1
|
Bielytskyi P, Gräsing D, Zahn S, Mote KR, Alia A, Madhu PK, Matysik J. Assignment of NMR resonances of protons covalently bound to photochemically active cofactors in photosynthetic reaction centers by 13C- 1H photo-CIDNP MAS-J-HMQC experiment. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 298:64-76. [PMID: 30529893 DOI: 10.1016/j.jmr.2018.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
Modified versions of through-bond heteronuclear correlation (HETCOR) experiments are presented to take advantage of the light-induced hyperpolarization that occurs on 13C nuclei due to the solid-state photochemically induced dynamic nuclear polarization (photo-CIDNP) effect. Such 13C-1H photo-CIDNP MAS-J-HMQC and photo-CIDNP MAS-J-HSQC experiments are applied to acquire the 2D 13C-1H correlation spectra of selectively 13C-labeled photochemically active cofactors in the frozen quinone-blocked photosynthetic reaction center (RC) of the purple bacterium Rhodobacter (R.) sphaeroides wild-type (WT). Resulting spectra contain no correlation peaks arising from the protein backbone, which greatly simplifies the assignment of aliphatic region. Based on the photo-CIDNP MAS-J-HMQC NMR experiment, we obtained assignment of selective 1H NMR resonances of the cofactors involved in the electron transfer process in the RC and compared them with values theoretically predicted by density functional theory (DFT) calculation as well as with the chemical shifts obtained from monomeric cofactors in the solution. We also compared proton chemical shifts obtained by photo-CIDNP MAS-J-HMQC experiment under continuous illumination with the ones obtained in dark by classical cross-polarization (CP) HETCOR. We expect that the proposed approach will become a method of choice for obtaining 1H chemical shift maps of the active cofactors in photosynthetic RCs and will aid the interpretation of heteronuclear spin-torch experiments.
Collapse
Affiliation(s)
- Pavlo Bielytskyi
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - Daniel Gräsing
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany
| | - Stefan Zahn
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, D-04318 Leipzig, Germany
| | - Kaustubh R Mote
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 36/P Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500107, India
| | - A Alia
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2301 RA Leiden, the Netherlands; Institut für Medizinische Physik und Biophysik, Universität Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - P K Madhu
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 36/P Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500107, India
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, D-04103 Leipzig, Germany.
| |
Collapse
|
2
|
Kalverda AP, Gowdy J, Thompson GS, Homans SW, Henderson PJF, Patching SG. TROSY NMR with a 52 kDa sugar transport protein and the binding of a small-molecule inhibitor. Mol Membr Biol 2014; 31:131-40. [DOI: 10.3109/09687688.2014.911980] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
3
|
How to investigate interactions between membrane proteins and ligands by solid-state NMR. Methods Mol Biol 2013; 914:65-86. [PMID: 22976023 DOI: 10.1007/978-1-62703-023-6_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Solid-state NMR is an established method for biophysical studies of membrane proteins within the lipid bilayers and an emerging technique for structural biology in general. In particular magic angle sample spinning has been found to be very useful for the investigation of large membrane proteins and their interaction with small molecules within the lipid bilayer. Using a number of examples, we illustrate and discuss in this chapter, which information can be gained and which experimental parameters need to be considered when planning such experiments. We focus especially on the interaction of diffusive ligands with membrane proteins.
Collapse
|
4
|
PatchinG SG, Henderson PJF, Sharples DJ, Middleton DA. Probing the contacts of a low-affinity substrate with a membrane-embedded transport protein using1H-13C cross-polarisation magic-angle spinning solid-state NMR. Mol Membr Biol 2012; 30:129-37. [DOI: 10.3109/09687688.2012.743193] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
5
|
Abstract
AbstractIn order to fulfill their function, membrane transport proteins have to cycle through a number of conformational and/or energetic states. Thus, understanding the role of conformational dynamics seems to be the key for elucidation of the functional mechanism of these proteins. However, membrane proteins in general are often difficult to express heterologously and in sufficient amounts for structural studies. It is especially challenging to trap a stable energy minimum, e.g., for crystallographic analysis. Furthermore, crystallization is often only possible by subjecting the protein to conditions that do not resemble its native environment and crystals can only be snapshots of selected conformational states. Nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopy are complementary methods that offer unique possibilities for studying membrane proteins in their natural membrane environment and for investigating functional conformational changes, lipid interactions, substrate-lipid and substrate-protein interactions, oligomerization states and overall dynamics of membrane transporters. Here, we review recent progress in the field including studies from primary and secondary active transporters.
Collapse
|
6
|
Glucose and glycolysis are required for the successful infection of macrophages and mice by Salmonella enterica serovar typhimurium. Infect Immun 2009; 77:3117-26. [PMID: 19380470 DOI: 10.1128/iai.00093-09] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Salmonella is a widespread zoonotic enteropathogen that causes gastroenteritis and fatal typhoidal disease in mammals. During systemic infection of mice, Salmonella enterica serovar Typhimurium resides and replicates in macrophages within the "Salmonella-containing vacuole" (SCV). It is surprising that the substrates and metabolic pathways necessary for growth of S. Typhimurium within the SCV of macrophages have not been identified yet. To determine whether S. Typhimurium utilized sugars within the SCV, we constructed a series of S. Typhimurium mutants that lacked genes involved in sugar transport and catabolism and tested them for replication in mice and macrophages. These mutants included a mutant with a mutation in the pfkAB-encoded phosphofructokinase, which catalyzes a key committing step in glycolysis. We discovered that a pfkAB mutant is severely attenuated for replication and survival within RAW 264.7 macrophages. We also show that disruption of the phosphoenolpyruvate:carbohydrate phosphotransferase system by deletion of the ptsHI and crr genes reduces S. Typhimurium replication within RAW 264.7 macrophages. We discovered that mutants unable to catabolize glucose due to deletion of ptsHI, crr, and glk or deletion of ptsG, manXYZ, and glk showed reduced replication within RAW 264.7 macrophages. This study proves that S. Typhimurium requires glycolysis for infection of mice and macrophages and that transport of glucose is required for replication within macrophages.
Collapse
|
7
|
Patching SG, Psakis G, Baldwin SA, Baldwin J, Henderson PJF, Middleton DA. Relative substrate affinities of wild-type and mutant forms of the Escherichia coli sugar transporter GalP determined by solid-state NMR. Mol Membr Biol 2009; 25:474-84. [PMID: 18798051 DOI: 10.1080/09687680802371963] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Solid-state nuclear magnetic resonance (SSNMR) spectroscopy is used for the first time to examine the relative substrate-binding affinities of mutant forms of the Escherichia coli sugar transporter GalP in membrane preparations. The SSNMR method of (13)C cross-polarization magic-angle spinning (CP-MAS) is applied to five site-specific mutants (W56F, W239F, R316W, T336Y and W434F), which have a range of different sugar-transport activities compared to the wild-type protein. It is shown that binding of the substrate D-glucose can be detected independently of sugar transport activity using SSNMR, and that the NMR peak intensities for uniformly (13)C-labelled glucose are consistent with wild-type GalP and the mutants having different affinities for the substrate. The W239F and W434F mutants showed binding affinities similar to that of the wild-type protein, whereas the affinity of glucose-binding to the W56F mutant was reduced. The R316W mutant showed no detectable binding; this position corresponds to the second basic residue in the highly conserved (R/K)XGR(R/K) motif in the major facilitator superfamily of transport proteins and to a mutation in human GLUT1 found in individuals with GLUT1-deficiency syndrome. The T336Y mutant also showed no detectable binding; this mutation is likely to have perturbed helix structure or packing to an extent that conformational changes in the protein are hindered. The effects of the mutations on substrate-binding are discussed with reference to the putative positions of the residues in a 3D homology model of GalP based on the X-ray crystal structure of the E. coli glycerol-3-phosphate transporter GlpT.
Collapse
Affiliation(s)
- Simon G Patching
- Astbury Centre for Structural Molecular Biology and Institute of Membrane and Systems Biology, University of Leeds, Leeds, UK.
| | | | | | | | | | | |
Collapse
|
8
|
Basting D, Lehner I, Lorch M, Glaubitz C. Investigating transport proteins by solid state NMR. Naunyn Schmiedebergs Arch Pharmacol 2006; 372:451-64. [PMID: 16506075 DOI: 10.1007/s00210-006-0039-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Accepted: 01/17/2006] [Indexed: 10/25/2022]
Abstract
Transporters form an interesting and complex class of membrane proteins. Many of them are potential drug targets due to their role in translocation of ions, small molecules and peptides across the membrane or due to their role in multidrug resistance. Hence elucidating their structure and mechanism is of great importance and may lead to a host of new drugs and methods to alter or inhibit their function. Solid state NMR is an emerging technique for investigating transport proteins. Along with other biochemical and biophysical techniques solid state NMR can provide data on drug binding, protein dynamics and structure at the interface between structural biology and functional analysis. Here, we review solid state NMR applications to primary active and secondary transporters involved in translocation of small molecules. We discuss current experimental limitations and give an overall perspective on how the technique may be used to address some pertinent questions relevant to transporters.
Collapse
Affiliation(s)
- Daniel Basting
- Institute for Biophysical Chemistry, Centre for Biomolecular Magnetic Resonance, J.W. Goethe Universität, Marie-Curie Str. 9, 60439, Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
9
|
Marin-Montesinos I, Brouwer DH, Antonioli G, Lai WC, Brinkmann A, Levitt MH. Heteronuclear decoupling interference during symmetry-based homonuclear recoupling in solid-state NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2005; 177:307-17. [PMID: 16169757 DOI: 10.1016/j.jmr.2005.07.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 07/13/2005] [Accepted: 07/14/2005] [Indexed: 05/04/2023]
Abstract
We examine the influence of continuous-wave heteronuclear decoupling on symmetry-based double-quantum homonuclear dipolar recoupling, using experimental measurements, numerical simulations, and average Hamiltonian theory. There are two distinct regimes in which the heteronuclear interference effects are minimized. The first regime utilizes a moderate homonuclear recoupling field and a strong heteronuclear decoupling field; the second regime utilizes a strong homonuclear recoupling field and a weak or absent heteronuclear decoupling field. The second regime is experimentally accessible at moderate or high magic-angle-spinning frequencies and is particularly relevant for many realistic applications of solid-state NMR recoupling experiments to organic or biological materials.
Collapse
|
10
|
Abstract
Escherichia coli and Salmonella enterica serovar Typhimurium exhibit a remarkable versatility in the usage of different sugars as the sole source of carbon and energy, reflecting their ability to make use of the digested meals of mammalia and of the ample offerings in the wild. Degradation of sugars starts with their energy-dependent uptake through the cytoplasmic membrane and is carried on further by specific enzymes in the cytoplasm, destined finally for degradation in central metabolic pathways. As variant as the different sugars are, the biochemical strategies to act on them are few. They include phosphorylation, keto-enol isomerization, oxido/reductions, and aldol cleavage. The catabolic repertoire for using carbohydrate sources is largely the same in E. coli and in serovar Typhimurium. Nonetheless, significant differences are found, even among the strains and substrains of each species. We have grouped the sugars to be discussed according to their first step in metabolism, which is their active transport, and follow their path to glycolysis, catalyzed by the sugar-specific enzymes. We will first discuss the phosphotransferase system (PTS) sugars, then the sugars transported by ATP-binding cassette (ABC) transporters, followed by those that are taken up via proton motive force (PMF)-dependent transporters. We have focused on the catabolism and pathway regulation of hexose and pentose monosaccharides as well as the corresponding sugar alcohols but have also included disaccharides and simple glycosides while excluding polysaccharide catabolism, except for maltodextrins.
Collapse
Affiliation(s)
- Christoph Mayer
- Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany
| | | |
Collapse
|
11
|
Mason AJ, Siarheyeva A, Haase W, Lorch M, van Veen H, Glaubitz C. Amino acid type selective isotope labelling of the multidrug ABC transporter LmrA for solid-state NMR studies. FEBS Lett 2004; 568:117-21. [PMID: 15196931 DOI: 10.1016/j.febslet.2004.05.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Revised: 05/05/2004] [Accepted: 05/10/2004] [Indexed: 10/26/2022]
Abstract
The ABC transporter LmrA in Lactococcus lactis confers resistance to a wide range of antibiotics and cytotoxic drugs and is a functional homologue of P-glycoprotein. Recently, solid-state NMR methods have shown potential for structural- and non-perturbing, site directed functional studies. These experiments require isotopic labelling of selected sites. We have developed a strategy to produce large quantities of selectively labelled LmrA reconstituted at a high density in lipid membranes. This makes the 64 kDa integral membrane protein LmrA and therefore the ABC transporter superfamily accessible to NMR analysis.
Collapse
Affiliation(s)
- A James Mason
- Centre for Biomolecular Magnetic Resonance and Institut für Biophysikalische Chemie, J.W. Goethe Universität, Marie-Curie Str. 9, D-60439 Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Patching SG, Middleton DA, Henderson PJF, Herbert RB. The economical synthesis of [2'-(13)C, 1,3-(15)N2]uridine; preliminary conformational studies by solid state NMR. Org Biomol Chem 2003; 1:2057-62. [PMID: 12945895 DOI: 10.1039/b301275a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of [2'-(13)C, 1,3-(15)N2]uridine 11 was achieved as follows. An epimeric mixture of D-[1-(13)C]ribose 3 and D-[1-(13)C]arabinose 4 was obtained in excellent yield by condensation of K13CN with D-erythrose 2 using a modification of the Kiliani-Fischer synthesis. Efficient separation of the two aldose epimers was pivotally achieved by a novel ion-exchange (Sm3+) chromatography method. D-[2-(13)C]Ribose 5 was obtained from D-[1-(13)C]arabinose 4 using a Ni(II) diamine complex (nickel chloride plus TEMED). Combination of these procedures in a general cycling manner can lead to the very efficient preparation of specifically labelled 13C-monosaccharides of particular chirality. 15N-labelling was introduced in the preparation of [2'-(13)C, 1,3-(15)N2]uridine 11 via [15N2]urea. Cross polarisation magic angle spinning (CP-MAS) solid-state NMR experiments using rotational echo double resonance (REDOR) were carried out on crystals of the labelled uridine to show that the inter-atomic distance between C-2' and N-1 is closely similar to that calculated from X-ray crystallographic data. The REDOR method will be used now to determine the conformation of bound substrates in the bacterial nucleoside transporters NupC and NupG.
Collapse
Affiliation(s)
- Simon G Patching
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK LS2 9JT
| | | | | | | |
Collapse
|
13
|
Venter H, Ashcroft AE, Keen JN, Henderson PJF, Herbert RB. Molecular dissection of membrane-transport proteins: mass spectrometry and sequence determination of the galactose-H+ symport protein, GalP, of Escherichia coli and quantitative assay of the incorporation of [ring-2-13C]histidine and (15)NH(3). Biochem J 2002; 363:243-52. [PMID: 11931651 PMCID: PMC1222472 DOI: 10.1042/0264-6021:3630243] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The molecular mass of the galactose-H(+) symport protein GalP, as its histidine-tagged derivative GalP(His)(6), has been determined by electrospray MS (ESI-MS) with an error of <0.02%. One methionine residue, predicted to be present from the DNA sequence, was deduced to be absent. This is a significant advance on the estimation of the molecular masses of membrane-transport proteins by SDS/PAGE, where there is a consistent under-estimation of the true molecular mass due to anomalous electrophoretic migration. Addition of a size-exclusion chromatography step after Ni(2+)-nitrilotriacetate affinity purification was essential to obtain GalP(His)(6) suitable for ESI-MS. Controlled trypsin, trypsin+chymotrypsin and CNBr digestion of the protein yielded peptide fragments suitable for ESI-MS and tandem MS analysis, and accurate mass determination of the derived fragments resulted in identification of 82% of the GalP(His)(6) protein. Tandem MS analysis of selected peptides then afforded 49% of the actual amino acid sequence of the protein; the absence of the N-terminal methionine was confirmed. Matrix-assisted laser-desorption ionization MS allowed identification of one peptide that was not detected by ESI-MS. All the protein/peptide mass and sequence determinations were in accord with the predictions of amino acid sequence deduced from the DNA sequence of the galP gene. [ring-2-(13)C]Histidine was incorporated into GalP(His)(6) in vivo, and ESI-MS analysis enabled the measurement of a high (80%) and specific incorporation of label into the histidine residues in the protein. MS could also be used to confirm the labelling of the protein by (15)NH(3) (93% enrichment) and [(19)F]tryptophan (83% enrichment). Such MS measurements will serve in the future analysis of the structures of membrane-transport proteins by NMR, and of their topology by indirect techniques.
Collapse
Affiliation(s)
- Henrietta Venter
- Astbury Centre for Structural Molecular Biology, School of Biochemistry and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
| | | | | | | | | |
Collapse
|