1
|
The effect of dichloroacetate in mouse models of epilepsy. Epilepsy Res 2018; 145:77-81. [DOI: 10.1016/j.eplepsyres.2018.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/17/2018] [Accepted: 06/09/2018] [Indexed: 01/23/2023]
|
2
|
Guevara-Lora I. Kinin-mediated inflammation in neurodegenerative disorders. Neurochem Int 2012; 61:72-8. [PMID: 22554400 DOI: 10.1016/j.neuint.2012.04.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 04/01/2012] [Accepted: 04/10/2012] [Indexed: 01/06/2023]
Abstract
The mediatory role of kinins in both acute and chronic inflammation within nervous tissues has been widely described. Bradykinin, the major representative of these bioactive peptides, is one of a few mediators of inflammation that directly stimulates afferent nerves due to the broad expression of specific kinin receptors in cell types in these tissues. Moreover, kinins may be delivered to a site of injury not only after their production at the endothelium surface but also following their local production through the enzymatic degradation of kininogens at the surface of nerve cells. A strong correlation between inflammatory processes and neurodegeneration has been established. The activation of nerve cells, particularly microglia, in response to injury, trauma or infection initiates a number of reactions in the neuronal neighborhood that can lead to cell death after the prolonged action of inflammatory substances. In recent years, there has been a growing interest in the effects of kinins on neuronal destruction. In these studies, the overexpression of proteins involved in kinin generation or of kinin receptors has been observed in several neurologic disorders including neurodegenerative diseases such Alzheimer's disease and multiple sclerosis as well as disorders associated with a deficiency in cell communication such as epilepsy. This review is focused on recent findings that provide reliable evidence of the mediatory role of kinins in the inflammatory responses associated with different neurological disorders. A deeper understanding of the role of kinins in neurodegenerative diseases is likely to promote the future development of new therapeutic strategies for the control of these disorders. An example of this could be the prospective use of kinin receptor antagonists.
Collapse
Affiliation(s)
- Ibeth Guevara-Lora
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
3
|
Gomes TKDC, Oliveira SLD, Ataíde TDR, Trindade Filho EM. O papel da dieta cetogênica no estresse oxidativo presente na epilepsia experimental. ACTA ACUST UNITED AC 2011. [DOI: 10.1590/s1676-26492011000200005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
INTRODUÇÃO: A epilepsia é um dos transtornos neurológicos mais comuns, sendo definido como uma condição de crises recorrentes espontâneas. Existe uma importante relação entre radicais livres e enzimas antioxidantes no fenômeno epiléptico, e as espécies reativas de oxigênio (EROs) têm sido implicadas na neurodegeneração induzida pelas crises. OBJETIVO: A presente revisão teve como objetivo investigar a relação existente entre o estresse oxidativo e a epilepsia, destacando o efeito da dieta cetogênica sob condições experimentais. MATERIAL E MÉTODOS: Procedeu-se a pesquisa em artigos científicos publicados nos Bancos de Dados Medline, PubMed, Periódicos CAPES, ScienceDirect e Scielo. As palavras-chave selecionadas para a pesquisa incluíram epilepsia, status epilepticus, pilocarpina, estresse oxidativo, espécies reativas de oxigênio, disfunção mitocondrial. RESULTADOS E DISCUSSÃO: Terapia dietética tem sido utilizada, como é o caso da dieta cetogênica (DC), a qual é rica em lipídeos e pobre em carboidratos e utilizada por mais de oito décadas para o tratamento de epilepsia refratária, principalmente em crianças. A DC modula a bionergética mitocondrial, diminui a formação de EROs, aumenta a capacidade antioxidante celular e ainda, previne alterações do DNA mitocondrial. CONCLUSÃO: Evidências de atuação da DC na disfunção mitocondrial, como ocorre na epilepsia, são muitas e demonstram claramente efeitos benéficos dessa terapêutica.
Collapse
|
4
|
Scorza FA, Arida RM, Naffah-Mazzacoratti MDG, Scerni DA, Calderazzo L, Cavalheiro EA. The pilocarpine model of epilepsy: what have we learned? AN ACAD BRAS CIENC 2010; 81:345-65. [PMID: 19722008 DOI: 10.1590/s0001-37652009000300003] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 08/25/2008] [Indexed: 12/24/2022] Open
Abstract
The systemic administration of a potent muscarinic agonist pilocarpine in rats promotes sequential behavioral and electrographic changes that can be divided into 3 distinct periods: (a) an acute period that built up progressively into a limbic status epilepticus and that lasts 24 h, (b) a silent period with a progressive normalization of EEG and behavior which varies from 4 to 44 days, and (c) a chronic period with spontaneous recurrent seizures (SRSs). The main features of the SRSs observed during the long-term period resemble those of human complex partial seizures and recurs 2-3 times per week per animal. Therefore, the pilocarpine model of epilepsy is a valuable tool not only to study the pathogenesis of temporal lobe epilepsy in human condition, but also to evaluate potential antiepileptogenic drugs. This review concentrates on data from pilocarpine model of epilepsy.
Collapse
Affiliation(s)
- Fulvio A Scorza
- Disciplina de Neurologia Experimental, Universidade Federal de São Paulo/Escola Paulista de Medicina, Rua Botucatu, 862, Edifício José Leal Prado, 04023-900 São Paulo, SP, Brasil
| | | | | | | | | | | |
Collapse
|
5
|
Huo JZ, Dykstra CM, Gurd JW. Increase in tyrosine phosphorylation of the NMDA receptor following the induction of status epilepticus. Neurosci Lett 2006; 401:266-70. [PMID: 16600505 DOI: 10.1016/j.neulet.2006.03.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Revised: 02/13/2006] [Accepted: 03/13/2006] [Indexed: 10/24/2022]
Abstract
The administration of lithium followed by pilocarpine induces status epilepticus (SE) that produces neurodegeneration and the subsequent development of spontaneous recurrent seizures. We have reported that tyrosine phosphorylation of the NMDA receptor is elevated over controls for several hours following 60 min of SE. In the current study, we assessed the temporal relationship between tyrosine phosphorylation of the NMDA receptor and the onset of SE. SE was induced using the Li/pilocarine model and phosphorylation of the NMDA receptor subunits NR2A and NR2B determined. Tyrosine phosphorylation of the NMDAR remained unchanged prior to the onset of SE and increased gradually thereafter. The onset of SE was accompanied by activation of Src-family tyrosine kinases and Pyk2 in the post-synaptic density, consistent with a role for these enzymes in SE-induced tyrosine phosphorylation. The results indicate that tyrosine phosphorylation of the NMDAR closely parallels the activation of Src-family kinases and follows, rather than precedes, the onset of SE.
Collapse
Affiliation(s)
- Jeanne Zhen Huo
- Centre for the Neurobiology of Stress, Department of Life Sciences, University of Toronto at Scarborough, Toronto, Ontario, Canada M1C 1A4
| | | | | |
Collapse
|
6
|
Abstract
Pilocarpine-induced status epilepticus (SE) causes widespread tyrosine phosphorylation in the brain. It has been postulated that this intracellular signal may mediate potentially epileptogenic changes in the morphology and physiology of particular brain regions, including the hippocampus. The present study evaluated the effects of herbimycin A, a protein tyrosine kinase (PTK) inhibitor, over the acute (during which intense biochemical and electrophysiological activation occurs) and the chronic phase (characterized by spontaneous and recurrent epileptic seizures and the presence of synaptic reorganization, e.g., mossy fiber sprouting) of the pilocarpine model of epilepsy. The administration of a single dose of 1.74 nmol of herbimycin A (i.c.v., 5 microL) 5 min after the onset of SE did not change the acute behavioral manifestation of seizures despite significantly decreasing c-Fos immunoreactivity in different areas of the hippocampus and of the limbic cortex. Herbimycin-treated animals developed spontaneous recurrent seizures, as did control animals, with a similar latency for the appearance of the first seizure and similar seizure frequency. Neo-Timm staining revealed that all animals experiencing SE, regardless of whether or not injected with herbimycin, showed aberrant mossy fiber sprouting in the supragranular region of the dentate gyrus. Herbimycin did not obviously affect neuronal cell death as evaluated in Nissl-stained sections. These results indicate that the PTK blockade achieved with the current dose of herbimycin reduced the acute c-Fos expression but failed to alter the spontaneous seizure frequency or to attenuate the morphological modifications triggered by the SE.
Collapse
|
7
|
Ure A, Altrup U. Block of spontaneous termination of paroxysmal depolarizations by forskolin (buccal ganglia, Helix pomatia). Neurosci Lett 2005; 392:10-5. [PMID: 16171948 DOI: 10.1016/j.neulet.2005.08.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Revised: 08/11/2005] [Accepted: 08/22/2005] [Indexed: 11/19/2022]
Abstract
Effects of cAMP-activated protein kinases (PKA) on epileptic activity are at present studied in a model nervous system. Identified neurons in the buccal ganglia of the snail Helix pomatia were recorded with intracellular microelectrodes in a continuously perfused experimental chamber. Epileptiform activity appeared regularly in neuron B3 when the saline contained pentylenetetrazol (20-40 mM). Epileptiform activity consisted of a series of paroxysmal depolarization shifts (PDS). Epileptiform activity was quantified by calculating the percentage of PDS-duration of PDS-periods. High percentage of PDS-duration was regularly found 15-30 min after the start of treatment with pentylenetetrazol. Subsequently, percentage of PDS decreased spontaneously. Adding forskolin (50 microM) to the pentylenetetrazol-containing solution increased percentage of PDS-duration. The increase during forskolin corresponded to the amount of decrease which had taken place spontaneously before. During application of forskolin for up to 4 h, spontaneous PDS decrease was absent, i.e., epileptiform activity corresponded to status epilepticus. Forskolin was not able to induce epileptiform activity when applied without pentylenetetrazol. 1,6-Dideoxy-forskolin (50 microM) did not accelerate epileptiform activity. When pentylenetetrazol was applied twice (1 h each) separated by 2.5 h of control conditions, PDS decrease obtained during the first application was found to be largely preserved during control conditions. When forskolin was applied for 30 min in between both applications of pentylenetetrazol, the second response to pentylenetetrazol did not show a preserved PDS decrease. Results suggest that forskolin blocks an endogenous antiepileptic process and that activation of PKA can maintain epileptic activity and induce status epilepticus.
Collapse
Affiliation(s)
- Atik Ure
- Institute of Experimental Epilepsy Research, University of Münster, Hüfferstrabe 68, Germany
| | | |
Collapse
|
8
|
Scorza CA, Arida RM, Cavalheiro EA, Naffah-Mazzacoratti MG, Scorza FA. Expression of nestin in the hippocampal formation of rats submitted to the pilocarpine model of epilepsy. Neurosci Res 2005; 51:285-91. [PMID: 15710492 DOI: 10.1016/j.neures.2004.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2004] [Revised: 11/29/2004] [Accepted: 12/02/2004] [Indexed: 10/25/2022]
Abstract
Nestin is an embryonic intermediate filament component protein, transiently expressed by the immediate precursor cells of neurons and glia, during brain development. We studied the nestin distribution in the hippocampal formation of rats submitted to pilocarpine model of epilepsy. Animals were studied during the acute, silent and chronic phases. Rats from control and acute groups presented absence of nestin-immunoreactivity (IR) in the hippocampal cells. In contrast, cells from this region presented strong nestin IR during the silent phase (3 and 7 days after status epilepticus (SE) onset), disappearing 14 days after SE. Nestin IR cells were scattered expressed in all hippocampal formation during the chronic phase. Almost all nestin IR cells exhibited glial fibrillary acidic protein (GFAP), which seems to revert to a more primitive glial form, as part of an adaptive response, transiently re-expressing phenotypic features typical of earlier stages of glial development. The re-expression of this developmental protein in the damaged cerebral tissue suggests that nestin may play an important role in the reconstruction of the glial cytoskeleton and/or remodeling events occurring in the pilocarpine model of epilepsy. Understanding how astrocytes influence network function in the injured hippocampus may, therefore, provide insight into epileptogenic mechanisms.
Collapse
Affiliation(s)
- C A Scorza
- Laboratório de Neurologia Experimental, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
9
|
Argañaraz GA, Silva JA, Perosa SR, Pessoa LG, Carvalho FF, Bascands JL, Bader M, da Silva Trindade E, Amado D, Cavalheiro EA, Pesquero JB, da Graça Naffah-Mazzacoratti M. The synthesis and distribution of the kinin B1 and B2 receptors are modified in the hippocampus of rats submitted to pilocarpine model of epilepsy. Brain Res 2004; 1006:114-25. [PMID: 15047030 DOI: 10.1016/j.brainres.2003.12.050] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2003] [Indexed: 10/26/2022]
Abstract
Kinins, a special class of polypeptides, are represented by bradykinin (BK), kallidin (Lys-BK), as well as their metabolites. The biological actions of these polypeptides binding on their receptors (B1 and B2) have been related to inflammation process, cytokines action, glutamate release and prostaglandins production. Usually, kinin B1 receptor is not expressed at a significant level under physiologic conditions in most tissues, but its expression is induced by injury, or upon exposure in vivo or in vitro to pro-inflammatory mediators. The kinin B2 receptor subtype is constitutively and widely expressed throughout the central and peripheral nervous system. These data raise the possibility for de novo expression of those receptors during the temporal lobe epilepsy (TLE), which has been related to cell death, gliosis and hippocampal reorganization. To correlate kinin system and TLE, adult male Wistar rats were submitted to pilocarpine model of epilepsy. The hippocampi were removed 6 h, 5 and 60 days after status epilepticus (SE) onset. The collected tissues were used to study the expression of kinin B1 and B2 mRNA receptors, using Real-Time PCR. Immunohistochemistry assay was also employed to visualize kinin B1 and B2 distribution in the hippocampus. The results show increased kinin B1 and B2 mRNA levels during acute, silent and chronic periods and changes in the kinin B1 and B2 receptors distribution. In addition, the immunoreactivity against kinin B1 receptor was increased mainly during the silent period, where neuron clusters of could be visualized. The kinin B2 receptor immunoreactivity also showed augmentation but mainly during the acute and silent periods. Our results suggest that kinin B1 and B2 receptors play an important role in the epileptic phenomena.
Collapse
MESH Headings
- Animals
- Behavior, Animal
- Cerebral Cortex/metabolism
- Disease Models, Animal
- Epilepsy, Temporal Lobe/chemically induced
- Epilepsy, Temporal Lobe/complications
- Epilepsy, Temporal Lobe/metabolism
- Hippocampus/anatomy & histology
- Hippocampus/metabolism
- Immunohistochemistry/methods
- Male
- Phosphopyruvate Hydratase/metabolism
- Pilocarpine
- RNA, Messenger/biosynthesis
- Rats
- Rats, Wistar
- Receptor, Bradykinin B1/genetics
- Receptor, Bradykinin B1/metabolism
- Receptor, Bradykinin B2/genetics
- Receptor, Bradykinin B2/metabolism
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Seizures/etiology
- Time Factors
Collapse
|
10
|
Scorza CA, Garrido YDC, Arida RM, Amado D, Cavalheiro EA, Naffah-Mazzacoratti MDG. Levels of the synaptic protein X11 alpha/mint1 are increased in hippocampus of rats with epilepsy. Epilepsy Res 2003; 57:49-57. [PMID: 14706732 DOI: 10.1016/j.eplepsyres.2003.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
X11 alpha or Mint1 is a protein containing an N-terminal sequence, which binds to Munc-18 protein, a middle phosphotyrosine-binding domain (PTB) and two C-terminal PDZ (Post-synaptic density/Discs large/Zone Occludens-1) domains. The PDZ domains, which mediate protein-protein interactions have been shown to be involved in the organization of synaptic signaling pathways. Mint1 plays an important role in vesicle synaptic transport toward the active zone at the pre-synaptic site, and also participates in the transport of NR2B subunit of the NMDA receptor, to the post-synaptic site. To investigate the participation and distribution of this protein in the hippocampal subfield of rats submitted to the pilocarpine model of epilepsy, Mint1 was analyzed using Western blotting and immunohistochemistry. Animals of 5 h of status epilepticus showed decreased levels of this protein in the hippocampus when compared to the control animals. In contrast, animals from seizure-free period (silent group) and during spontaneous seizures phase (chronic group) showed increased Mint1 immunostaining in all hippocampal subfields, mainly in the dentate gyrus, when compared to the control group. The blotting confirmed the results obtained by immunohistochemistry. The present work suggests that Mint1 may be related to hippocampal plasticity during epileptogenesis in the pilocarpine model of temporal lobe epilepsy.
Collapse
Affiliation(s)
- Carla Alessandra Scorza
- Laboratório de Neurociência, Disciplina de Neurologia Experimental, Universidade Federal de São Paulo, Rua Botucatu 862, Ed Leal Prado CEP-04023-900, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
11
|
Ziegler DR, Araújo E, Rotta LN, Perry ML, Gonçalves CA. A ketogenic diet increases protein phosphorylation in brain slices of rats. J Nutr 2002; 132:483-7. [PMID: 11880575 DOI: 10.1093/jn/132.3.483] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ketogenic diets have been used to treat seizure disorders of children and recently it was shown to increase the drug-induced seizure threshold in rats. Protein phosphorylation is a major regulatory mechanism of signal transduction that has been implicated in modulating neuronal excitability. We investigated the basal protein phosphorylation in microslices from different brain regions (hippocampus, cerebral cortex and cerebellum) of young rats fed a ketogenic diet, and we evaluated the effect of this diet on weight development and health of these rats based on serum biochemistry. Thirty-day-old rats consumed ad libitum ketogenic (high fat) or control diets for 8 wk. Rats consuming the high fat diet had ketonemia without signs of undernutrition or illness. Microslices were incubated in media containing (32)P-phosphate, and (32)P-phosphoprotein content was analyzed by one- or two-dimensional electrophoresis followed by autoradiography. Basal protein phosphorylation was greater in brain slices from ketogenic rats. Different increments of synapsin I, GAP-43 and GFAP phosphorylation were observed in two-dimensional autoradiography. A ketogenic diet induced metabolic changes affecting the basal status of protein phosphorylation. This change could affect the mechanisms of signal transduction in neural cells involved in the increase in the seizure threshold.
Collapse
Affiliation(s)
- Denize R Ziegler
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
12
|
Naffah-Mazzacoratti MG, Argañaraz GA, Porcionatto MA, Scorza FA, Amado D, Silva R, Bellissimo MI, Nader HB, Cavalheiro EA. Selective alterations of glycosaminoglycans synthesis and proteoglycan expression in rat cortex and hippocampus in pilocarpine-induced epilepsy. Brain Res Bull 1999; 50:229-39. [PMID: 10582521 DOI: 10.1016/s0361-9230(99)00195-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Proteoglycans and glycosaminoglycans are elements of matrix. In the nervous system, glycosaminoglycans modulate neurite outgrowth and are co-receptors for growth factors playing a crucial role in cell differentiation and synaptogenesis. The receptor of protein tyrosine phosphatase beta (RPTPbeta) is a chondroitin sulphate proteoglycan which plays an important role in neural morphogenesis and axon guidance mechanisms. Pilocarpine-treated rats present status epilepticus, which is followed by a seizure-free period (silent), by a period of spontaneous recurrent seizures (chronic), and the hippocampus of these animals exhibits cell loss and mossy fiber sprouting. Thus, the synthesis of heparan sulphate and chondroitin sulphate and the time course of RPTPbeta immunoreactivity were studied in the hippocampus and cerebral cortex during these phases of pilocarpine-induced epilepsy. The results showed decreased synthesis of heparan sulphate during the acute phase and an increased synthesis of chondroitin sulphate during the silent period in the cortex and hippocampus. In control rats RPTPbeta immunoreactivity was detected only in glial cells. After 6 h of status epilepticus the RPTPbeta immunoreactivity was no longer detectable in the glial cells in both tissues and intense staining became evident in the matrix, surrounding CA3 and dentate gyrus and piriform cortex neurones. In the silent and chronic periods RPTPbeta immunoreactivity was mainly detected in neuronal somata and fibers of neurones of hippocampus and cortex. These changes show a selective variation of synthesis and expression of glycosaminoglycans and RPTPbeta in relation to epilepsy suggesting a molecular interplay between glia and neurones during seizures.
Collapse
|