synthesizing L-Tle from α-keto acid. A multilevel factorial experimental design was executed for research of this system. In this work, an efficient optimization method for improving the productivity of L-Tle was developed. And the mathematical model between different fermentation conditions and L-Tle yield was also determined in the form of the equation by using uniform design and regression analysis. The multivariate regression equation was conveniently implemented in water, with a space time yield of 505.9 g L-1 day-1 and an enantiomeric excess value of >99 %. These results demonstrated that this method might become an ideal protocol for industrial production of chiral compounds and unnatural amino acids such as chiral drug intermediates.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, China
| | - Chao-Zhen Xu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, China
| | - Si-Zhi Jiang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Tang-Duo Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Shi-Zhen Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Bai-Shan Fang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, China.
- The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian, 361005, China.
| |
Collapse
|
21
|
Construction of a tunable multi-enzyme-coordinate expression system for biosynthesis of chiral drug intermediates. Sci Rep 2016; 6:30462. [PMID: 27456301 PMCID: PMC4960608 DOI: 10.1038/srep30462] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/09/2015] [Accepted: 07/06/2016] [Indexed: 12/13/2022] Open
Abstract
Systems that can regulate and coordinate the expression of multiple enzymes for metabolic regulation and synthesis of important drug intermediates are poorly explored. In this work, a strategy for constructing a tunable multi-enzyme-coordinate expression system for biosynthesis of chiral drug intermediates was developed and evaluated by connecting protein-protein expressions, regulating the strength of ribosome binding sites (RBS) and detecting the system capacity for producing chiral amino acid. Results demonstrated that the dual-enzyme system had good enantioselectivity, low cost, high stability, high conversion rate and approximately 100% substrate conversion. This study has paved a new way of exploring metabolic mechanism of functional genes and engineering whole cell-catalysts for synthesis of chiral α-hydroxy acids or chiral amino acids.
Collapse
|
22
|
Jiang W, Sun D, Lu J, Wang Y, Wang S, Zhang Y, Fang B. A cold-adapted leucine dehydrogenase from marine bacteriumAlcanivorax dieselolei: Characterization andl-tert-leucine production. Eng Life Sci 2015. [DOI: 10.1002/elsc.201500092] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Wei Jiang
- Department of Chemical and Biochemical Engineering; College of Chemistry and Chemical Engineering, Xiamen University; Xiamen China
- The Key Lab for Synthetic Biotechnology of Xiamen City; Xiamen University; Xiamen China
| | - Dongfang Sun
- Department of Chemical and Biochemical Engineering; College of Chemistry and Chemical Engineering, Xiamen University; Xiamen China
- The Key Lab for Synthetic Biotechnology of Xiamen City; Xiamen University; Xiamen China
| | - Jixue Lu
- Department of Chemical and Biochemical Engineering; College of Chemistry and Chemical Engineering, Xiamen University; Xiamen China
- The Key Lab for Synthetic Biotechnology of Xiamen City; Xiamen University; Xiamen China
| | - Yali Wang
- Department of Chemical and Biochemical Engineering; College of Chemistry and Chemical Engineering, Xiamen University; Xiamen China
- The Key Lab for Synthetic Biotechnology of Xiamen City; Xiamen University; Xiamen China
| | - Shizhen Wang
- Department of Chemical and Biochemical Engineering; College of Chemistry and Chemical Engineering, Xiamen University; Xiamen China
- The Key Lab for Synthetic Biotechnology of Xiamen City; Xiamen University; Xiamen China
| | - Yonghui Zhang
- Department of Chemical and Biochemical Engineering; College of Chemistry and Chemical Engineering, Xiamen University; Xiamen China
- The Key Lab for Synthetic Biotechnology of Xiamen City; Xiamen University; Xiamen China
| | - Baishan Fang
- Department of Chemical and Biochemical Engineering; College of Chemistry and Chemical Engineering, Xiamen University; Xiamen China
- The Key Lab for Synthetic Biotechnology of Xiamen City; Xiamen University; Xiamen China
- The Key Laboratory for Chemical Biology of Fujian Province; Xiamen University; Xiamen Fujian China
| |
Collapse
|
23
|
Xu G, Jiang Y, Tao R, Wang S, Zeng H, Yang S. A recyclable biotransformation system for l-2-aminobutyric acid production based on immobilized enzyme technology. Biotechnol Lett 2015; 38:123-9. [DOI: 10.1007/s10529-015-1957-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/30/2015] [Accepted: 09/10/2015] [Indexed: 10/23/2022]
|
24
|
Zhang D, Chen X, Zhang R, Yao P, Wu Q, Zhu D. Development of β-Amino Acid Dehydrogenase for the Synthesis of β-Amino Acids via Reductive Amination of β-Keto Acids. ACS Catal 2015. [DOI: 10.1021/cs5017358] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dalong Zhang
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Center for Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Xi Chen
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Center for Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Rui Zhang
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Center for Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Peiyuan Yao
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Center for Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Qiaqing Wu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Center for Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Dunming Zhu
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Center for Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, Tianjin 300308, China
| |
Collapse
|
25
|
Wang Y, Zhang Y, Jiang T, Meng J, Sheng B, Yang C, Gao C, Xu P, Ma C. A novel biocatalyst for efficient production of 2-oxo-carboxylates using glycerol as the cost-effective carbon source. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:186. [PMID: 26609321 PMCID: PMC4659176 DOI: 10.1186/s13068-015-0368-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/09/2015] [Accepted: 10/28/2015] [Indexed: 05/02/2023]
Abstract
BACKGROUND The surplus of glycerol has increased remarkably as a main byproduct during the biofuel's production. Exploiting an alternative route for glycerol utilization is significantly important for sustainability of biofuels. RESULTS A novel biocatalyst that could be prepared from glycerol for producing 2-oxo-carboxylates was developed. First, Pseudomonas putida KT2440 was reconstructed by deleting lldR to develop a mutant expressing the NAD-independent lactate dehydrogenases (iLDHs) constitutively. Then, the Vitreoscilla hemoglobin (VHb) was heterologously expressed to further improve the biotransformation activity. The reconstructed strain, P. putida KT2440 (ΔlldR)/pBSPPcGm-vgb, exhibited high activities of iLDHs when cultured with glycerol as the carbon source. This cost-effective biocatalyst could efficiently produce pyruvate and 2-oxobutyrate from dl-lactate and dl-2-hydroxybutyrate with high molar conversion rates of 91.9 and 99.8 %, respectively. CONCLUSIONS The process would not only be a promising alternative for the production of 2-oxo-carboxylates, but also be an example for preparation of efficient biocatalysts for the value-added utilization of glycerol.
Collapse
Affiliation(s)
- Yujiao Wang
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
| | - Yingxin Zhang
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
| | - Tianyi Jiang
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
| | - Jingjing Meng
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
| | - Binbin Sheng
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
| | - Chunyu Yang
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
| | - Chao Gao
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
| | - Ping Xu
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
- />State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Cuiqing Ma
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
| |
Collapse
|
26
|
|
27
|
Stereoselective synthesis of l-tert-leucine by a newly cloned leucine dehydrogenase from Exiguobacterium sibiricum. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.03.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022]
|
28
|
da Silva MR, de Mattos MC, de Oliveira MDCF, de Lemos TLG, Ricardo NMPS, de Gonzalo G, Lavandera I, Gotor-Fernández V, Gotor V. Asymmetric chemoenzymatic synthesis of N-acetyl-α-amino esters based on lipase-catalyzed kinetic resolutions through interesterification reactions. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/25/2022]
|
29
|
Liu W, Li Z, Huang CH, Guo RT, Zhao L, Zhang D, Chen X, Wu Q, Zhu D. Structural and Mutational Studies on the Unusual Substrate Specificity ofmeso-Diaminopimelate Dehydrogenase fromSymbiobacterium thermophilum. Chembiochem 2013; 15:217-22. [DOI: 10.1002/cbic.201300691] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/02/2013] [Indexed: 11/10/2022]
|
30
|
Yu X, Wang X, Engel PC. The specificity and kinetic mechanism of branched-chain amino acid aminotransferase fromEscherichia colistudied with a new improved coupled assay procedure and the enzyme's potential for biocatalysis. FEBS J 2013; 281:391-400. [DOI: 10.1111/febs.12609] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/09/2013] [Revised: 11/03/2013] [Accepted: 11/07/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Xuejing Yu
- School of Biomolecular and Biomedical Science; Conway Institute; University College Dublin; Ireland
| | - Xingguo Wang
- Faculty of Life Science; Hubei University; Wuhan China
| | - Paul C. Engel
- School of Biomolecular and Biomedical Science; Conway Institute; University College Dublin; Ireland
| |
Collapse
|
31
|
de Regil R, Sandoval G. Biocatalysis for biobased chemicals. Biomolecules 2013; 3:812-47. [PMID: 24970192 PMCID: PMC4030974 DOI: 10.3390/biom3040812] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/03/2013] [Revised: 10/08/2013] [Accepted: 10/08/2013] [Indexed: 11/17/2022] Open
Abstract
The design and development of greener processes that are safe and friendly is an irreversible trend that is driven by sustainable and economic issues. The use of Biocatalysis as part of a manufacturing process fits well in this trend as enzymes are themselves biodegradable, require mild conditions to work and are highly specific and well suited to carry out complex reactions in a simple way. The growth of computational capabilities in the last decades has allowed Biocatalysis to develop sophisticated tools to understand better enzymatic phenomena and to have the power to control not only process conditions but also the enzyme's own nature. Nowadays, Biocatalysis is behind some important products in the pharmaceutical, cosmetic, food and bulk chemicals industry. In this review we want to present some of the most representative examples of industrial chemicals produced in vitro through enzymatic catalysis.
Collapse
Affiliation(s)
- Rubén de Regil
- Unidad de Biotecnología Industrial, CIATEJ, A.C. Av. Normalistas 800, Col. Colinas de la Normal, Guadalajara, Jal, C.P. 44270, Mexico.
| | - Georgina Sandoval
- Unidad de Biotecnología Industrial, CIATEJ, A.C. Av. Normalistas 800, Col. Colinas de la Normal, Guadalajara, Jal, C.P. 44270, Mexico.
| |
Collapse
|
32
|
Abstract
Asymmetric reductive amination (ARA) affords synthetically valuable chiral amines straightforwardly. This chapter reviews the recent advances made in the area, focusing on ARA by hydrogenation, transfer hydrogenation, organocatalytic reduction, and biocatalytic reduction.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, and Department of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China,
| | | |
Collapse
|
33
|
|
34
|
Wang W, Li Q, Liu X, Yang Y, Su W. Enhanced photocatalytic performance of ZnS for reversible amination of α-oxo acids by hydrothermal treatment. ORIGINS LIFE EVOL B 2012; 42:263-73. [PMID: 22638837 DOI: 10.1007/s11084-012-9275-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/10/2012] [Accepted: 05/07/2012] [Indexed: 10/27/2022]
Abstract
To understand how life could have originated on early Earth, it is essential to know what biomolecules and metabolic pathways are shared by extant organisms and what organic compounds and their chemical reaction channels were likely to have been primordially available during the initial phase of the formation of prebiotic metabolism. In a previous study, we demonstrated for the first time the reversible amination of α-oxo acids on the surface of photo-illuminated ZnS. The sulfide mineral is a typical component at the periphery of submarine hydrothermal vents which has been frequently argued as a very attractive venue for the origin of life. In this work, in order to simulate more closely the precipitation environments of ZnS in the vent systems, we treated newly-precipitated ZnS with hydrothermal conditions and found that its photocatalytic power was significantly enhanced because the relative crystallinity of the treated sample was markedly increased with increasing temperature. Since the reported experimental conditions are believed to have been prevalent in shallow-water hydrothermal vents of early Earth and the reversible amination of α-oxo acids is a key metabolic pathway in all extant life forms, the results of this work provide a prototypical model of the prebiotic amino acid redox metabolism. The amino acid dehydrogenase-like chemistry on photo-irradiated ZnS surfaces may advance our understanding of the establishment of archaic non-enzymatic metabolic systems.
Collapse
Affiliation(s)
- Wei Wang
- CCMST, Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150080, China.
| | | | | | | | | |
Collapse
|
35
|
Gröger H, Asano Y, Bornscheuer UT, Ogawa J. Development of biocatalytic processes in Japan and Germany: from research synergies to industrial applications. Chem Asian J 2012; 7:1138-53. [PMID: 22550022 DOI: 10.1002/asia.201200105] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/03/2012] [Indexed: 11/09/2022]
Affiliation(s)
- Harald Gröger
- Faculty of Chemistry, Bielefeld University, Universitätsstrasse 25, 33615 Bielefeld, Germany.
| | | | | | | |
Collapse
|
36
|
Zhang W, Gao C, Che B, Ma C, Zheng Z, Qin T, Xu P. Efficient bioconversion of l-threonine to 2-oxobutyrate using whole cells of Pseudomonas stutzeri SDM. BIORESOURCE TECHNOLOGY 2012; 110:719-22. [PMID: 22342587 DOI: 10.1016/j.biortech.2012.01.123] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/22/2011] [Revised: 01/18/2012] [Accepted: 01/20/2012] [Indexed: 05/18/2023]
Abstract
2-Oxobutyrate (2-OBA) is an important intermediate with many applications in the drug and chemical industries. l-Threonine, an industrial fermentation product, could be used as a suitable starting material for the 2-OBA production. In this study, whole cells of Pseudomonas stutzeri SDM were confirmed to possess a good ability to convert l-threonine into 2-OBA. The bioconversion conditions were optimized for the 2-OBA production from l-threonine. Using 9.2g dry cell weight l(-1) of whole cells of strain SDM as biocatalyst, the biocatalytic process produced 2-OBA at a high concentration (25.6gl(-1)) with a high molar conversion rate (99.6%) at 6h from 30g1(-1) of l-threonine.
Collapse
Affiliation(s)
- Wen Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
37
|
L-aspartate dehydrogenase: features and applications. Appl Microbiol Biotechnol 2011; 93:503-16. [PMID: 22120624 DOI: 10.1007/s00253-011-3730-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/06/2011] [Revised: 10/30/2011] [Accepted: 11/14/2011] [Indexed: 10/15/2022]
Abstract
L-amino acid dehydrogenases are a group of enzymes that catalyze the reversible oxidative deamination of L-amino acids to their corresponding 2-oxoacids, using either nicotinamide adenine dinucleotide (NAD(+)) or nicotinamide adenine dinucleotide phosphate (NADP(+)) as cofactors. These enzymes have been studied widely because of their potential applications in the synthesis of amino acids for use in production of pharmaceutical peptides, herbicides and insecticides, in biosensors or diagnostic kits, and development of coenzyme regeneration systems for industrial processes. This article presents a review of the currently available data about the recently discovered amino acid dehydrogenase superfamily member L-aspartate dehydrogenase (L-AspDH), their relevant catalytic properties and speculated physiological roles, and potential for biotechnological applications. The proposed classification of L-AspDH on the basis of bioinformatic information and potential role in vivo into NadB (NAD biosynthesis-related) and non-NadB type is unique. In particular, the mesophilic non-NadB type L-AspDH is a novel group of amino acid dehydrogenases with great promise as potential industrial biocatalysts owing to their relatively high catalytic properties at room temperature. Considering that only a few L-AspDH homologs have been characterized so far, identification and prodigious enzymological research of the new members will be necessary to shed light on the gray areas pertaining to these enzymes.
Collapse
|
38
|
Wu X, Kobori H, Orita I, Zhang C, Imanaka T, Xing XH, Fukui T. Application of a novel thermostable NAD(P)H oxidase from hyperthermophilic archaeon for the regeneration of both NAD⁺ and NADP⁺. Biotechnol Bioeng 2011; 109:53-62. [PMID: 21830202 DOI: 10.1002/bit.23294] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/21/2011] [Revised: 07/25/2011] [Accepted: 08/03/2011] [Indexed: 11/07/2022]
Abstract
A novel thermostable NAD(P)H oxidase from the hyperthermophilic archaeon Thermococcus kodakarensis KOD1 (TkNOX) catalyzes oxidation of NADH and NADPH with oxygen from atmospheric air as an electron acceptor. Although the optimal temperature of TkNOX is >90°C, it also shows activity at 30°C. This enzyme was used for the regeneration of both NADP(+) and NAD(+) in alcohol dehydrogenase (ADH)-catalyzed enantioselective oxidation of racemic 1-phenylethanol. NADP(+) regeneration at 30°C was performed by TkNOX coupled with (R)-specific ADH from Lactobacillus kefir, resulting in successful acquisition of optically pure (S)-1-phenylethanol. The use of TkNOX with moderately thermostable (S)-specific ADH from Rhodococcus erythropolis enabled us to operate the enantioselective bioconversion accompanying NAD(+) regeneration at high temperatures. Optically pure (R)-1-phenylethanol was successfully obtained by this system after a shorter reaction time at 45-60°C than that at 30°C, demonstrating an advantage of the combination of thermostable enzymes. The ability of TkNOX to oxidize both NADH and NADPH with remarkable thermostability renders this enzyme a versatile tool for regeneration of the oxidized nicotinamide cofactors without the need for extra substrates other than dissolved oxygen from air.
Collapse
Affiliation(s)
- Xi Wu
- Department of Bioengineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- Mélanie Hall
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, Georgia 30332, United States
- Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz, 8010 Graz, Austria
| | - Andreas S. Bommarius
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, Georgia 30332, United States
| |
Collapse
|
40
|
Removal of l-alanine from the production of l-2-aminobutyric acid by introduction of alanine racemase and d-amino acid oxidase. Appl Microbiol Biotechnol 2011; 90:903-10. [DOI: 10.1007/s00253-011-3127-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/25/2010] [Revised: 01/10/2011] [Accepted: 01/10/2011] [Indexed: 10/18/2022]
|
41
|
Roca M, Oliva M, Castillo R, Moliner V, Tuñón I. Do dynamic effects play a significant role in enzymatic catalysis? A theoretical analysis of formate dehydrogenase. Chemistry 2010; 16:11399-411. [PMID: 20715198 DOI: 10.1002/chem.201000635] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/10/2022]
Abstract
A theoretical study of the protein dynamic effects on the hydride transfer between the formate anion and nicotinamide adenine dinucleotide (NAD(+)), catalyzed by formate dehydrogenase (FDH), is presented in this paper. The analysis of free downhill molecular dynamic trajectories, performed in the enzyme and compared with the reaction in aqueous solution, has allowed the study of the dynamic coupling between the reacting fragments and the protein or the solvent water molecules, as well as an estimation of the dynamic effect contribution to the catalytic effect from calculation of the transmission coefficient in the enzyme and in solution. The obtained transmission coefficients for the enzyme and in solution were 0.46±0.04 and 0.20±0.03, respectively. These values represent a contribution to catalysis of 0.5 kcal mol(-1), which, although small, is not negligible keeping in mind the low efficiency of FDH. The analysis of the reactive trajectories also reveals how the relative movements of some amino acids, mainly His332 and Arg284, precede and promote the chemical reaction. In spite of these movements, the time-dependent evolution of the electric field created by the enzyme on the key atoms of the reaction reveals a permanent field, which reduces the work required to reach the transition state, with a concomitant polarization of the cofactor. Finally, application of Grote-Hynes theory has allowed the identification of the modes responsible for the substrate-environment coupling, showing how some protein motions take place simultaneously with the reaction. Thus, the equilibrium approach would provide, in this case, an overestimation of the catalyzed rate constant.
Collapse
Affiliation(s)
- Maite Roca
- Department de Química Física, Universitat de València, 46100 Burjassot, València, Spain
| | | | | | | | | |
Collapse
|
42
|
Pigza JA, Molinski TF. Diastereoselective allylstannane additions to (S)-5,6-dihydro-2H-5-phenyloxazin-2-one. A concise synthesis of (S)-beta-methylisoleucine. Org Lett 2010; 12:1256-9. [PMID: 20163126 DOI: 10.1021/ol1001126] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Abstract
The addition of allyl stannanes to (S)-4,5-dihydro-5-phenyl-2H-oxazinone (3) was achieved under Brønsted acid catalysis to give 2-allylmorpholinones with high diastereoselectivity (up to dr 14.2:1). The product of dimethylallyltributylstannane addition to 3 was converted to l-beta-methylisoleucine, an alpha-amino acid residue found in the complex, biologically active marine-derived peptides polytheonamides A and B, and polydiscamides A-C.
Collapse
Affiliation(s)
- Julie A Pigza
- Department of Chemistry and Biochemistry, and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive MC0358, La Jolla, California 92093, USA
| | | |
Collapse
|
43
|
Weckbecker A, Gröger H, Hummel W. Regeneration of nicotinamide coenzymes: principles and applications for the synthesis of chiral compounds. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010; 120:195-242. [PMID: 20182929 DOI: 10.1007/10_2009_55] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
Abstract
Dehydrogenases which depend on nicotinamide coenzymes are of increasing interest for the preparation of chiral compounds, either by reduction of a prochiral precursor or by oxidative resolution of their racemate. The regeneration of oxidized and reduced nicotinamide cofactors is a very crucial step because the use of these cofactors in stoichiometric amounts is too expensive for application. There are several possibilities to regenerate nicotinamide cofactors: established methods such as formate/formate dehydrogenase (FDH) for the regeneration of NADH, recently developed electrochemical methods based on new mediator structures, or the application of gene cloning methods for the construction of "designed" cells by heterologous expression of appropriate genes.A very promising approach is enzymatic cofactor regeneration. Only a few enzymes are suitable for the regeneration of oxidized nicotinamide cofactors. Glutamate dehydrogenase can be used for the oxidation of NADH as well as NADPH while L: -lactate dehydrogenase is able to oxidize NADH only. The reduction of NAD(+) is carried out by formate and FDH. Glucose-6-phosphate dehydrogenase and glucose dehydrogenase are able to reduce both NAD(+) and NADP(+). Alcohol dehydrogenases (ADHs) are either NAD(+)- or NADP(+)-specific. ADH from horse liver, for example, reduces NAD(+) while ADHs from Lactobacillus strains catalyze the reduction of NADP(+). These enzymes can be applied by their inclusion in whole cell biotransformations with an NAD(P)(+)-dependent primary reaction to achieve in situ the regeneration of the consumed cofactor.Another efficient method for the regeneration of nicotinamide cofactors is the electrochemical approach. Cofactors can be regenerated directly, for example at a carbon anode, or indirectly involving mediators such as redox catalysts based on transition-metal complexes.An increasing number of examples in technical scale applications are known where nicotinamide dependent enzymes were used together with cofactor regenerating enzymes.
Collapse
Affiliation(s)
- Andrea Weckbecker
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University of Düsseldorf, Research Centre Jülich, Stetternicher Forst, 52426, Jülich, Germany
| | | | | |
Collapse
|
44
|
Kurlemann N, Lara M, Pohl M, Kroutil W, Liese A. Asymmetric synthesis of chiral 2-hydroxy ketones by coupled biocatalytic alkene oxidation and CC bond formation. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.molcatb.2008.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022]
|
45
|
Biocatalytic asymmetric amination of carbonyl functional groups - a synthetic biology approach to organic chemistry. Biotechnol J 2009; 4:1420-31. [DOI: 10.1002/biot.200900110] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/07/2022]
|
46
|
Sustainable biocatalytic synthesis of L-homophenylalanine as pharmaceutical drug precursor. Biotechnol Adv 2009; 27:286-96. [DOI: 10.1016/j.biotechadv.2009.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/19/2008] [Revised: 01/02/2009] [Accepted: 01/14/2009] [Indexed: 11/17/2022]
|
47
|
Sviridova LA, Golubeva GA, Tavtorkin AN, Nelyubina YV, Kochetkov KA. Diastereoselective reductive amination of pyrazolidinyl alkyl ketones. Chem Heterocycl Compd (N Y) 2008. [DOI: 10.1007/s10593-008-0073-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/21/2022]
|
48
|
Castillo R, Oliva M, Martí S, Moliner V. A theoretical study of the catalytic mechanism of formate dehydrogenase. J Phys Chem B 2008; 112:10012-22. [PMID: 18646819 DOI: 10.1021/jp8025896] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023]
Abstract
A theoretical study of the hydride transfer between formate anion and nicotinamide adenine dinucleotide (NAD(+)) catalyzed by the enzyme formate dehydrogenase (FDH) has been carried out by a combination of two hybrid quantum mechanics/molecular mechanics techniques: statistical simulation methods and internal energy minimizations. Free energy profiles, obtained for the reaction in the enzyme active site and in solution, allow obtaining a comparative analysis of the behavior of both condensed media. Moreover, calculations of the reaction in aqueous media can be used to probe the dramatic differences between reactants state in the enzyme active site and in solution. The results suggest that the enzyme compresses the substrate and the cofactor into a conformation close to the transition structure by means of favorable interactions with the amino acid residues of the active site, thus facilitating the relative orientation of donor and acceptor atoms to favor the hydride transfer. Moreover, a permanent field created by the protein reduces the work required to reach the transition state (TS) with a concomitant polarization of the cofactor that would favor the hydride transfer. In contrast, in water the TS is destabilized with respect to the reactant species because the polarity of the solute diminishes as the reaction proceeds, and consequently the reaction field, which is created as a response to the change in the solute polarity, is also decreased. Therefore protein structure is responsible of both effects; substrate preorganization and TS stabilization thus diminishing the activation barrier. Because of the electrostatic features of the catalyzed reaction, both media preferentially stabilize the ground-state, thus explaining the small rate constant enhancement of this enzyme, but FDH does so to a much lower extent than aqueous solution. Finally, a good agreement between experimental and theoretical kinetic isotope effects is found, thus giving some credit to our results.
Collapse
Affiliation(s)
- R Castillo
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castelló, Spain
| | | | | | | |
Collapse
|
49
|
Findrik Z, Vasić-Racki D. Biotransformation of D-methionine into L-methionine in the cascade of four enzymes. Biotechnol Bioeng 2008; 98:956-67. [PMID: 17534960 DOI: 10.1002/bit.21501] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022]
Abstract
D-Methionine was converted to L-methionine in a reaction system where four enzymes were used. D-amino acid oxidase (D-AAO) from Arthrobacter protophormiae was used for the complete conversion of D-methionine to 2-oxo-4-methylthiobutyric acid. Catalase was added to prevent 2-oxo-4-methylthiobutyric acid decarboxylation. In the second reaction step, L-phenylalanine dehydrogenase (L-PheDH) from Rhodococcus sp. was used to convert 2- oxo-4-methylthiobutyric acid to L-methionine, and formate dehydrogenase (FDH) from Candida boidinii was added for NADH regeneration. Enzyme kinetics of all enzymes was analyzed in detail. Mathematical models for separate reactions steps, as well as for the complete system were developed and validated in the batch reactor experiments. Complete conversion of D-methionine to L-methionine was achieved. Considering that both enzymes act on different substrates, such a system could be easily employed for the synthesis of other amino acids from D-isomer, as well as from the racemate of a certain amino acid (DL-amino acid).
Collapse
Affiliation(s)
- Z Findrik
- Faculty of Chemical Engineering and Technology, University of Zagreb, Savska c. 16, HR-10 000 Zagreb, Croatia
| | | |
Collapse
|
50
|
Chiu HP, Cheng RP. Chemoenzymatic Synthesis of (S)-Hexafluoroleucine and (S)-Tetrafluoroleucine. Org Lett 2007; 9:5517-20. [DOI: 10.1021/ol702470j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hsien-Po Chiu
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000
| | - Richard P. Cheng
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000
| |
Collapse
|