1
|
Kolliopoulos V, Mikos AG. Decellularized extracellular matrix as a drug delivery carrier. J Control Release 2025; 382:113661. [PMID: 40139392 DOI: 10.1016/j.jconrel.2025.113661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/18/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025]
Abstract
Tissue engineering and regenerative medicine approaches seek to enhance biomaterial mimicry with the goal of driving cell recruitment, proliferation, and differentiation. Decellularized extracellular matrix (dECM) biomaterials have emerged as a promising platform for biomaterials development as they capture the complexity of native tissues and offer a rich environment of signals to guide cellular responses. However, the decellularization process can affect both the structure and composition of the ECM. Recent efforts have focused on leveraging dECM as drug delivery carriers for controlled release of bioactive molecules. This review highlights current strategies for incorporating therapeutic agents into dECM which include encapsulation within hydrogel formulations, direct bulk absorption of biomolecules, and affinity-based binding and conjugation. Each method offers unique advantages for modulating release profiles, which can range from rapid initial burst to prolonged, sustained release, depending on factors such as crosslinking density, degradation rate, and specific interactions of biomolecules with dECM components such as glycosaminoglycans.
Collapse
Affiliation(s)
- Vasiliki Kolliopoulos
- Department of Bioengineering, Rice University, Houston, TX 77030, United States of America
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX 77030, United States of America.
| |
Collapse
|
2
|
Li Q, Gong Y, Li Y, Li S, Liang W, Leng YX. Study on the lubrication behavior of tannic acid/ poly (vinyl alcohol) hydrogel enhanced by protein adsorption for articular cartilage applications. J Mech Behav Biomed Mater 2025; 162:106825. [PMID: 39591722 DOI: 10.1016/j.jmbbm.2024.106825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/19/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024]
Abstract
Poly (vinyl alcohol) (PVA)-based hydrogels are widely regarded as ideal cartilage replacement materials because of their excellent properties. However, they have drawbacks such as high coefficient of friction (COF) and insufficient wear resistance. As important components of the synovial fluid, proteins are involved in counter-pairs and effect their tribological behavior via denaturation. Tannic acid (TA), which is rich in hydroxyl groups, can bind strongly proteins and change their conformation. In this study, the structure and lubrication performance of TA/PVA hydrogels in phosphate buffer saline (PBS) and bovine serum albumin (BSA) solutions were investigated. The results indicated that TA molecules enhanced the stiffness of the hydrogel by forming hydrogen bonds with PVA, reducing its COF in the PBS solution. In BSA solution, the tribological behavior of the PT hydrogels is altered by the BSA adsorbed at the hydrogel interface owing to the addition of TA. The COF of the PVA hydrogels with a TA content of 0.5 wt% is as low as 0.045, which was approximately 2.67 times lower than that of the PVA hydrogel under the same conditions. The benzene rings and hydroxyl groups in TA were connected to BSA molecules through hydrogen bonding, inducing a conformational change in the BSA from an α-helix structure to β-sheet structure, which further improves the lubricating properties of the hydrogel.
Collapse
Affiliation(s)
- Qi Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - YanLi Gong
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China.
| | - Yingxin Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Sha Li
- Department of Rehabilitation Medicine, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, 610031, China.
| | - WenLang Liang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China
| | - Y X Leng
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, China; Sichuan Province International Science and Technology Cooperation Base of Functional Materials, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
| |
Collapse
|
3
|
Roy HS, Murugesan P, Kulkarni C, Arora M, Nagar GK, Guha R, Chattopadhyay N, Ghosh D. On-demand release of a selective MMP-13 blocker from an enzyme-responsive injectable hydrogel protects cartilage from degenerative progression in osteoarthritis. J Mater Chem B 2024; 12:5325-5338. [PMID: 38669084 DOI: 10.1039/d3tb02871b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
In osteoarthritis (OA), the degradation of cartilage is primarily driven by matrix metalloprotease-13 (MMP-13). Hence, the inhibition of MMP-13 has emerged as an attractive target for OA treatment. Among the various approaches that are being explored for MMP-13 regulation, blocking of the enzyme with specific binding molecules appears to be a more promising strategy for preventing cartilage degeneration. To enhance effectiveness and ensure patient compliance, it is preferable for the binding molecule to exhibit sustained activity when administered directly into the joint. Herein, we present an enzyme-responsive hydrogel that was designed to exhibit on-demand, the sustained release of BI-4394, a potent and highly selective MMP-13 blocker. The stable and compatible hydrogel was prepared using triglycerol monostearate. The efficacy of the hydrogel to prevent cartilage damage was assessed in a rat model of OA induced by anterior cruciate ligament transection (ACLT). The results revealed that in comparison to the rats administrated weekly with intra-articular BI-4394, the hydrogel implanted rats had reduced levels of inflammation and bone erosion. In comparison to untreated control, the cartilage in animals administered with BI-4394/hydrogel exhibited significant levels of collagen-2 and aggrecan along with reduced MMP-13. Overall, this study confirmed the potential of BI-4394 delivery using an enzyme-responsive hydrogel as a promising treatment option to treat the early stages of OA by preventing further cartilage degradation.
Collapse
Affiliation(s)
- Himadri Shekhar Roy
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali-140306, Punjab, India.
| | - Preethi Murugesan
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali-140306, Punjab, India.
| | - Chirag Kulkarni
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Lucknow-226031, Uttar Pradesh, India
| | - Malika Arora
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali-140306, Punjab, India.
| | - Geet Kumar Nagar
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Lucknow-226031, Uttar Pradesh, India
| | - Rajdeep Guha
- Division of Laboratory Animal Facility, CSIR-Central Drug Research Institute, Lucknow-226031, Uttar Pradesh, India
| | - Naibedya Chattopadhyay
- Division of Endocrinology and Centre for Research in ASTHI, CSIR-Central Drug Research Institute, Lucknow-226031, Uttar Pradesh, India
| | - Deepa Ghosh
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali-140306, Punjab, India.
| |
Collapse
|
4
|
Composite silk fibroin hydrogel scaffolds for cartilage tissue regeneration. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Siefen T, Bjerregaard S, Borglin C, Lamprecht A. Assessment of joint pharmacokinetics and consequences for the intraarticular delivery of biologics. J Control Release 2022; 348:745-759. [PMID: 35714731 DOI: 10.1016/j.jconrel.2022.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 01/15/2023]
Abstract
Intraarticular (IA) injections provide the opportunity to deliver biologics directly to their site of action for a local and efficient treatment of osteoarthritis. However, the synovial joint is a challenging site of administration since the drug is rapidly eliminated across the synovial membrane and has limited distribution into cartilage, resulting in unsatisfactory therapeutic efficacy. In order to rationally develop appropriate drug delivery systems, it is essential to thoroughly understand the unique biopharmaceutical environments and kinetics in the joint to adequately simulate them in relevant experimental models. This review presents a detailed view on articular kinetics and drug-tissue interplay of IA administered drugs and summarizes how these can be translated into reasonable formulation strategies by identification of key factors through which the joint residence time can be prolonged and specific structures can be targeted. In this way, pros and cons of the delivery approaches for biologics will be evaluated and the extent to which biorelevant models are applicable to gain mechanistic insights and ameliorate formulation design is discussed.
Collapse
Affiliation(s)
- Tobias Siefen
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | | | | | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany; PEPITE (EA4267), University of Burgundy/Franche-Comté, Besançon, France.
| |
Collapse
|
6
|
Younas A, Gu H, Zhao Y, Zhang N. Novel approaches of the nanotechnology-based drug delivery systems for knee joint injuries: A review. Int J Pharm 2021; 608:121051. [PMID: 34454029 DOI: 10.1016/j.ijpharm.2021.121051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/14/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022]
Abstract
The knee joint is one of the largest, most complex, and frequently utilized organs in the body. It is very vulnerable to injuries due to activities, diseases, or accidents, which lead to or cause knee joint injuries in people of all ages. There are several types of knee joint injuries such as contusions, sprains, and strains to the ligament, tendon injuries, cartilage injuries, meniscus injuries, and inflammation of synovial membrane. To date, many drug delivery systems, e.g. nanoparticles, dendrimers, liposomes, micelles, and exosomes, have been used for the treatment of knee joint injuries. They aim to alleviate or reverse the symptoms with an improvement of the function of the knee joint by restoring or curing it. The nanosized structures show good biodegradability, biocompatibility, precise site-specific delivery, prolonged drug release, and enhanced efficacy. They regulate cell proliferation and differentiation, ECM synthesis, proinflammatory factor secretion, etc. to promote repair of injuries. The goal of this review is to outline the finding and studies of the novel strategies of nanotechnology-based drug delivery systems and provide future perspectives to combat the challenges of knee joint injuries by using nanotechnology.
Collapse
Affiliation(s)
- Ayesha Younas
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, PR China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, Zhengzhou 450001, Henan, PR China; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Henan, Zhengzhou 450001, Henan, PR China
| | - Hongzhou Gu
- Fudan University Shanghai Cancer Center, and the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Shanghai Stomatological Hospital, Fudan University, Shanghai 200032, PR China
| | - Yongxing Zhao
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, PR China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, Zhengzhou 450001, Henan, PR China; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Henan, Zhengzhou 450001, Henan, PR China.
| | - Nan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan, PR China; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Henan Province, Zhengzhou 450001, Henan, PR China; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Henan, Zhengzhou 450001, Henan, PR China.
| |
Collapse
|
7
|
Wu Z, Korntner SH, Mullen AM, Skoufos I, Tzora A, Zeugolis DI. In the quest of the optimal tissue source (porcine male and female articular, tracheal and auricular cartilage) for the development of collagen sponges for articular cartilage. BIOMEDICAL ENGINEERING ADVANCES 2021. [DOI: 10.1016/j.bea.2021.100002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
8
|
Lin W, Klein J. Recent Progress in Cartilage Lubrication. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005513. [PMID: 33759245 DOI: 10.1002/adma.202005513] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/23/2020] [Indexed: 05/18/2023]
Abstract
Healthy articular cartilage, covering the ends of bones in major joints such as hips and knees, presents the most efficiently-lubricated surface known in nature, with friction coefficients as low as 0.001 up to physiologically high pressures. Such low friction is indeed essential for its well-being. It minimizes wear-and-tear and hence the cartilage degradation associated with osteoarthritis, the most common joint disease, and, by reducing shear stress on the mechanotransductive, cartilage-embedded chondrocytes (the only cell type in the cartilage), it regulates their function to maintain homeostasis. Understanding the origins of such low friction of the articular cartilage, therefore, is of major importance in order to alleviate disease symptoms, and slow or even reverse its breakdown. This progress report considers the relation between frictional behavior and the cellular mechanical environment in the cartilage, then reviews the mechanism of lubrication in the joints, in particular focusing on boundary lubrication. Following recent advances based on hydration lubrication, a proposed synergy between different molecular components of the synovial joints, acting together in enabling the low friction, has been proposed. Additionally, recent development of natural and bio-inspired lubricants is reviewed.
Collapse
Affiliation(s)
- Weifeng Lin
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Jacob Klein
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
9
|
Lewis JA, Freeman R, Carrow JK, Clemons TD, Palmer LC, Stupp SI. Transforming Growth Factor β-1 Binding by Peptide Amphiphile Hydrogels. ACS Biomater Sci Eng 2020; 6:4551-4560. [DOI: 10.1021/acsbiomaterials.0c00679] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jacob A. Lewis
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Simpson Querrey Institute, Northwestern University, 303 East Superior Street, Chicago, Illinois 60611, United States
| | - Ronit Freeman
- Simpson Querrey Institute, Northwestern University, 303 East Superior Street, Chicago, Illinois 60611, United States
| | - James K. Carrow
- Simpson Querrey Institute, Northwestern University, 303 East Superior Street, Chicago, Illinois 60611, United States
| | - Tristan D. Clemons
- Simpson Querrey Institute, Northwestern University, 303 East Superior Street, Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Liam C. Palmer
- Simpson Querrey Institute, Northwestern University, 303 East Superior Street, Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Samuel I. Stupp
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Simpson Querrey Institute, Northwestern University, 303 East Superior Street, Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
- Department of Medicine, Northwestern University, 676 North St. Clair, Chicago, Illinois 60611, United States
| |
Collapse
|
10
|
Ji X, Yan Y, Sun T, Zhang Q, Wang Y, Zhang M, Zhang H, Zhao X. Glucosamine sulphate-loaded distearoyl phosphocholine liposomes for osteoarthritis treatment: combination of sustained drug release and improved lubrication. Biomater Sci 2019; 7:2716-2728. [PMID: 31033977 DOI: 10.1039/c9bm00201d] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Osteoarthritis (OA) is a chronic joint disease resulting from joint inflammation and damage. In this study, we employed a boundary lubricant known as a 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) liposome for loading of an anti-inflammatory drug d-glucosamine sulphate (GAS) to construct a treatment strategy allowing for sustained anti-inflammation and reduced damage. This kind of drug-loaded nanocarrier integrates the anti-inflammatory effect of the GAS and the lubrication ability of DSPC liposomes without the involvement of complex synthesis processes leading to easier popularization. Our experimental results indicated that the GAS-loaded DSPC liposomes could release GAS in a sustained manner while providing good lubrication in pure water (H2O) and phosphate buffered saline (PBS). Moreover, the GAS-loaded DSPC liposomes prepared at a 2 : 8 molar ratio in PBS exhibited a greater entrapment efficiency, lower GAS release rate and smaller friction coefficient as compared to those prepared in H2O. The superiority of the drug release and lubrication ability achieved with the GAS-loaded DSPC liposomes in PBS were elucidated on the basis of salt-induced enhancement in liposomal stability and hydration lubrication by the hydrated salt ions. Such GAS release accelerated the viability and proliferation of primary mouse chondrocytes while also providing the anti-inflammatory and chondroprotective potential for tumor necrosis factor (TNF-α) induced chondrocyte degeneration through the down-regulation of pro-inflammatory cytokines, pain related gene and catabolic proteases, as well as the up-regulation of anabolic components. We envision that the GAS-loaded DSPC liposomes could represent a promising new strategy for clinical treatment of OA in the future.
Collapse
Affiliation(s)
- Xiuling Ji
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhai C, Zhang X, Chen J, He J, Fei H, Liu Y, Luo C, Fan W. The effect of cartilage extracellular matrix particle size on the chondrogenic differentiation of bone marrow mesenchymal stem cells. Regen Med 2019; 14:663-680. [PMID: 31313645 DOI: 10.2217/rme-2018-0082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aim: To investigate the effect of cartilage extracellular matrix (ECM) particle size on the chondrogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). Materials & methods: BMSCs were seeded into the scaffolds fabricated by small particle ECM materials and large particle ECM materials. For the positive control, chondrogenically induced BMSCs were seeded into commercial poly-lactic-glycolic acid scaffolds. Macroscopic observation, histological and immunohistochemical staining, mechanical testing and biochemical analysis were performed to the cell-scaffold constructs. Results: BMSCs in small particle ECM materials and poly-lactic-glycolic acid scaffolds were induced to differentiate into chondrocytes, while BMSCs in the large particle ECM materials scaffold did not differentiate into chondrocytes. Conclusion: The small ECM particle materials improved the induction ability of the cartilage ECM-derived scaffold.
Collapse
Affiliation(s)
- Chenjun Zhai
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.,Department of Orthopedics, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu 214200, China
| | - Xiao Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jun Chen
- Department of Orthopedics, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu 214200, China
| | - Jian He
- Department of Orthopedics, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu 214200, China
| | - Hao Fei
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yang Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Chunyang Luo
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Weimin Fan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
12
|
Cai Z, Zhang H, Wei Y, Wu M, Fu A. Shear-thinning hyaluronan-based fluid hydrogels to modulate viscoelastic properties of osteoarthritis synovial fluids. Biomater Sci 2019; 7:3143-3157. [DOI: 10.1039/c9bm00298g] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hyaluronan-based injectable fluid hydrogel was prepared and used as an artificial synovial fluid for the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Zhixiang Cai
- Advanced Rheology Institute
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Hongbin Zhang
- Advanced Rheology Institute
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Yue Wei
- Advanced Rheology Institute
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Min Wu
- Advanced Rheology Institute
- Department of Polymer Science and Engineering
- School of Chemistry and Chemical Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Ailing Fu
- Shanghai Jingfeng Pharmaceutical Co. Ltd
- Shanghai 200120
- China
| |
Collapse
|
13
|
Sato M, Tsutsui T, Moroi A, Yoshizawa K, Aikawa Y, Sakamoto H, Ueki K. Adaptive change in temporomandibular joint tissue and mandibular morphology following surgically induced anterior disc displacement by bFGF injection in a rabbit model. J Craniomaxillofac Surg 2018; 47:320-327. [PMID: 30579745 DOI: 10.1016/j.jcms.2018.11.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/27/2018] [Accepted: 11/29/2018] [Indexed: 10/27/2022] Open
Abstract
PURPOSE The purpose of this study was to examine the effect of injecting basic fibroblast growth factor following surgical induced anterior disc displacement in temporomandibular joints (TMJ). MATERIALS AND METHODS Adult male Japanese white rabbits (n = 16; 2.0-2.5 kg; 10 weeks old) were assigned to experimental and control groups. In the experimental group, anterior disc displacement was induced in the bilateral TMJ. Recombinant human basic fibroblast growth factor (rh bFGF) 0.1 μg/1 μL aqueous solution was injected into the left retro-discal connective tissue close to the disc (ADL group), and saline alone was injected into the same site on the right (ADR group). In the control group, a sham operation without disc position change was performed in the bilateral TMJ (CR group and CL group). Four animals from the experimental (ADR and ADL) and control (CR and CL) groups were sacrificed at 1 and 12 weeks postoperatively to evaluate the mandibular morphology and computed tomographic (CT) value of the condylar head, using 3 dimensional computed tomography. Furthermore, cartilage layers and disc tissue were examined histologically. RESULTS Regarding CT value at the 0° site of the condylar surface, ADR showed the lowest value after 1 week (P = 0.0325). However, there were no significant differences among the 4 groups regarding CT values at the other degree sites after 1 and 12 weeks. Regarding mandibular length, ADR showed the lowest value after 12 weeks (P = 0.0079). In condylar width, ADR showed the lowest value after 1 week (P = 0.0097). CONCLUSION This study suggested that surgically induced anterior disc displacement could affect condylar morphology in the early stage, and could decrease mandibular length in the late stage. However, bFGF injection into the TMJ might prevent the degenerative change derived from anterior disc displacement and inhibition of sequential mandibular growth.
Collapse
Affiliation(s)
- Momoko Sato
- Department of Oral and Maxillofacial Surgery (Head: Prof. Dr. K Ueki), Division of Medicine, Interdisciplinary Graduate School, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi, 409-3898, Japan
| | - Takamitsu Tsutsui
- Department of Oral and Maxillofacial Surgery (Head: Prof. Dr. K Ueki), Division of Medicine, Interdisciplinary Graduate School, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi, 409-3898, Japan
| | - Akinori Moroi
- Department of Oral and Maxillofacial Surgery (Head: Prof. Dr. K Ueki), Division of Medicine, Interdisciplinary Graduate School, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi, 409-3898, Japan
| | - Kunio Yoshizawa
- Department of Oral and Maxillofacial Surgery (Head: Prof. Dr. K Ueki), Division of Medicine, Interdisciplinary Graduate School, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi, 409-3898, Japan
| | - Yoshihito Aikawa
- Radiology Unit (Head: Radiology Technician. H Sakamoto), University of Yamanashi Hospital, 1110 Shimokato, Chuo-shi, Yamanashi, 409-3898, Japan
| | - Hajime Sakamoto
- Radiology Unit (Head: Radiology Technician. H Sakamoto), University of Yamanashi Hospital, 1110 Shimokato, Chuo-shi, Yamanashi, 409-3898, Japan
| | - Koichiro Ueki
- Department of Oral and Maxillofacial Surgery (Head: Prof. Dr. K Ueki), Division of Medicine, Interdisciplinary Graduate School, University of Yamanashi, 1110 Shimokato, Chuo-shi, Yamanashi, 409-3898, Japan.
| |
Collapse
|
14
|
Yegappan R, Selvaprithiviraj V, Amirthalingam S, Jayakumar R. Carrageenan based hydrogels for drug delivery, tissue engineering and wound healing. Carbohydr Polym 2018; 198:385-400. [PMID: 30093014 DOI: 10.1016/j.carbpol.2018.06.086] [Citation(s) in RCA: 255] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 10/28/2022]
Abstract
Carrageenan is a class of naturally occurring sulphated polysaccharides, which is currently a promising candidate in tissue engineering and regenerative medicine as it resemblances native glycosaminoglycans. From pharmaceutical drug formulations to tissue engineered scaffolds, carrageenan has broad range of applications. Here we provide an overview of developing various forms of carrageenan based hydrogels. We focus on how these fabrication processes has an effect on physiochemical properties of the hydrogel. We outline the application of these hydrogels not only pertaining to sustained drug release but also their application in bone and cartilage tissue engineering as well as in wound healing and antimicrobial formulations. Administration of these hydrogels through various routes for drug delivery applications has been critically reviewed. Finally, we conclude by summarizing the current and future outlook that promotes the seaweed-derived polysaccharide as versatile, promising biomaterial for a variety of bioengineering applications.
Collapse
Affiliation(s)
- Ramanathan Yegappan
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Vignesh Selvaprithiviraj
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - Sivashanmugam Amirthalingam
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682041, India
| | - R Jayakumar
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682041, India.
| |
Collapse
|
15
|
Yoon JP, Lee CH, Jung JW, Lee HJ, Lee YS, Kim JY, Park GY, Choi JH, Chung SW. Sustained Delivery of Transforming Growth Factor β1 by Use of Absorbable Alginate Scaffold Enhances Rotator Cuff Healing in a Rabbit Model. Am J Sports Med 2018. [PMID: 29543511 DOI: 10.1177/0363546518757759] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The failure rate for healing after rotator cuff repair is relatively high. PURPOSE To establish a system for sustained release of transforming growth factor β1 (TGF-β1) using an alginate scaffold and evaluate the effects of the sustained release of TGF-β1 on rotator cuff healing in a rabbit model. STUDY DESIGN Controlled laboratory study. METHODS Before the in vivo animal study, a standard MTS assay was performed to evaluate cell proliferation and metabolic activity on the alginate scaffold. Additionally, an enzyme-linked immunosorbent assay was performed to confirm the capacity of the sustained release of TGF-β1-containing alginate scaffold. Once the in vitro studies were completed, bilateral supraspinatus tendon repairs were performed in 48 rabbits that were allocated to 3 groups (n = 16 each) (group 1, supraspinatus repair only; group 2, supraspinatus repair with TGF-β1 single injection; group 3, supraspinatus repair with TGF-β1 sustained release via an alginate-based delivery system). Biomechanical and histological analyses were performed to evaluate the quality of tendon-to-bone healing at 12 weeks after rotator cuff repair. RESULTS The cell proliferation rate of the alginate scaffold was 122.30% compared with the control (fresh medium) group, which confirmed that the alginate sheet had no cytotoxicity and enhanced cell proliferation. Additionally, the level of TGF-β1 was found to increase with time on the alginate scaffold. Biomechanically, group 3 exhibited a significantly heightened ultimate failure load compared with groups 1 and 2 (group 1, 74.89 ± 29.82 N; group 2, 80.02 ± 34.42 N; group 3, 108.32 ± 32.48 N; P = .011) and more prevalent midsubstance tear compared with group 1 ( P = .028). However, no statistical differences were found in the cross-sectional area of the supraspinatus tendon (group 1, 32.74 ± 9.38; group 2, 33.76 ± 8.89; group 3, 34.80 ± 14.52; P = .882) and ultimate stress (group 1, 2.62 ± 1.13 MPa; group 2, 2.99 ± 1.81 MPa; group 3, 3.62 ± 2.24 MPa; P = .317). Histologically, group 3 exhibited a significantly heightened modified total Bonar score (group 1, 5.00 ± 1.54; group 2, 6.12 ± 1.85; group 3, 7.50 ± 1.31; P = .001). In addition, the tendon-to-bone interface for group 3 demonstrated better collagen orientation, continuity, and organization, and the area of new fibrocartilage formation was more evident in group 3. CONCLUSION At 12 weeks after rotator cuff repair, the authors found improved biomechanical and histological outcomes for sustained release of TGF-β1 using alginate scaffold in a rabbit model. CLINICAL RELEVANCE The alginate-bound growth factor delivery system might improve healing after rotator cuff repair in humans.
Collapse
Affiliation(s)
- Jong Pil Yoon
- Department of Orthopaedic Surgery, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
| | - Chang-Hwa Lee
- Department of Orthopaedic Surgery, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
| | - Jae Wook Jung
- Department of Orthopaedic Surgery, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
| | - Hyun-Joo Lee
- Department of Orthopaedic Surgery, Kyungpook National University, School of Medicine, Daegu, Republic of Korea
| | - Yong-Soo Lee
- Department of Orthopaedic Surgery, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Ja-Yeon Kim
- Department of Orthopaedic Surgery, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Ga Young Park
- Department of Bio-fibers and Materials Science, College of Agriculture and Life Science, Kyungpook National University, Daegu, Republic of Korea
| | - Jin Hyun Choi
- Department of Bio-fibers and Materials Science, College of Agriculture and Life Science, Kyungpook National University, Daegu, Republic of Korea
| | - Seok Won Chung
- Department of Orthopaedic Surgery, Konkuk University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
16
|
A Novel Biodegradable Polyurethane Matrix for Auricular Cartilage Repair: An In Vitro and In Vivo Study. J Burn Care Res 2018; 37:e353-64. [PMID: 26284639 DOI: 10.1097/bcr.0000000000000281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Auricular reconstruction poses a challenge for reconstructive and burns surgeons. Techniques involving cartilage tissue engineering have shown potential in recent years. A biodegradable polyurethane matrix developed for dermal reconstruction offers an alternative to autologous, allogeneic, or xenogeneic biologicals for cartilage reconstruction. This study assesses such a polyurethane matrix for this indication in vivo and in vitro. To evaluate intrinsic cartilage repair, three pigs underwent auricular surgery to create excisional cartilage ± perichondrial defects, measuring 2 × 3 cm in each ear, into which acellular polyurethane matrices were implanted. Biopsies were taken at day 28 for histological assessment. Porcine chondrocytes ± perichondrocytes were cultured and seeded in vitro onto 1 × 1 cm polyurethane scaffolds. The total culture period was 42 days; confocal, histological, and immunohistochemical analyses of scaffold cultures were performed on days 14, 28, and 42. In vivo, the polyurethane matrices integrated with granulation tissue filling all biopsy samples. Minimal neocartilage invasion was observed marginally on some samples. Tissue composition was identical between ears whether perichondrium was left intact, or not. In vitro, the polyurethane matrix was biocompatible with chondrocytes ± perichondrocytes and supported production of extracellular matrix and Type II collagen. No difference was observed between chondrocyte culture alone and chondrocyte/perichondrocyte scaffold coculture. The polyurethane matrix successfully integrated into the auricular defect and was a suitable scaffold in vitro for cartilage tissue engineering, demonstrating its potential application in auricular reconstruction.
Collapse
|
17
|
Yang Q, Teng BH, Wang LN, Li K, Xu C, Ma XL, Zhang Y, Kong DL, Wang LY, Zhao YH. Silk fibroin/cartilage extracellular matrix scaffolds with sequential delivery of TGF-β3 for chondrogenic differentiation of adipose-derived stem cells. Int J Nanomedicine 2017; 12:6721-6733. [PMID: 28932116 PMCID: PMC5600265 DOI: 10.2147/ijn.s141888] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A 3-D scaffold that simulates the microenvironment in vivo for regenerating cartilage is ideal. In this study, we combined silk fibroin and decellularized cartilage extracellular matrix by temperature gradient-guided thermal-induced phase separation to produce composite scaffolds (S/D). Resulting scaffolds had remarkable mechanical properties and biomimeticstructure, for a suitable substrate for attachment and proliferation of adipose-derived stem cells (ADSCs). Moreover, transforming growth factor β3 (TGF-β3) loaded on scaffolds showed a controlled release profile and enhanced the chondrogenic differentiation of ADSCs during the 28-day culture. The S/D scaffold itself can provide a sustained release system without the introduction of other controlled release media, which has potential for commercial and clinical applications. The results of toluidine blue, Safranin O, and immunohistochemical staining and analysis of collagen II expression showed maintenance of a chondrogenic phenotype in all scaffolds after 28-day culture. The most obvious phenomenon was with the addition of TGF-β3. S/D composite scaffolds with sequential delivery of TGF-β3 may mimic the regenerative microenvironment to enhance the chondrogenic differentiation of ADSCs in vitro.
Collapse
Affiliation(s)
- Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin, People's Republic of China
| | - Bin-Hong Teng
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Li-Na Wang
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Kun Li
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Chen Xu
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, People's Republic of China
| | - Xin-Long Ma
- Department of Spine Surgery, Tianjin Hospital, Tianjin, People's Republic of China
| | - Yang Zhang
- Department of Spine Surgery, Tianjin Hospital, Tianjin, People's Republic of China
| | - De-Ling Kong
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Lian-Yong Wang
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, People's Republic of China
| | - Yan-Hong Zhao
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
18
|
Radhakrishnan J, Subramanian A, Krishnan UM, Sethuraman S. Injectable and 3D Bioprinted Polysaccharide Hydrogels: From Cartilage to Osteochondral Tissue Engineering. Biomacromolecules 2016; 18:1-26. [PMID: 27966916 DOI: 10.1021/acs.biomac.6b01619] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Biomechanical performance of functional cartilage is executed by the exclusive anisotropic composition and spatially varying intricate architecture in articulating ends of diarthrodial joint. Osteochondral tissue constituting the articulating ends comprise superfical soft cartilage over hard subchondral bone sandwiching interfacial soft-hard tissue. The shock-absorbent, lubricating property of cartilage and mechanical stability of subchondral bone regions are rendered by extended chemical structure of glycosaminoglycans and mineral deposition, respectively. Extracellular matrix glycosaminoglycans analogous polysaccharides are major class of hydrogels investigated for restoration of functional cartilage. Recently, injectable hydrogels have gained momentum as it offers patient compliance, tunable mechanical properties, cell deliverability, and facile administration at physiological condition with long-term functionality and hyaline cartilage construction. Interestingly, facile modifiable functional groups in carbohydrate polymers impart tailorability of desired physicochemical properties and versatile injectable chemistry for the development of highly potent biomimetic in situ forming scaffold. The scaffold design strategies have also evolved from single component to bi- or multilayered and graded constructs with osteogenic properties for deep subchondral regeneration. This review highlights the significance of polysaccharide structure-based functions in engineering cartilage tissue, injectable chemistries, strategies for combining analogous matrices with cells/stem cells and biomolecules and multicomponent approaches for osteochondral mimetic constructs. Further, the rheology and precise spatiotemporal positioning of cells in hydrogel bioink for rapid prototyping of complex three-dimensional anisotropic cartilage have also been discussed.
Collapse
Affiliation(s)
- Janani Radhakrishnan
- Centre for Nanotechnology and Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, India
| | - Anuradha Subramanian
- Centre for Nanotechnology and Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology and Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, India
| | - Swaminathan Sethuraman
- Centre for Nanotechnology and Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA University , Thanjavur-613401, India
| |
Collapse
|
19
|
Shah NJ, Geiger BC, Quadir MA, Hyder MN, Krishnan Y, Grodzinsky AJ, Hammond PT. Synthetic nanoscale electrostatic particles as growth factor carriers for cartilage repair. Bioeng Transl Med 2016; 1:347-356. [PMID: 28584879 PMCID: PMC5457159 DOI: 10.1002/btm2.10043] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The efficient transport of biological therapeutic materials to target tissues within the body is critical to their efficacy. In cartilage tissue, the lack of blood vessels prevents the entry of systemically administered drugs at therapeutic levels. Within the articulating joint complex, the dense and highly charged extracellular matrix (ECM) hinders the transport of locally administered therapeutic molecules. Consequently, cartilage injury is difficult to treat and frequently results in debilitating osteoarthritis. Here we show a generalizable approach in which the electrostatic assembly of synthetic polypeptides and a protein, insulin‐like growth factor‐1 (IGF‐1), can be used as an early interventional therapy to treat injury to the cartilage. We demonstrated that poly(glutamic acid) and poly(arginine) associated with the IGF‐1 via electrostatic interactions, forming a net charged nanoscale polyelectrolyte complex (nanoplex). We observed that the nanoplex diffused into cartilage plugs in vitro and stimulated ECM production. In vivo, we monitored the transport, retention and therapeutic efficacy of the nanoplex in an established rat model of cartilage injury. A single therapeutic dose, when administered within 48 hr of the injury, conferred protection against cartilage degradation and controlled interleukin‐1 mediated inflammation. IGF‐1 contained in the nanoplex was detected in the joint space for up to 4 weeks following administration and retained bioactivity. The results indicate the potential of this approach as an early intervention therapy following joint injury to delay or even entirely prevent the onset of osteoarthritis.
Collapse
Affiliation(s)
- Nisarg J Shah
- Dept. of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 02139.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge MA 02142
| | - Brett C Geiger
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge MA 02142.,Dept. of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 02139
| | - Mohiuddin A Quadir
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge MA 02142
| | - Md Nasim Hyder
- Dept. of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 02139.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge MA 02142.,Dept. of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 02139
| | - Yamini Krishnan
- Dept. of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 02139.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge MA 02142
| | - Alan J Grodzinsky
- Dept. of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 02139.,Dept. of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 02139.,Dept. of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 02139
| | - Paula T Hammond
- Dept. of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 02139.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge MA 02142.,Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 500 Technology Square, Cambridge MA 02142
| |
Collapse
|
20
|
Cynaropicrin is dual regulator for both degradation factors and synthesis factors in the cartilage metabolism. Life Sci 2016; 158:70-7. [DOI: 10.1016/j.lfs.2016.06.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/23/2016] [Accepted: 06/28/2016] [Indexed: 02/03/2023]
|
21
|
Varshosaz J, Sadeghi aliabadi H, Asheghali F. Chondroitin/doxorubicin nanoparticulate polyelectrolyte complex for targeted delivery to HepG2 cells. IET Nanobiotechnol 2016; 11:164-172. [DOI: 10.1049/iet-nbt.2015.0109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Jaleh Varshosaz
- Department of PharmaceuticsSchool of Pharmacy and Novel Drug Delivery Systems Research CentreIsfahan University of Medical SciencesIsfahanIran
| | - Hojjat Sadeghi aliabadi
- Department of BiotechnologyFaculty of PharmacyIsfahan University of Medical SciencesIsfahanIran
| | - Fereshte Asheghali
- Department of PharmaceuticsSchool of Pharmacy and Novel Drug Delivery Systems Research CentreIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
22
|
Popa EG, Reis RL, Gomes ME. Seaweed polysaccharide-based hydrogels used for the regeneration of articular cartilage. Crit Rev Biotechnol 2016; 35:410-24. [PMID: 24646368 DOI: 10.3109/07388551.2014.889079] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This manuscript provides an overview of the in vitro and in vivo studies reported in the literature focusing on seaweed polysaccharides based hydrogels that have been proposed for applications in regenerative medicine, particularly, in the field of cartilage tissue engineering. For a better understanding of the main requisites for these specific applications, the main aspects of the native cartilage structure, as well as recognized diseases that affect this tissue are briefly described. Current available treatments are also presented to emphasize the need for alternative techniques. The following part of this review is centered on the description of the general characteristics of algae polysaccharides, as well as relevant properties required for designing hydrogels for cartilage tissue engineering purposes. An in-depth overview of the most well known seaweed polysaccharide, namely agarose, alginate, carrageenan and ulvan biopolymeric gels, that have been proposed for engineering cartilage is also provided. Finally, this review describes and summarizes the translational aspect for the clinical application of alternative systems emphasizing the importance of cryopreservation and the commercial products currently available for cartilage treatment.
Collapse
Affiliation(s)
- Elena Geta Popa
- a 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine , AvePark , Guimarães , Portugal and
| | | | | |
Collapse
|
23
|
Almeida H, Eswaramoorthy R, Cunniffe G, Buckley C, O’Brien F, Kelly D. Fibrin hydrogels functionalized with cartilage extracellular matrix and incorporating freshly isolated stromal cells as an injectable for cartilage regeneration. Acta Biomater 2016; 36:55-62. [PMID: 26961807 DOI: 10.1016/j.actbio.2016.03.008] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 02/11/2016] [Accepted: 03/03/2016] [Indexed: 11/26/2022]
Abstract
UNLABELLED Freshly isolated stromal cells can potentially be used as an alternative to in vitro expanded cells in regenerative medicine. Their use requires the development of bioactive hydrogels or scaffolds which provide an environment to enhance their proliferation and tissue-specific differentiation in vivo. The goal of the current study was to develop an injectable fibrin hydrogel functionalized with cartilage ECM microparticles and transforming growth factor (TGF)-β3 as a putative therapeutic for articular cartilage regeneration. ECM microparticles were produced by cryomilling and freeze-drying porcine articular cartilage. Up to 2% (w/v) ECM could be incorporated into fibrin without detrimentally affecting its capacity to form stable hydrogels. To access the chondroinductivity of cartilage ECM, we compared chondrogenesis of infrapatellar fat pad-derived stem cells in fibrin hydrogels functionalized with either particulated ECM or control gelatin microspheres. Cartilage ECM particles could be used to control the delivery of TGF-β3 to IFP-derived stem cells within fibrin hydrogels in vitro, and furthermore, led to higher levels of sulphated glycosaminoglycan (sGAG) and collagen accumulation compared to control constructs loaded with gelatin microspheres. In vivo, freshly isolated stromal cells generated a more cartilage-like tissue within fibrin hydrogels functionalized with cartilage ECM particles compared to the control gelatin loaded constructs. These tissues stained strongly for type II collagen and contained higher levels of sGAGs. These results support the use of fibrin hydrogels functionalized with cartilage ECM components in single-stage, cell-based therapies for joint regeneration. STATEMENT OF SIGNIFICANCE An alternative to the use of in vitro expanded cells in regenerative medicine is the use of freshly isolated stromal cells, where a bioactive scaffold or hydrogel is used to provide an environment that enhances their proliferation and tissue-specific differentiation in vivo. The objective of this study was to develop an injectable fibrin hydrogel functionalized with cartilage ECM micro-particles and the growth factor TGF-β3 as a therapeutic for articular cartilage regeneration. This study demonstrates that freshly isolated stromal cells generate cartilage tissue in vivo when incorporated into such a fibrin hydrogels functionalized with cartilage ECM particles. These findings open up new possibilities for in-theatre, single-stage, cell-based therapies for joint regeneration.
Collapse
|
24
|
Kim H, Lee J. Strategies to Maximize the Potential of Marine Biomaterials as a Platform for Cell Therapy. Mar Drugs 2016; 14:E29. [PMID: 26821034 PMCID: PMC4771982 DOI: 10.3390/md14020029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 01/31/2023] Open
Abstract
Marine biopolymers have been explored as a promising cell therapy system for efficient cell delivery and tissue engineering. However, the marine biomaterial-based systems themselves have exhibited limited performance in terms of maintenance of cell viability and functions, promotion of cell proliferation and differentiation as well as cell delivery efficiency. Thus, numerous novel strategies have been devised to improve cell therapy outcomes. The strategies include optimization of physical and biochemical properties, provision of stimuli-responsive functions, and design of platforms for efficient cell delivery and tissue engineering. These approaches have demonstrated substantial improvement of therapeutic outcomes in a variety of research settings. In this review, therefore, research progress made with marine biomaterials as a platform for cell therapy is reported along with current research directions to further advance cell therapies as a tool to cure incurable diseases.
Collapse
Affiliation(s)
- Hyeongmin Kim
- Pharmaceutical Formulation Design Laboratory, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea.
- Bio-Integration Research Center for Nutra-Pharmaceutical Epigenetics, Chung-Ang University, Seoul 156-756, Korea.
| | - Jaehwi Lee
- Pharmaceutical Formulation Design Laboratory, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea.
- Bio-Integration Research Center for Nutra-Pharmaceutical Epigenetics, Chung-Ang University, Seoul 156-756, Korea.
| |
Collapse
|
25
|
Effect of the direct injection of bone marrow mesenchymal stem cells in hyaluronic acid and bone marrow stimulation to treat chondral defects in the canine model. Regen Ther 2015; 2:42-48. [PMID: 31245458 PMCID: PMC6581783 DOI: 10.1016/j.reth.2015.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 09/19/2015] [Accepted: 10/29/2015] [Indexed: 01/22/2023] Open
Abstract
Introduction The purpose of this study was to assess the direct injection of bone marrow-derived mesenchymal stem cells (BMSCs) suspended in hyaluronic acid (HA) combined with drilling as a treatment for chondral defects in a canine model. Methods Tibial bone marrow was aspirated, and BMSCs were isolated and cultured. One 8.0-mm diameter chondral defect was created in the femoral groove, and nine 0.9-mm diameter holes were drilled into the defect. BMSCs (2.14 × 107 cells) suspended in HA were injected into the defect. HA alone was injected into a similar defect on the contralateral knee as a control. Animals were sacrificed at 3 and 6 months. Results Although the percentage of coverage assessed macroscopically was significantly better at 6 months than at 3 months in both the BMSC (p = 0.02) and control (p = 0.001) groups, there were no significant differences in the International Cartilage Repair Society grades. The Wakitani histological score was significantly better at 6 months than at 3 months in the BMSC and control groups. While the control defects were mostly filled with fibrocartilage, several of the defects in the BMSC group contained hyaline-like cartilage. The mean Wakitani scores of the BMSC group improved from 7.0 ± 1.0 at 3 months to 4.6 ± 0.9 at 6 months, and those of the control group improved from 9.4 ± 1.2 to 6.0 ± 0.6. The BMSC group showed significantly better regeneration than the control group at 3 months (p = 0.04), but the difference at 6 months was not significant (p = 0.06). Conclusions The direct injection of BMSCs in HA combined with drilling enhanced cartilage regeneration.
Collapse
|
26
|
Lee CH, Rodeo SA, Fortier LA, Lu C, Erisken C, Mao JJ. Protein-releasing polymeric scaffolds induce fibrochondrocytic differentiation of endogenous cells for knee meniscus regeneration in sheep. Sci Transl Med 2015; 6:266ra171. [PMID: 25504882 DOI: 10.1126/scitranslmed.3009696] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Regeneration of complex tissues, such as kidney, liver, and cartilage, continues to be a scientific and translational challenge. Survival of ex vivo cultured, transplanted cells in tissue grafts is among one of the key barriers. Meniscus is a complex tissue consisting of collagen fibers and proteoglycans with gradient phenotypes of fibrocartilage and functions to provide congruence of the knee joint, without which the patient is likely to develop arthritis. Endogenous stem/progenitor cells regenerated the knee meniscus upon spatially released human connective tissue growth factor (CTGF) and transforming growth factor-β3 (TGFβ3) from a three-dimensional (3D)-printed biomaterial, enabling functional knee recovery. Sequentially applied CTGF and TGFβ3 were necessary and sufficient to propel mesenchymal stem/progenitor cells, as a heterogeneous population or as single-cell progenies, into fibrochondrocytes that concurrently synthesized procollagens I and IIα. When released from microchannels of 3D-printed, human meniscus scaffolds, CTGF and TGFβ3 induced endogenous stem/progenitor cells to differentiate and synthesize zone-specific type I and II collagens. We then replaced sheep meniscus with anatomically correct, 3D-printed scaffolds that incorporated spatially delivered CTGF and TGFβ3. Endogenous cells regenerated the meniscus with zone-specific matrix phenotypes: primarily type I collagen in the outer zone, and type II collagen in the inner zone, reminiscent of the native meniscus. Spatiotemporally delivered CTGF and TGFβ3 also restored inhomogeneous mechanical properties in the regenerated sheep meniscus. Survival and directed differentiation of endogenous cells in a tissue defect may have implications in the regeneration of complex (heterogeneous) tissues and organs.
Collapse
Affiliation(s)
- Chang H Lee
- Tissue Engineering and Regenerative Medicine Laboratory, Columbia University Medical Center, New York, NY 10032, USA
| | - Scott A Rodeo
- Department of Orthopaedic Surgery, Hospital for Special Surgery, 525 East 71st Street, New York, NY 10021, USA
| | - Lisa Ann Fortier
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Chuanyong Lu
- Tissue Engineering and Regenerative Medicine Laboratory, Columbia University Medical Center, New York, NY 10032, USA
| | - Cevat Erisken
- Tissue Engineering and Regenerative Medicine Laboratory, Columbia University Medical Center, New York, NY 10032, USA
| | - Jeremy J Mao
- Tissue Engineering and Regenerative Medicine Laboratory, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
27
|
Study of osteoarthritis treatment with anti-inflammatory drugs: cyclooxygenase-2 inhibitor and steroids. BIOMED RESEARCH INTERNATIONAL 2015; 2015:595273. [PMID: 26000299 PMCID: PMC4427003 DOI: 10.1155/2015/595273] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/06/2015] [Accepted: 03/12/2015] [Indexed: 12/20/2022]
Abstract
Patients with osteoarthritis (OA), a condition characterized by cartilage degradation, are often treated with steroids, nonsteroidal anti-inflammatory drugs (NSAIDs), and cyclooxygenase-2 (COX-2) selective NSAIDs. Due to their inhibition of the inflammatory cascade, the drugs affect the balance of matrix metalloproteinases (MMPs) and inflammatory cytokines, resulting in preservation of extracellular matrix (ECM). To compare the effects of these treatments on chondrocyte metabolism, TNF-α was incubated with cultured chondrocytes to mimic a proinflammatory environment with increasing production of MMP-1 and prostaglandin E2 (PGE2). The chondrocytes were then treated with either a steroid (prednisone), a nonspecific COX inhibitor NSAID (piroxicam), or a COX-2 selective NSAID (celecoxib). Both prednisone and celecoxib decreased MMP-1 and PGE-2 production while the nonspecific piroxicam decreased only the latter. Both prednisone and celecoxib decreased gene expression of MMP-1 and increased expression of aggrecan. Increased gene expression of type II collagen was also noted with celecoxib. The nonspecific piroxicam did not show these effects. The efficacy of celecoxib in vivo was investigated using a posttraumatic OA (PTOA) mouse model. In vivo, celecoxib increases aggrecan synthesis and suppresses MMP-1. In conclusion, this study demonstrates that celecoxib and steroids exert similar effects on MMP-1 and PGE2 production in vitro and that celecoxib may demonstrate beneficial effects on anabolic metabolism in vivo.
Collapse
|
28
|
Smith BT, Shum J, Wong M, Mikos AG, Young S. Bone Tissue Engineering Challenges in Oral & Maxillofacial Surgery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 881:57-78. [PMID: 26545744 DOI: 10.1007/978-3-319-22345-2_4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past decades, there has been a substantial amount of innovation and research into tissue engineering and regenerative approaches for the craniofacial region. This highly complex area presents many unique challenges for tissue engineers. Recent research indicates that various forms of implantable biodegradable scaffolds may play a beneficial role in the clinical treatment of craniofacial pathological conditions. Additionally, the direct delivery of bioactive molecules may further increase de novo bone formation. While these strategies offer an exciting glimpse into potential future treatments, there are several challenges that still must be overcome. In this chapter, we will highlight both current surgical approaches for craniofacial reconstruction and recent advances within the field of bone tissue engineering. The clinical challenges and limitations of these strategies will help contextualize and inform future craniofacial tissue engineering strategies.
Collapse
Affiliation(s)
- Brandon T Smith
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Jonathan Shum
- Department of Oral and Maxillofacial Surgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mark Wong
- Department of Oral and Maxillofacial Surgery, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, TX, USA.,Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Simon Young
- Department of Oral and Maxillofacial Surgery, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
29
|
Li F, Ma L, Li B, Gao C. Enhanced bioactivity of transform growth factor-β1 from sulfated chitosan microspheres for in vitro chondrogenesis of mesenchymal stem cells. PURE APPL CHEM 2014. [DOI: 10.1515/pac-2014-0704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Abstract
Transform growth factor-β1 (TGF-β1) is an extremely powerful protein to induce the chondrogenesis of mesenchymal stem cells (MSCs) both in vitro and in vivo. However, due to the short-life of TGF-β1, the direct application of TGF-β1 may deteriorate its bioactivity and thereby the repair effect. In this study, uniform sulfated chitosan microspheres (SCMs) with a mean diameter of ∼ 2 μm were fabricated by membrane emulsification as a carrier for TGF-β1. The in vitro release study showed that TGF-β1 could be sustainedly released from the microspheres up to 16 days. Under the protection of SCMs, about 13 % TGF-β1 was preserved even after stored for 14 days. The microspheres cytotoxicity was evaluated by coculture of MSCs with different concentrations SCMs and no obvious deterioration of cell viability was observed when the concentration of SCMs is lower than 2 μg/1.0 × 104 cells. In comparison with the blank group, the addition of TGF-β1 either in free state or loaded in SCMs inhibited the proliferation trend of MSCs. Quantitative analysis of GAGs production and genes expression of COL II and aggrecan by qRT-PCR revealed that enhanced bioactivity of TGF-β1 was obtained in the group of TGF-β1/SCMs, indicating that SCMs could be functioned as a promising carrier of TGF-β1 for the in vitro chondrogenesis of MSCs.
Collapse
|
30
|
O'Shaughnessey K, Matuska A, Hoeppner J, Farr J, Klaassen M, Kaeding C, Lattermann C, King W, Woodell-May J. Autologous protein solution prepared from the blood of osteoarthritic patients contains an enhanced profile of anti-inflammatory cytokines and anabolic growth factors. J Orthop Res 2014; 32:1349-55. [PMID: 24981198 PMCID: PMC4134723 DOI: 10.1002/jor.22671] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/19/2014] [Indexed: 02/04/2023]
Abstract
The objective of this clinical study was to test if blood from osteoarthritis (OA) patients (n = 105) could be processed by a device system to form an autologous protein solution (APS) with preferentially increased concentrations of anti-inflammatory cytokines compared to inflammatory cytokines. To address this objective, APS was prepared from patients exhibiting radiographic evidence of knee OA. Patient metrics were collected including: demographic information, medical history, medication records, and Knee Injury and Osteoarthritis Outcome Score (KOOS) surveys. Cytokine and growth factor concentrations in whole blood and APS were measured using enzyme-linked immunosorbent assays. Statistical analyses were used to identify relationships between OA patient metrics and cytokines. The results of this study indicated that anti-inflammatory cytokines were preferentially increased compared to inflammatory cytokines in APS from 98% of OA patients. APS contained high concentrations of anti-inflammatory proteins including 39,000 ± 20,000 pg/ml IL-1ra, 21,000 ± 5,000 pg/ml sIL-1RII, 2,100 ± 570 pg/ml sTNF-RI, and 4,200 ± 1,500 pg/ml sTNF-RII. Analysis of the 82 patient metrics indicated that no single patient metric was strongly correlated (R(2) > 0.7) with the key cytokine concentrations in APS. Therefore, APS can be prepared from a broad range of OA patients.
Collapse
Affiliation(s)
| | | | | | - Jack Farr
- The Indiana Orthopaedic Hospital, Indianapolis, Indiana
| | - Mark Klaassen
- Orthopaedic and Sports Medicine Center, Elkhart, Indiana
| | | | - Christian Lattermann
- University of Kentucky, Department of Orthopaedic Surgery and Sports Medicine, Lexington, Kentucky
| | - William King
- Biomet Biologics, Warsaw, Indiana,Corresponding author: William King, PhD, 56 East Bell Drive, Warsaw, IN 46582, Telephone: 574-372-6746, Fax: 574-371-1187,
| | | |
Collapse
|
31
|
Controlled release of transforming growth factor-β3 from cartilage-extra-cellular-matrix-derived scaffolds to promote chondrogenesis of human-joint-tissue-derived stem cells. Acta Biomater 2014; 10:4400-9. [PMID: 24907658 DOI: 10.1016/j.actbio.2014.05.030] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/13/2014] [Accepted: 05/27/2014] [Indexed: 01/12/2023]
Abstract
The objective of this study was to develop a scaffold derived from cartilaginous extracellular matrix (ECM) that could be used as a growth factor delivery system to promote chondrogenesis of stem cells. Dehydrothermal crosslinked scaffolds were fabricated using a slurry of homogenized porcine articular cartilage, which was then seeded with human infrapatellar-fat-pad-derived stem cells (FPSCs). It was found that these ECM-derived scaffolds promoted superior chondrogenesis of FPSCs when the constructs were additionally stimulated with transforming growth factor (TGF)-β3. Cell-mediated contraction of the scaffold was observed, which could be limited by the additional use of 1-ethyl-3-3dimethyl aminopropyl carbodiimide (EDAC) crosslinking without suppressing cartilage-specific matrix accumulation within the construct. To further validate the utility of the ECM-derived scaffold, we next compared its chondro-permissive properties to a biomimetic collagen-hyaluronic acid (HA) scaffold optimized for cartilage tissue engineering (TE) applications. The cartilage-ECM-derived scaffold supported at least comparable chondrogenesis to the collagen-HA scaffold, underwent less contraction and retained a greater proportion of synthesized sulfated glycosaminoglycans. Having developed a promising scaffold for TE, with superior chondrogenesis observed in the presence of exogenously supplied TGF-β3, the final phase of the study explored whether this scaffold could be used as a TGF-β3 delivery system to promote chondrogenesis of FPSCs. It was found that the majority of TGF-β3 that was loaded onto the scaffold was released in a controlled manner over the first 10days of culture, with comparable long-term chondrogenesis observed in these TGF-β3-loaded constructs compared to scaffolds where the TGF-β3 was continuously added to the media. The results of this study support the use of cartilage-ECM-derived scaffolds as a growth factor delivery system for use in articular cartilage regeneration.
Collapse
|
32
|
Sridhar BV, Doyle NR, Randolph MA, Anseth KS. Covalently tethered TGF-β1 with encapsulated chondrocytes in a PEG hydrogel system enhances extracellular matrix production. J Biomed Mater Res A 2014; 102:4464-72. [PMID: 24616326 DOI: 10.1002/jbm.a.35115] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/24/2014] [Accepted: 02/10/2014] [Indexed: 11/09/2022]
Abstract
Healing articular cartilage defects remains a significant clinical challenge because of its limited capacity for self-repair. While delivery of autologous chondrocytes to cartilage defects has received growing interest, combining cell-based therapies with growth factor delivery that can locally signal cells and promote their function is often advantageous. We have previously shown that PEG thiol-ene hydrogels permit covalent attachment of growth factors. However, it is not well known if embedded chondrocytes respond to tethered signals over a long period. Here, chondrocytes were encapsulated in PEG hydrogels functionalized with transforming growth factor-beta 1 (TGF-β1) with the goal of increasing proliferation and matrix production. Tethered TGF-β1 was found to be distributed homogenously throughout the gel, and its bioactivity was confirmed with a TGF-β1 responsive reporter cell line. Relative to solubly delivered TGF-β1, chondrocytes presented with immobilized TGF-β1 showed significantly increased DNA content, and GAG and collagen production over 28 days, while maintaining markers of articular cartilage. These results indicate the potential of thiol-ene chemistry to covalently conjugate TGF-β1 to PEG to locally influence chondrocyte function over 4 weeks. Scaffolds with other or multiple tethered growth factors may prove broadly useful in the design of chondrocyte delivery vehicles for cartilage tissue engineering applications.
Collapse
Affiliation(s)
- Balaji V Sridhar
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, Colorado; Biofrontiers Institute, University of Colorado at Boulder, Boulder, Colorado
| | | | | | | |
Collapse
|
33
|
Li X, Su G, Wang J, Zhou Z, Li L, Liu L, Guan M, Zhang Q, Wang H. Exogenous bFGF promotes articular cartilage repair via up-regulation of multiple growth factors. Osteoarthritis Cartilage 2013; 21:1567-75. [PMID: 23792272 DOI: 10.1016/j.joca.2013.06.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 05/21/2013] [Accepted: 06/05/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate the roles of exogenous basic fibroblast growth factor (bFGF) on the repair of full-thickness articular cartilage defects in rabbits. DESIGN In the present study, a double-layered collagen membrane sandwiched with bFGF-loaded-nanoparticles between a dense layer and a loose layer was implanted into full-thickness articular cartilage defects in rabbits. By grafting the membrane in a different direction, the dense layer or the loose layer facing the surface of the subchondral bone, the effects of the released bFGF on the defects and the profiles of nine growth factors (GFs) in synovial fluid (SF) were investigated using histological methods and antibody arrays, respectively. RESULTS In the group with the loose layer facing the surface of the subchondral bone, fast release of bFGF was observed, and early high levels of endogenous transforming growth factor-β2 (TGF-β2), vascular endothelial growth factor (VEGF), bFGF, bone morphogenetic protein 2 (BMP-2), BMP-3, and BMP-4 in SF were detected by antibody arrays, especially on day 3. Chondrocyte-like cells were also observed in this group at an early stage. As a result, this group showed better levels of repair, as compared to the other groups in which low GF levels were detected at an early stage, and chondrocyte-like cells appeared much later. CONCLUSIONS Our study suggests that exogenous bFGF promotes articular cartilage repair by up-regulating the levels of multiple GFs, but administration at an early stage is required.
Collapse
Affiliation(s)
- X Li
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences, Peking Union Medical College, The Key Laboratory of Biomedical Material of Tianjin, Tianjin 300192, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lee EJ, Kasper FK, Mikos AG. Biomaterials for tissue engineering. Ann Biomed Eng 2013; 42:323-37. [PMID: 23820768 DOI: 10.1007/s10439-013-0859-6] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/24/2013] [Indexed: 01/24/2023]
Abstract
Biomaterials serve as an integral component of tissue engineering. They are designed to provide architectural framework reminiscent of native extracellular matrix in order to encourage cell growth and eventual tissue regeneration. Bone and cartilage represent two distinct tissues with varying compositional and mechanical properties. Despite these differences, both meet at the osteochondral interface. This article presents an overview of current biomaterials employed in bone and cartilage applications, discusses some design considerations, and alludes to future prospects within this field of research.
Collapse
Affiliation(s)
- Esther J Lee
- Department of Bioengineering, Rice University, MS 142, P.O. Box 1892, Houston, TX, 77251-1892, USA
| | | | | |
Collapse
|
35
|
A cell-free nanofiber composite scaffold regenerated osteochondral defects in miniature pigs. Int J Pharm 2013; 447:139-49. [PMID: 23499757 DOI: 10.1016/j.ijpharm.2013.02.056] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 02/26/2013] [Accepted: 02/28/2013] [Indexed: 02/03/2023]
Abstract
The aim of the study was to evaluate the effect of a cell-free hyaluronate/type I collagen/fibrin composite scaffold containing polyvinyl alcohol (PVA) nanofibers enriched with liposomes, basic fibroblast growth factor (bFGF) and insulin on the regeneration of osteochondral defects. A novel drug delivery system was developed on the basis of the intake effect of liposomes encapsulated in PVA nanofibers. Time-controlled release of insulin and bFGF improved MSC viability in vitro. Nanofibers functionalized with liposomes also improved the mechanical characteristics of the composite gel scaffold. In addition, time-controlled release of insulin and bFGF stimulated MSC recruitment from bone marrow in vivo. Cell-free composite scaffolds containing PVA nanofibers enriched with liposomes, bFGF, and insulin were implanted into seven osteochondral defects of miniature pigs. Control defects were left untreated. After 12 weeks, the composite scaffold had enhanced osteochondral regeneration towards hyaline cartilage and/or fibrocartilage compared with untreated defects that were filled predominantly with fibrous tissue. The cell-free composite scaffold containing PVA nanofibers, liposomes and growth factors enhanced migration of the cells into the defect, and their differentiation into chondrocytes; the scaffold was able to enhance the regeneration of osteochondral defects in minipigs.
Collapse
|
36
|
|
37
|
Falco N, Reverchon E, Della Porta G. Injectable PLGA/hydrocortisone formulation produced by continuous supercritical emulsion extraction. Int J Pharm 2012; 441:589-97. [PMID: 23124104 DOI: 10.1016/j.ijpharm.2012.10.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 10/24/2012] [Indexed: 11/27/2022]
Abstract
The objective of the present study was to develop an anti-inflammatory prolonged action formulation for local injection in prefilled syringes. Hydrocortisone acetate (HA) was selected as a model corticosteroid drug to be incorporated in poly(lactic-co-glycolic) (PLGA) microspheres. The formulation was obtained by supercritical emulsion extraction in continuous operation layout (SEE-C) to test the process robustness for a continuous industrial production. PLGA/HA microspheres with mean sizes between 1 μm (SD±0.20) and 5 μm (SD±1.45) were obtained when operating at 80 bar and 38 °C with a L/G ratio of 0.1 in the counter-current tower. The produced microdevices showed excellent encapsulation efficiencies between 75% and 80%, depending on the emulsion formulations tested, and different sustained release in the range of 6-15 days. In dependence of the different emulsion (single or double) processed by SEE-C, different products can be obtained according to the therapeutic requests. SEE-C confirms to be an innovative and flexible technology for biopolymer microdevices production, coupling the efficiency of continuous operation to the easy process scalability.
Collapse
Affiliation(s)
- Nunzia Falco
- Department of Industrial Engineering, University of Salerno, Via Ponte don Melillo 1, 84084 Fisciano (SA), Italy
| | | | | |
Collapse
|
38
|
Demirbag B, Huri PY, Kose GT, Buyuksungur A, Hasirci V. Advanced cell therapies with and without scaffolds. Biotechnol J 2012; 6:1437-53. [PMID: 22162495 DOI: 10.1002/biot.201100261] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tissue engineering and regenerative medicine aim to produce tissue substitutes to restore lost functions of tissues and organs. This includes cell therapies, induction of tissue/organ regeneration by biologically active molecules, or transplantation of in vitro grown tissues. This review article discusses advanced cell therapies that make use of scaffolds and scaffold-free approaches. The first part of this article covers the basic characteristics of scaffolds, including characteristics of scaffold material, fabrication and surface functionalization, and their applications in the construction of hard (bone and cartilage) and soft (nerve, skin, blood vessel, heart muscle) tissue substitutes. In addition, cell sources as well as bioreactive agents, such as growth factors, that guide cell functions are presented. The second part in turn, examines scaffold-free applications, with a focus on the recently discovered cell sheet engineering. This article serves as a good reference for all applications of advanced cell therapies and as well as advantages and limitations of scaffold-based and scaffold-free strategies.
Collapse
Affiliation(s)
- Birsen Demirbag
- METU, Department of Biotechnology, Biotechnology Research Unit, Ankara, Turkey
| | | | | | | | | |
Collapse
|
39
|
Tığlı RS, Akman AC, Gümüşderelıoğlu M, Nohutçu RM. In Vitro Release of Dexamethasone or bFGF from Chitosan/Hydroxyapatite Scaffolds. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 20:1899-914. [DOI: 10.1163/156856208x399945] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- R. Seda Tığlı
- a Hacettepe University, Chemical Engineering Department, 06800 Beytepe, Ankara, Turkey
| | - Abdullah C. Akman
- b Hacettepe University, Faculty of Dentistry, Periodontology Department, Ankara, Turkey
| | | | - Rahime M. Nohutçu
- d Hacettepe University, Faculty of Dentistry, Periodontology Department, Ankara, Turkey
| |
Collapse
|
40
|
Mickova A, Buzgo M, Benada O, Rampichova M, Fisar Z, Filova E, Tesarova M, Lukas D, Amler E. Core/Shell Nanofibers with Embedded Liposomes as a Drug Delivery System. Biomacromolecules 2012; 13:952-62. [DOI: 10.1021/bm2018118] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andrea Mickova
- Department of Biophysics, Second Faculty of Medicine, Charles University in Prague, V Úvalu 84, 150 06 Prague 5, Czech Republic
- Institute of Experimental
Medicine, Academy of Sciences of the Czech Republic, v.v.i, Vídeňská 1083,142
20 Prague 4, Czech Republic
| | - Matej Buzgo
- Department of Biophysics, Second Faculty of Medicine, Charles University in Prague, V Úvalu 84, 150 06 Prague 5, Czech Republic
- Institute of Experimental
Medicine, Academy of Sciences of the Czech Republic, v.v.i, Vídeňská 1083,142
20 Prague 4, Czech Republic
| | - Oldrich Benada
- Laboratory of Molecular Structure
Characterization, Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech
Republic
| | - Michala Rampichova
- Department of Biophysics, Second Faculty of Medicine, Charles University in Prague, V Úvalu 84, 150 06 Prague 5, Czech Republic
- Institute of Experimental
Medicine, Academy of Sciences of the Czech Republic, v.v.i, Vídeňská 1083,142
20 Prague 4, Czech Republic
| | - Zdenek Fisar
- Department
of Psychiatry, First Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Eva Filova
- Institute of Experimental
Medicine, Academy of Sciences of the Czech Republic, v.v.i, Vídeňská 1083,142
20 Prague 4, Czech Republic
- Faculty of Biomedical Engineering, Czech Technical University, Sítná 3105,
272 01 Kladno, Czech Republic
| | - Martina Tesarova
- Laboratory of Electron Microscopy, Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branisovska
31, 37005 Ceske Budejovice, Czech Republic
| | - David Lukas
- Department of Nonwovens, Technical University of Liberec, Studentska
2, 461 17 Liberec, Czech Republic
| | - Evzen Amler
- Department of Biophysics, Second Faculty of Medicine, Charles University in Prague, V Úvalu 84, 150 06 Prague 5, Czech Republic
- Institute of Experimental
Medicine, Academy of Sciences of the Czech Republic, v.v.i, Vídeňská 1083,142
20 Prague 4, Czech Republic
- Faculty of Biomedical Engineering, Czech Technical University, Sítná 3105,
272 01 Kladno, Czech Republic
| |
Collapse
|
41
|
Patel RS, Chang A, Lysaght MJ, Morgan JR. Control of the timing and dosage of IGF-I delivery from encapsulated cells. J Tissue Eng Regen Med 2012; 7:470-8. [PMID: 22319007 DOI: 10.1002/term.546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 07/21/2011] [Accepted: 11/14/2011] [Indexed: 11/09/2022]
Abstract
We report here on the development and characterization of a cell-based system for the regulated delivery of bioactive insulin-like growth factor I (IGF-I). A stable mammalian cell line, CHO-K1 Tet-IGFI, was genetically modified to have tetracycline-induced transcription of the human IGF-I gene. Cells were activated to express IGF-I in the presence of doxycycline (DOX), a tetracycline derivative, while expression was inactivated in the absence of DOX. Temporal, or on-off, release of IGF-I from cells encapsulated within Ca²⁺-alginate hydrogels was demonstrated in a pilot study over the course of 10 days in culture. Released growth factor was bioactive, exhibiting a proliferative effect comparable to recombinant purified IGF-I protein. The dosage levels and temporal control of IGF-I release from encapsulated cells meet the requirements of orthopedic wound repair, making this approach an attractive means for the controlled synthesis and delivery of growth factors in situ for wound healing.
Collapse
Affiliation(s)
- Roshni S Patel
- Center for Biomedical Engineering, Brown University, 171 Meeting Street, Providence, Rhode Island 02906, USA.
| | | | | | | |
Collapse
|
42
|
Spiller KL, Liu Y, Holloway JL, Maher SA, Cao Y, Liu W, Zhou G, Lowman AM. A novel method for the direct fabrication of growth factor-loaded microspheres within porous nondegradable hydrogels: Controlled release for cartilage tissue engineering. J Control Release 2012; 157:39-45. [DOI: 10.1016/j.jconrel.2011.09.057] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 09/04/2011] [Indexed: 11/16/2022]
|
43
|
Ghahramanpoor MK, Hassani Najafabadi SA, Abdouss M, Bagheri F, Baghaban Eslaminejad M. A hydrophobically-modified alginate gel system: utility in the repair of articular cartilage defects. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:2365-2375. [PMID: 21833609 DOI: 10.1007/s10856-011-4396-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Accepted: 07/11/2011] [Indexed: 05/31/2023]
Abstract
Alginate is a family of natural polysaccharides, widely used in industry and medicine for many applications, with its non toxic nature, gentle sol/gel transition procedure and low cost, alginate inferior biomechanical properties have limited its utility especially in tissue engineering. Additionally, ionically cross-linked alginate hydrogels generally lose most of their initial mechanical and swelling properties within a few hours in physiological solution. In order to overcome these limitations, the referenced alginate was treated by covalent fixation of octadecyl chains onto the polysaccharide backbone by esterification. In semi dilute solution, intermolecular hydrophobic interactions of long alkyl chains result in the formation of physical hydrogels, which can then be reinforced by the addition of calcium chloride. FTIR studies clearly showed the presence of ester bonds at 1612 and 1730 cm(-1) indicating that the alkyl groups are incorporated in the backbone of resulting polymer. The endothermic peak and exothermic peak present in the DSC thermogram of Alg-C18 had shifted to lower temperatures comparing to native alginate (from 106 to 83°C and from 250 to 245°C, respectively) due to the esterification reaction that leads to high hydrophobic nature of the modified sample. From rheological experiments, it can be inferred that the combination of both calcium bridges and intermolecular hydrophobic interaction in the treated alginate leads to enhanced gel strength accompanied by more stable structure in physiological solution comparing to native sodium alginate hydrogel. Finally, the modified alginate tended to have no toxic effects on mesenchymal stem cell culture, rather it supported MSC chondrogenic differentiation.
Collapse
|
44
|
Rocha PM, Santo VE, Gomes ME, Reis RL, Mano JF. Encapsulation of adipose-derived stem cells and transforming growth factor-β1 in carrageenan-based hydrogels for cartilage tissue engineering. J BIOACT COMPAT POL 2011. [DOI: 10.1177/0883911511420700] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Tissue engineering (TE) is an emerging field for the regeneration of damaged tissues. The combination of hydrogels with stem cells and growth factors (GFs) has become a promising approach to promote cartilage regeneration. In this study, carrageenan-based hydrogels were used to encapsulate both cells and transforming growth factor-β1 (TGF-β1). The ATDC5 cell line was encapsulated to determine the cytotoxicity and the influence of polymer concentration on cell viability and proliferation. Human adipose-derived stem cells (hASCs) were encapsulated with TGF-β1 in the hydrogel networks to enhance the chondrogenic differentiation of hASCs. Specific cartilage extracellular matrix molecules expression by hASCs were observed after 14 days of cultures of the constructs under different conditions. The κ-carrageenan was found to be a suitable biomaterial for cell and GF encapsulation. The incorporation of TGF-β1 within the carrageenan-based hydrogel enhanced the cartilage differentiation of hASCs. These findings indicate that this new system for cartilage TE is very promising for injectable thermoresponsive formulation applications.
Collapse
Affiliation(s)
- Pedro M Rocha
- 3BCaractère manquant ?s Research Group - Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, S. Cláudio do Barco, 4806-909 Caldas das Taipas, Guimarães, Portugal
| | - Vítor E Santo
- 3BCaractère manquant ?s Research Group - Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, S. Cláudio do Barco, 4806-909 Caldas das Taipas, Guimarães, Portugal
| | - Manuela E Gomes
- 3BCaractère manquant ?s Research Group - Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, S. Cláudio do Barco, 4806-909 Caldas das Taipas, Guimarães, Portugal
| | - Rui L Reis
- 3BCaractère manquant ?s Research Group - Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, S. Cláudio do Barco, 4806-909 Caldas das Taipas, Guimarães, Portugal
| | - João F Mano
- 3BCaractère manquant ?s Research Group - Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, S. Cláudio do Barco, 4806-909 Caldas das Taipas, Guimarães, Portugal,
| |
Collapse
|
45
|
Andreas K, Zehbe R, Kazubek M, Grzeschik K, Sternberg N, Bäumler H, Schubert H, Sittinger M, Ringe J. Biodegradable insulin-loaded PLGA microspheres fabricated by three different emulsification techniques: investigation for cartilage tissue engineering. Acta Biomater 2011; 7:1485-95. [PMID: 21168535 DOI: 10.1016/j.actbio.2010.12.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 11/17/2010] [Accepted: 12/13/2010] [Indexed: 01/02/2023]
Abstract
Growth, differentiation and migration factors facilitate the engineering of tissues but need to be administered with defined gradients over a prolonged period of time. In this study insulin as a growth factor for cartilage tissue engineering and a biodegradable PLGA delivery device were used. The aim was to investigate comparatively three different microencapsulation techniques, solid-in-oil-in-water (s/o/w), water-in-oil-in-water (w/o/w) and oil-in-oil-in-water (o/o/w), for the fabrication of insulin-loaded PLGA microspheres with regard to protein loading efficiency, release and degradation kinetics, biological activity of the released protein and phagocytosis of the microspheres. Insulin-loaded PLGA microspheres prepared by all three emulsification techniques had smooth and spherical surfaces with a negative zeta potential. The preparation technique did not affect particle degradation nor induce phagocytosis by human leukocytes. The delivery of structurally intact and biologically active insulin from the microspheres was shown using circular dichroism spectroscopy and a MCF7 cell-based proliferation assay. However, the insulin loading efficiency (w/o/w about 80%, s/o/w 60%, and o/o/w 25%) and the insulin release kinetics were influenced by the microencapsulation technique. The results demonstrate that the w/o/w microspheres are most appropriate, providing a high encapsulation efficiency and low initial burst release, and thus these were finally used for cartilage tissue engineering. Insulin released from w/o/w PLGA microspheres stimulated the formation of cartilage considerably in chondrocyte high density pellet cultures, as determined by increased secretion of proteoglycans and collagen type II. Our results should encourage further studies applying protein-loaded PLGA microspheres in combination with cell transplants or cell-free in situ tissue engineering implants to regenerate cartilage.
Collapse
Affiliation(s)
- Kristin Andreas
- Berlin-Brandenburg Center for Regenerative Therapies, Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Edwards SHR. Intra-articular drug delivery: the challenge to extend drug residence time within the joint. Vet J 2010; 190:15-21. [PMID: 20947396 DOI: 10.1016/j.tvjl.2010.09.019] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 09/20/2010] [Accepted: 09/22/2010] [Indexed: 02/02/2023]
Abstract
The rationale behind developing sustained release microsphere formulations of non-steroidal anti-inflammatory drugs (NSAIDs) administered via the intra-articular (IA) route is to minimise the systemic bioavailability and attendant side-effects associated with oral drug administration. Overall dose is reduced whilst therapeutic benefit within the joint is maintained. The potential benefits of IA therapy for osteoarthritis (OA) are not achieved using currently available medications and delivery vehicles due to the rapid clearance of therapeutic substances from the synovial space. There is a need for sustained release delivery systems if the potential of IA drug administration is to be realised. Rationally designed microspheres taken up by synovial macrophages offer a strategy to sustain drug delivery within the joint, and to deliver NSAIDs directly to pivotal inflammatory cells. The efficacy of microsphere candidates may be evaluated in large animal models of OA. The principles of IA microsphere drug delivery may also be applicable to other classes of drugs.
Collapse
Affiliation(s)
- Scott H R Edwards
- School of Animal and Veterinary Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia.
| |
Collapse
|
47
|
Fan H, Tao H, Wu Y, Hu Y, Yan Y, Luo Z. TGF-β3 immobilized PLGA-gelatin/chondroitin sulfate/hyaluronic acid hybrid scaffold for cartilage regeneration. J Biomed Mater Res A 2010; 95:982-92. [PMID: 20872747 DOI: 10.1002/jbm.a.32899] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Revised: 03/27/2010] [Accepted: 05/12/2010] [Indexed: 11/09/2022]
Abstract
Although most in vitro studies indicate that transforming growth factor β3 (TGF-β3) immobilized scaffold is suitable for cartilage tissue engineering, in vivo studies of implanting immobilized scaffold for chondral defect repair are still lacking. This study is to evaluate the potentials of TGF-β3 immobilized poly-(lactic-co-glycolic acid)-gelatin/chondroitin sulfate/hyaluronic acid (PLGA-GCH) hybrid scaffold for cartilage regeneration. The scaffold was fabricated by incorporating GCH micro-sponges into PLGA frameworks and then crosslinked with TGF-β3 to mimic natural cartilaginous extra cellular matrix (ECM). In vitro study demonstrated that MSCs proliferated vigorously and produced abundant ECM on scaffold. The immunohistochemistry staining and alcian blue staining confirmed the cartilaginous ECM production. The chondrogenic differentiation of MSCs on scaffold was proved by the expression of collagen II gene in mRNA and protein level. Then MSCs/TGF-β3 immobilized scaffolds were implanted in rabbits for chondral defects repair. After eight weeks, histological observation showed that differentiated MSCs were located in lacunae within the metachromatic staining matrix and exhibited typical chondrocyte morphology. Histological grading scores also indicated the congruent cartilage was regenerated. In conclusion, the TGF-β3 immobilized PLGA-GCH hybrid scaffold has great potential in constructing the tissue-engineered cartilage.
Collapse
Affiliation(s)
- Hongbin Fan
- Department of Orthopaedic Surgery, Xi-jing Hospital, the Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | |
Collapse
|
48
|
Oliveira JT, Reis RL. Polysaccharide-based materials for cartilage tissue engineering applications. J Tissue Eng Regen Med 2010; 5:421-36. [DOI: 10.1002/term.335] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Accepted: 05/18/2010] [Indexed: 12/12/2022]
|
49
|
Pedersen BT, Ostergaard J, Larsen SW, Cornett C, Ankersen M, Larsen C. Physicochemical characteristics and in vitro release from oil-based vehicles of peptidomimetics: parenteral depots for intra-articular administration. Drug Dev Ind Pharm 2010; 37:62-71. [PMID: 20545510 DOI: 10.3109/03639045.2010.491831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
RESULTS Basic physicochemical properties including their apparent solubility in aqueous buffer and vegetable oils of a series of 11 peptidomimetics varying with respect to chain length and degree of N-methylation were estimated. It was observed that the compounds in contact with water transformed into sticky, slowly dissolving semisolid materials. Based on these observations, the in vitro release behavior of selected peptide derivatives from oil solutions and in situ formed precipitates was investigated using a validated in vitro release model. CONCLUSION The results of this investigation suggest that both types of oil-based drug delivery systems might constitute alternative sustained release formulation principles of such amorphous peptide derivatives for the intra-articular route of administration.
Collapse
Affiliation(s)
- Brian Thoning Pedersen
- Department of Pharmaceutics and Analytical Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
50
|
Habraken W, Liao H, Zhang Z, Wolke J, Grijpma D, Mikos A, Feijen J, Jansen J. In vivo degradation of calcium phosphate cement incorporated into biodegradable microspheres. Acta Biomater 2010; 6:2200-11. [PMID: 20026289 DOI: 10.1016/j.actbio.2009.12.028] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 12/11/2009] [Accepted: 12/14/2009] [Indexed: 10/20/2022]
Abstract
In this study we have investigated the influence of the mechanism of microsphere degradation or erosion on the in vivo degradation of microsphere/calcium phosphate cement composites (microsphere CPCs) used in tissue engineering. Microspheres composed of poly(lactic-co-glycolic acid) (PLGA), gelatin and poly(trimethylene carbonate) (PTMC) were used as the model and the resulting microsphere CPCs were implanted subcutaneously for 4, 8 or 12weeks in the back of New Zealand white rabbits. Besides degradation, the soft tissue response to these formulations was evaluated. After retrieval, specimens were analyzed by physicochemical characterization and histological analysis. The results showed that all microsphere CPCs exhibited microsphere degradation after 12weeks of subcutaneous implantation, which was accompanied by decreasing compression strength. The PLGA microspheres exhibited bulk erosion simultaneously throughout the whole composite, whereas the gelatin type B microspheres were degradated from the outside to the center of the composite. High molecular weight PTMC microspheres exhibited surface erosion resulting in decreasing microsphere size. Furthermore, all composites showed a similar tissue response, with decreasing capsule thickness over time and a persistent moderate inflammatory response at the implant interface. In conclusion, microsphere CPCs can be used to generate porous scaffolds in an in vivo environment after degradation of microspheres by various degradation/erosion mechanisms.
Collapse
|