1
|
Park J, Bird JE. The actin cytoskeleton in hair bundle development and hearing loss. Hear Res 2023; 436:108817. [PMID: 37300948 PMCID: PMC10408727 DOI: 10.1016/j.heares.2023.108817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
Inner ear hair cells assemble mechanosensitive hair bundles on their apical surface that transduce sounds and accelerations. Each hair bundle is comprised of ∼ 100 individual stereocilia that are arranged into rows of increasing height and width; their specific and precise architecture being necessary for mechanoelectrical transduction (MET). The actin cytoskeleton is fundamental to establishing this architecture, not only by forming the structural scaffold shaping each stereocilium, but also by composing rootlets and the cuticular plate that together provide a stable foundation supporting each stereocilium. In concert with the actin cytoskeleton, a large assortment of actin-binding proteins (ABPs) function to cross-link actin filaments into specific topologies, as well as control actin filament growth, severing, and capping. These processes are individually critical for sensory transduction and are all disrupted in hereditary forms of human hearing loss. In this review, we provide an overview of actin-based structures in the hair bundle and the molecules contributing to their assembly and functional properties. We also highlight recent advances in mechanisms driving stereocilia elongation and how these processes are tuned by MET.
Collapse
Affiliation(s)
- Jinho Park
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, United States; Myology Institute, University of Florida, Gainesville, FL 32610, United States
| | - Jonathan E Bird
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32610, United States; Myology Institute, University of Florida, Gainesville, FL 32610, United States.
| |
Collapse
|
2
|
Stereocilia Rootlets: Actin-Based Structures That Are Essential for Structural Stability of the Hair Bundle. Int J Mol Sci 2020; 21:ijms21010324. [PMID: 31947734 PMCID: PMC6981779 DOI: 10.3390/ijms21010324] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/30/2019] [Accepted: 01/01/2020] [Indexed: 12/04/2022] Open
Abstract
Sensory hair cells of the inner ear rely on the hair bundle, a cluster of actin-filled stereocilia, to transduce auditory and vestibular stimuli into electrical impulses. Because they are long and thin projections, stereocilia are most prone to damage at the point where they insert into the hair cell’s soma. Moreover, this is the site of stereocilia pivoting, the mechanical movement that induces transduction, which additionally weakens this area mechanically. To bolster this fragile area, hair cells construct a dense core called the rootlet at the base of each stereocilium, which extends down into the actin meshwork of the cuticular plate and firmly anchors the stereocilium. Rootlets are constructed with tightly packed actin filaments that extend from stereocilia actin filaments which are wrapped with TRIOBP; in addition, many other proteins contribute to the rootlet and its associated structures. Rootlets allow stereocilia to sustain innumerable deflections over their lifetimes and exemplify the unique manner in which sensory hair cells exploit actin and its associated proteins to carry out the function of mechanotransduction.
Collapse
|
3
|
Vélez-Ortega AC, Frolenkov GI. Building and repairing the stereocilia cytoskeleton in mammalian auditory hair cells. Hear Res 2019; 376:47-57. [PMID: 30638948 DOI: 10.1016/j.heares.2018.12.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/19/2018] [Accepted: 12/28/2018] [Indexed: 10/27/2022]
Abstract
Despite all recent achievements in identification of the molecules that are essential for the structure and mechanosensory function of stereocilia bundles in the auditory hair cells of mammalian species, we still have only a rudimentary understanding of the mechanisms of stereocilia formation, maintenance, and repair. Important molecular differences distinguishing mammalian auditory hair cells from hair cells of other types and species have been recently revealed. In addition, we are beginning to solve the puzzle of the apparent life-long stability of the stereocilia bundles in these cells. New data link the stability of the cytoskeleton in the mammalian auditory stereocilia with the normal activity of mechanotransduction channels. These data suggest new ideas on how a terminally-differentiated non-regenerating hair cell in the mammalian cochlea may repair and tune its stereocilia bundle throughout the life span of the organism.
Collapse
Affiliation(s)
- A Catalina Vélez-Ortega
- Department of Physiology, University of Kentucky, 800 Rose St., Lexington, KY, 40536-0298, USA.
| | - Gregory I Frolenkov
- Department of Physiology, University of Kentucky, 800 Rose St., Lexington, KY, 40536-0298, USA.
| |
Collapse
|
4
|
Andrews CD, Payne JF, Rise ML. Identification of a gene set to evaluate the potential effects of loud sounds from seismic surveys on the ears of fishes: a study with Salmo salar. JOURNAL OF FISH BIOLOGY 2014; 84:1793-1819. [PMID: 24814183 PMCID: PMC4277336 DOI: 10.1111/jfb.12398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 03/05/2014] [Indexed: 06/03/2023]
Abstract
Functional genomic studies were carried out on the inner ear of Atlantic salmon Salmo salar following exposure to a seismic airgun. Microarray analyses revealed 79 unique transcripts (passing background threshold), with 42 reproducibly up-regulated and 37 reproducibly down-regulated in exposed v. control fish. Regarding the potential effects on cellular energetics and cellular respiration, altered transcripts included those with roles in oxygen transport, the glycolytic pathway, the Krebs cycle and the electron transport chain. Of these, a number of transcripts encoding haemoglobins that are important in oxygen transport were up-regulated and among the most highly expressed. Up-regulation of transcripts encoding nicotinamide riboside kinase 2, which is also important in energy production and linked to nerve cell damage, points to evidence of neuronal damage in the ear following noise exposure. Transcripts related to protein modification or degradation also indicated potential damaging effects of sound on ear tissues. Notable in this regard were transcripts associated with the proteasome-ubiquitin pathway, which is involved in protein degradation, with the transcript encoding ubiquitin family domain-containing protein 1 displaying the highest response to exposure. The differential expression of transcripts observed for some immune responses could potentially be linked to the rupture of cell membranes. Meanwhile, the altered expression of transcripts for cytoskeletal proteins that contribute to the structural integrity of the inner ear could point to repair or regeneration of ear tissues including auditory hair cells. Regarding potential effects on hormones and vitamins, the protein carrier for thyroxine and retinol (vitamin A), namely transthyretin, was altered at the transcript expression level and it has been suggested from studies in mammalian systems that retinoic acid may play a role in the regeneration of damaged hair cells. The microarray experiment identified the transcript encoding growth hormone I as up-regulated by loud sound, supporting previous evidence linking growth hormone to hair cell regeneration in fishes. Quantitative (q) reverse transcription (RT) polymerase chain reaction (qRT-PCR) analyses confirmed dysregulation of some microarray-identified transcripts and in some cases revealed a high level of biological variability in the exposed group. These results support the potential utility of molecular biomarkers to evaluate the effect of seismic surveys on fishes with studies on the ears being placed in a priority category for development of exposure-response relationships. Knowledge of such relationships is necessary for addressing the question of potential size of injury zones.
Collapse
Affiliation(s)
- C D Andrews
- Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, 80 East White Hills Rd, St John's, NL, A1C 5X1, Canada
| | | | | |
Collapse
|
5
|
Hackney CM, Furness DN. The composition and role of cross links in mechanoelectrical transduction in vertebrate sensory hair cells. J Cell Sci 2013; 126:1721-31. [DOI: 10.1242/jcs.106120] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The key components of acousticolateralis systems (lateral line, hearing and balance) are sensory hair cells. At their apex, these cells have a bundle of specialized cellular protrusions, which are modified actin-containing microvilli, connected together by extracellular filaments called cross links. Stereociliary deflections open nonselective cation channels allowing ions from the extracellular environment into the cell, a process called mechanoelectrical transduction. This produces a receptor potential that causes the release of the excitatory neurotransmitter glutamate onto the terminals of the sensory nerve fibres, which connect to the cell base, causing nerve signals to be sent to the brain. Identification of the cellular mechanisms underlying mechanoelectrical transduction and of some of the proteins involved has been assisted by research into the genetics of deafness, molecular biology and mechanical measurements of function. It is thought that one type of cross link, the tip link, is composed of cadherin 23 and protocadherin 15, and gates the transduction channel when the bundle is deflected. Another type of link, called lateral (or horizontal) links, maintains optimal bundle cohesion and stiffness for transduction. This Commentary summarizes the information currently available about the structure, function and composition of the links and how they might be relevant to human hearing impairment.
Collapse
|
6
|
Simmons DD, Tong B, Schrader AD, Hornak AJ. Oncomodulin identifies different hair cell types in the mammalian inner ear. J Comp Neurol 2010; 518:3785-802. [PMID: 20653034 DOI: 10.1002/cne.22424] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The tight regulation of Ca(2+) is essential for inner ear function, and yet the role of Ca(2+) binding proteins (CaBPs) remains elusive. By using immunofluorescence and reverse transcriptase-polymerase chain reaction (RT-PCR), we investigated the expression of oncomodulin (Ocm), a member of the parvalbumin family, relative to other EF-hand CaBPs in cochlear and vestibular organs in the mouse. In the mouse cochlea, Ocm is found only in outer hair cells and is localized preferentially to the basolateral outer hair cell membrane and to the base of the hair bundle. Developmentally, Ocm immunoreactivity begins as early as postnatal day (P) 2 and shows preferential localization to the basolateral membrane and hair bundle after P8. Unlike the cochlea, Ocm expression is substantially reduced in vestibular tissues at older adult ages. In vestibular organs, Ocm is found in type I striolar or central hair cells, and has a more diffuse subcellular localization throughout the hair cell body. Additionally, Ocm immunoreactivity in vestibular hair cells is present as early as E18 and is not obviously affected by mutations that cause a disruption of hair bundle polarity. We also find Ocm expression in striolar hair cells across mammalian species. These data suggest that Ocm may have distinct functional roles in cochlear and vestibular hair cells.
Collapse
Affiliation(s)
- Dwayne D Simmons
- Department of Integrative Biology and Physiology and the Brain Research Institute, University of California Los Angeles, Los Angeles, California 90095, USA.
| | | | | | | |
Collapse
|
7
|
Bortolozzi M, Brini M, Parkinson N, Crispino G, Scimemi P, De Siati RD, Di Leva F, Parker A, Ortolano S, Arslan E, Brown SD, Carafoli E, Mammano F. The novel PMCA2 pump mutation Tommy impairs cytosolic calcium clearance in hair cells and links to deafness in mice. J Biol Chem 2010; 285:37693-703. [PMID: 20826782 PMCID: PMC2988374 DOI: 10.1074/jbc.m110.170092] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The mechanotransduction process in hair cells in the inner ear is associated with the influx of calcium from the endolymph. Calcium is exported back to the endolymph via the splice variant w/a of the PMCA2 of the stereocilia membrane. To further investigate the role of the pump, we have identified and characterized a novel ENU-induced mouse mutation, Tommy, in the PMCA2 gene. The mutation causes a non-conservative E629K change in the second intracellular loop of the pump that harbors the active site. Tommy mice show profound hearing impairment from P18, with significant differences in hearing thresholds between wild type and heterozygotes. Expression of mutant PMCA2 in CHO cells shows calcium extrusion impairment; specifically, the long term, non-stimulated calcium extrusion activity of the pump is inhibited. Calcium extrusion was investigated directly in neonatal organotypic cultures of the utricle sensory epithelium in Tommy mice. Confocal imaging combined with flash photolysis of caged calcium showed impairment of calcium export in both Tommy heterozygotes and homozygotes. Immunofluorescence studies of the organ of Corti in homozygous Tommy mice showed a progressive base to apex degeneration of hair cells after P40. Our results on the Tommy mutation along with previously observed interactions between cadherin-23 and PMCA2 mutations in mouse and humans underline the importance of maintaining the appropriate calcium concentrations in the endolymph to control the rigidity of cadherin and ensure the function of interstereocilia links, including tip links, of the stereocilia bundle.
Collapse
Affiliation(s)
- Mario Bortolozzi
- Department of Physics G Galilei, University of Padua, Padua 35131, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Harada N. Role of nitric oxide on purinergic signalling in the cochlea. Purinergic Signal 2010; 6:211-20. [PMID: 20806013 DOI: 10.1007/s11302-010-9186-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 05/17/2010] [Indexed: 11/30/2022] Open
Abstract
In the inner ear, there is considerable evidence that extracellular adenosine 5'-triphosphate (ATP) plays an important role in auditory neurotransmission as a neurotransmitter or a neuromodulator, although the potential role of adenosine signalling in the modulation of auditory neurotransmission has also been reported. The activation of ligand-gated ionotropic P2X receptors and G protein-coupled metabotropic P2Y receptors has been reported to induce an increase of intracellular Ca(2+) concentration ([Ca(2+)](i)) in inner hair cells (IHCs), outer hair cells (OHCs), spiral ganglion neurons (SGNs), and supporting cells in the cochlea. ATP may participate in auditory neurotransmission by modulating [Ca(2+)](i) in the cochlear cells. Recent studies showed that extracellular ATP induced nitric oxide (NO) production in IHCs, OHCs, and SGNs, which affects the ATP-induced Ca(2+) response via the NO-cGMP-PKG pathway in those cells by a feedback mechanism. A cross-talk between NO and ATP may therefore exist in the auditory signal transduction. In the present article, I review the role of NO on the ATP-induced Ca(2+) signalling in IHCs and OHCs. I also consider the possible role of NO in the ATP-induced Ca(2+) signalling in SGNs and supporting cells.
Collapse
Affiliation(s)
- Narinobu Harada
- Harada Ear Institute, Tomoi 2-34-27, Higashiosaka, Osaka, 577-0816 Japan
| |
Collapse
|
9
|
Motta CM, Avallone B, Balassone G, Balsamo G, Fascio U, Simoniello P, Tammaro S, Marmo F. Morphological and biochemical analyses of otoliths of the ice-fish Chionodraco hamatus confirm a common origin with red-blooded species. J Anat 2009; 214:153-62. [PMID: 19166478 DOI: 10.1111/j.1469-7580.2008.01003.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The morphology and composition of the three otoliths of the Antarctic ice-fish Chionodraco hamatus were studied by scanning electron microscopy and X-ray diffraction. The composition of the sagitta, lapillus and asteriscus protein matrices was also analysed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis, western blots and confocal laser scanning microscopy to reveal the presence of and to localize the calcium-binding proteins calmodulin, calbindin and S-100. Morphological results indicated that the otoliths in this ice-fish were similar to those of Trematomus bernacchii, a red-blooded Antarctic species [B. Avallone et al. (2003) J. Submicrosc. Cytol. Pathol. 35, 69-76], but rather different from those of other teleosts. These two Antarctic species possessed a completely vateritic asteriscus, whereas their sagitta and lapillus were made mostly of aragonite. Parallel analysis of protein patterns in C. hamatus and T. bernacchii revealed that the sagitta significantly differed from the lapillus and asteriscus in both species. The sagitta did not contain the S-100 protein and showed calmodulin and calbindin located in discontinuous or incremental zones, respectively. These results demonstrate that the otoliths of C. hamatus and T. bernacchii share more resemblances than differences and support the idea of a common origin of these species.
Collapse
Affiliation(s)
- Chiara Maria Motta
- Department of Biological Sciences, University of Naples Federico II, Naples, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Jung HH, Kim HJ, Im GJ, Chang J, Choi J, Chae SW. Differential protein expression profiles in salicylate ototoxicity of the mouse cochlea. Hear Res 2009; 255:121-8. [PMID: 19540324 DOI: 10.1016/j.heares.2009.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 06/10/2009] [Indexed: 10/20/2022]
Abstract
The purpose of this study was to investigate protein expression profiles of salicylate ototoxicity using proteomic analysis, and to identify whether salicylates induce apoptosis in organotypic culture of mouse cochlear cells. The adult mice were injected intraperitoneally with 400mg/kg of sodium salicylate. Approximately 30dB threshold shift was observed 3h after the injection, and the hearing threshold returned to normal range within 3 days. Proteomic analysis of mouse cochlea was performed 3h after salicylate injection, because this was the time to show maximal ototoxic effect in salicylate intoxication. Expression pattern of proteomic analysis at 3h was compared with those of normal cochlea and cochlea 3 days after salicylate injection. Sixteen proteins were transiently up-regulated threefolds or more at 3h after the injection compared with normal cochlea, and three proteins were down-regulated at 3h. Similar protein expression profiles were also observed between normal and 3 days group. These up-regulated and down-regulated proteins at 3h were analyzed by MALDI-TOF MS. The mRNA expressions of nine selected genes from 16 up-regulated protein profiles were also investigated by RT-PCR, and their expression levels at 3h were found to be higher than those of normal cochlea. We also confirmed the ototoxicity of salicylate in organotypic culture of cochlear cells using MTT assay, Hoechst staining and DNA laddering assay in vitro, and found that salicylate decreased the viability of cells in a time and dose-dependent manner, and that induced apoptosis in organotypic culture of cochlear cells. This study demonstrated that some proteins can be related to salicylate ototoxicity, and provides basic information about candidate proteins which are related to pathologic changes in salicylate-induced ototoxicity.
Collapse
Affiliation(s)
- Hak Hyun Jung
- Department of Otolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
11
|
Zheng J, Anderson CT, Miller KK, Cheatham M, Dallos P. Identifying components of the hair-cell interactome involved in cochlear amplification. BMC Genomics 2009; 10:127. [PMID: 19320974 PMCID: PMC2669096 DOI: 10.1186/1471-2164-10-127] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 03/25/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although outer hair cells (OHCs) play a key role in cochlear amplification, it is not fully understood how they amplify sound signals by more than 100 fold. Two competing or possibly complementary mechanisms, stereocilia-based and somatic electromotility-based amplification, have been considered. Lacking knowledge about the exceptionally rich protein networks in the OHC plasma membrane, as well as related protein-protein interactions, limits our understanding of cochlear function. Therefore, we focused on finding protein partners for two important membrane proteins: Cadherin 23 (cdh23) and prestin. Cdh23 is one of the tip-link proteins involved in transducer function, a key component of mechanoelectrical transduction and stereocilia-based amplification. Prestin is a basolateral membrane protein responsible for OHC somatic electromotility. RESULTS Using the membrane-based yeast two-hybrid system to screen a newly built cDNA library made predominantly from OHCs, we identified two completely different groups of potential protein partners using prestin and cdh23 as bait. These include both membrane bound and cytoplasmic proteins with 12 being de novo gene products with unknown function(s). In addition, some of these genes are closely associated with deafness loci, implying a potentially important role in hearing. The most abundant prey for prestin (38%) is composed of a group of proteins involved in electron transport, which may play a role in OHC survival. The most abundant group of cdh23 prey (55%) contains calcium-binding domains. Since calcium performs an important role in hair cell mechanoelectrical transduction and amplification, understanding the interactions between cdh23 and calcium-binding proteins should increase our knowledge of hair cell function at the molecular level. CONCLUSION The results of this study shed light on some protein networks in cochlear hair cells. Not only was a group of de novo genes closely associated with known deafness loci identified, but the data also indicate that the hair cell tip link interacts directly with calcium binding proteins. The OHC motor protein, prestin, also appears to be associated with electron transport proteins. These unanticipated results open potentially fruitful lines of investigation into the molecular basis of cochlear amplification.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Communication Sciences and Disorders, The Hugh Knowles Center, Northwestern University, Evanston, IL 60208, USA.
| | | | | | | | | |
Collapse
|
12
|
Zuo H, Cui B, She X, Wu M. Changes in Guinea pig cochlear hair cells after sound conditioning and noise exposure. J Occup Health 2008; 50:373-9. [PMID: 18654041 DOI: 10.1539/joh.l8032] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Sound conditioning has reduced noise-induced hearing loss in experimental mammalian animals and in clinical observation. Forty guinea pigs were grouped as: A, control; B, conditioning noise exposure group; C, high level noise exposure group; and D, conditioning noise exposure followed by a high level noise exposure group. Auditory brainstem response thresholds were measured. The cochlear sensory epithelia surface was observed microscopically. Calmodulin, F-actin and heat shock protein 70 (HSP70) in hair cells were immunohistochemistrically stained. The intracellular free calcium was stained for confocal microscopy. The ABR threshold shift after noise exposure was higher in group C than D, and showed a quicker and better recovery in group D than C. Stereocilia loss and the disarrangement of outer hair cells were observed, with the greatest changes seen in group C, followed by groups D and B. The most intensive immunohistochemical intracellular expressions of calmodulin, F-actin, and HSP70 were found in group D, followed by groups C, B and A. The highest intensity of the fluorescent intracellular free Ca2+ staining in the isolated outer hair cells was observed in group C. The ABR and morphological studies confirmed the protective effect from noise trauma of sound conditioning. The protective mechanism of hair cells during sound conditioning was enforced through the increase of cellular cytoskeleton proteins and through the relieving of intracellular calcium overloading caused by the traumatic noise.
Collapse
Affiliation(s)
- Hongyan Zuo
- Department of Occupational Hygiene, Institute of Health and Environmental Medicine of Tianjin, PR China
| | | | | | | |
Collapse
|
13
|
Furness DN, Katori Y, Nirmal Kumar B, Hackney CM. The dimensions and structural attachments of tip links in mammalian cochlear hair cells and the effects of exposure to different levels of extracellular calcium. Neuroscience 2008; 154:10-21. [PMID: 18384968 DOI: 10.1016/j.neuroscience.2008.02.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2007] [Revised: 01/23/2008] [Accepted: 02/12/2008] [Indexed: 11/25/2022]
Abstract
The tip links between stereocilia of acousticolateral hair cells have been suggested to contain cadherin 23 (CDH23) comprising an upper branched portion that is bound to a lower portion composed of protocadherin 15 (PCDH15). The molecular conformation of CDH23, its binding to PCDH15, the tip links, and mechanoelectrical transduction have all been shown previously to be sensitive to exposure to low levels of calcium. The aim of this study was to compare the characteristics of tip links in guinea-pig cochlear hair cells with reported features of the CDH23-PCDH15 complex. Tip links were examined using field emission scanning electron microscopy and transmission electron microscopy in conventional preparations and after treatment with the detergent Triton-X-100 or varying calcium concentrations in the extracellular solution. The results showed that tip links have a twisted double-stranded appearance with a branched upper region. They survived demembranation of the stereocilia by detergent suggesting that they have transmembrane domains at both ends. Their lengths, when fixed in the presence of 2 mM extracellular calcium, were approximately 150 nm. With prior exposure to 1 mM calcium their lengths were approximately 164 nm. The lengths in 50 microM calcium are similar ( approximately 185 nm) to those reported for CDH23-PCDH15 complexes in 100 microM calcium ( approximately 180 nm). Exposure to 1 microM calcium caused loss of tip links and an increased distance between the residual attachment sites. The data indicate that extracellular calcium concentration affects tip-link length. One model compatible with the recently proposed tip-link structure is that the CDH23 double strand undergoes calcium-dependent unfolding, changing the length of the links. The bundle may also tilt in the direction of the tallest row of stereocilia as the tip link lengthens and then is lost. Overall, our data are consistent with a tip link composed of complexes of CDH23 and PCDH15 but do not rule out other possibilities.
Collapse
Affiliation(s)
- D N Furness
- Institute of Science and Technology in Medicine, School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| | | | | | | |
Collapse
|
14
|
Abstract
Mechanical stimuli generated by head movements and changes in sound pressure are detected by hair cells with amazing speed and sensitivity. The mechanosensitive organelle, the hair bundle, is a highly elaborated structure of actin-based stereocilia arranged in precise rows of increasing height. Extracellular linkages contribute to its cohesion and convey forces to mechanically gated channels. Channel opening is nearly instantaneous and is followed by a process of sensory adaptation that keeps the channels poised in their most sensitive range. This process is served by motors, scaffolds, and homeostatic mechanisms. The molecular constituents of this process are rapidly being elucidated, especially by the discovery of deafness genes and antibody targets.
Collapse
Affiliation(s)
- Melissa A Vollrath
- Howard Hughes Medical Institute and Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
15
|
Avallone B, Fascio U, Balsamo G, Bianco PG, Balassone G, Marmo F. Morphogenesis of otoliths during larval development in brook lamprey,Lampetra planeri. ACTA ACUST UNITED AC 2007. [DOI: 10.1080/11250000701459301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Sellick PM, Kirk DL, Patuzzi R, Robertson D. Does BAPTA leave outer hair cell transduction channels closed? Hear Res 2007; 224:84-92. [PMID: 17222995 DOI: 10.1016/j.heares.2006.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2005] [Revised: 08/08/2006] [Accepted: 11/24/2006] [Indexed: 11/30/2022]
Abstract
The calcium chelator BAPTA was iontophoresed into the scala media of the second turn of the guinea pig cochlea. This produced a reduction in low frequency cochlear microphonic (CM) measured in scala media and an elevation of the cochlear action potential (CAP) threshold that lasted for the duration of the experiment. Using two pipettes, one filled with KCl and the other KCl and BAPTA (50, 20 and 5 mM) it was possible to observe the effect of passing current through one electrode while measuring the endolymphatic potential (EP) with the other. The results demonstrated that current passed via the BAPTA pipette caused a sustained increase in EP of 8.2, 12.9 and 7.8 mV in the three animals used. This increase coincided with the decrease in low frequency CM that indicated a causal connection between the two. In a second series of experiments, pipettes with larger tips were inserted into scala media in the first cochlear turn and BAPTA was allowed to diffuse from the pipette. The results confirmed the relationship between EP increase and the fall of scala media CM. One interpretation of these results is that lowering the Ca2+ concentration of endolymph with BAPTA inhibits mechano-electrical transduction in outer hair cells (OHCs) and leaves the hair cell transduction channels in a closed state, thus increasing the resistance across OHCs and increasing the EP. These findings are consistent with a model of hair cell transduction in which tension on stereo cilia opens the transduction channels.
Collapse
Affiliation(s)
- P M Sellick
- The Auditory Laboratory, Discipline of Physiology, School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, Nedlands, WA 6009, Australia.
| | | | | | | |
Collapse
|
17
|
Ricci AJ, Kachar B. Hair cell mechanotransduction: the dynamic interplay between structure and function. CURRENT TOPICS IN MEMBRANES 2007; 59:339-74. [PMID: 25168142 DOI: 10.1016/s1063-5823(06)59012-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Hair cells are capable of detecting mechanical vibrations of molecular dimensions at frequencies in the 10s to 100s of kHz. This remarkable feat is accomplished by the interplay of mechanically gated ion channels located near the top of a complex and dynamic sensory hair bundle. The hair bundle is composed of a series of actin-filled stereocilia that has both active and passive mechanical components as well as a highly active turnover process, whereby the components of the hair bundle are rapidly and continually recycled. Hair bundle mechanical properties have significant impact on the gating of the mechanically activated channels, and delineating between attributes intrinsic to the ion channel and those imposed by the channel's microenvironment is often difficult. This chapter describes what is known and accepted regarding hair-cell mechanotransduction and what remains to be explored, particularly, in relation to the interplay between hair bundle properties and mechanotransducer channel response. The interplay between hair bundle dynamics and mechanotransduction are discussed.
Collapse
Affiliation(s)
- Anthony J Ricci
- Department of Otolaryngology, Stanford University, Stanford, California 94305
| | - Bechara Kachar
- Section of Structural Biology, National Institutes of Deafness and Communicative Disorders, Bethesda, Maryland 20892
| |
Collapse
|
18
|
Shen J, Harada N, Nakazawa H, Kaneko T, Izumikawa M, Yamashita T. Role of nitric oxide on ATP-induced Ca2+ signaling in outer hair cells of the guinea pig cochlea. Brain Res 2006; 1081:101-12. [PMID: 16500627 DOI: 10.1016/j.brainres.2005.12.129] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 12/20/2005] [Accepted: 12/27/2005] [Indexed: 10/25/2022]
Abstract
Recently, a negative feedback effect of nitric oxide (NO) on the adenosine 5'-triphosphate (ATP)-induced Ca2+ response has been described in cochlear inner hair cells. We here investigated the role of NO on the ATP-induced Ca2+ response in outer hair cells (OHCs) of the guinea pig cochlea using the NO-sensitive dye DAF-2 and Ca2+ -sensitive dye fura-2. Extracellular ATP induced NO production in OHCs, which was inhibited by L-NG-nitroarginine methyl ester (L-NAME), a non-specific NO synthase (NOS) inhibitor, and suramin, a P2 receptor antagonist. ATP failed to induce NO production in the Ca2+ -free solution. S-nitroso-N-acetylpenicillamine (SNAP), a NO donor, enhanced the ATP-induced increase of the intracellular Ca2+ concentrations ([Ca2+]i), while L-NAME inhibited it. SNAP accelerated ATP-induced Mn2+ quenching in fura-2 fluorescence, while L-NAME suppressed it. 8-Bromoguanosine-cGMP, a membrane permeable analog of cGMP, mimicked the effects of SNAP. 1H-[1,2,4]oxadiazole[4,3-a] quinoxalin-1-one, an inhibitor of guanylate cyclase and KT5823, an inhibitor of cGMP-dependent protein kinase inhibited the ATP-induced [Ca2+]i increase. Selective neuronal NOS inhibitors, namely either 7-nitro-indazole or 1-(2-trifluoromethylphenyl) imidazole, mimicked the effects of L-NAME regarding both ATP-induced Ca2+ response and NO production. Immunofluorescent staining of neuronal nitric oxide synthase (nNOS) in isolated OHCs showed the localization of nNOS in the apical region of OHCs. These results suggest that the ATP-induced Ca2+ influx via a direct action of P2X receptors may be the principal source for nNOS activity in the apical region of OHCs. Thereafter, NO can be produced while conversely enhancing the Ca2+ influx via the NO-cGMP-PKG pathway by a feedback mechanism.
Collapse
Affiliation(s)
- Jing Shen
- Hearing Research Laboratory, Department of Otolaryngology, Kansai Medical University, Fumizonocho 10-15, Moriguchi, Osaka 570-8507, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Sellick PM, Robertson D, Patuzzi R. The effect of BAPTA and 4AP in scala media on transduction and cochlear gain. Hear Res 2006; 211:7-15. [PMID: 16343830 DOI: 10.1016/j.heares.2005.05.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Revised: 05/04/2005] [Accepted: 05/06/2005] [Indexed: 11/28/2022]
Abstract
We have injected by iontophoresis 4-amino-pyridine, a K+ channel blocker and BAPTA, (a Ca++ chelator), into scala media of the first three turns of the guinea pig cochlea. We measured the reduction in outer hair cell (OHC) receptor current, as indicated by cochlear microphonic measured in scala media evoked by a 207 Hz tone, and compared this with the elevation of the cochlear action potential (CAP) threshold. We found that in the basal turn, for frequencies between 12 and 21 kHz, CAP threshold was elevated by about 30 dB, while in the second turn, at the 3 kHz place, the maximum elevation was 15 dB. In the third turn, iontophoresis of 4AP and BAPTA reduced CM by similar amounts to that in the basal and second turn, but caused negligible elevation of CAP threshold. We conclude that the gain of the cochlear amplifier is maximal for basal turn frequencies, is halved at 3 kHz, and is reduced to close to one for frequencies below 1 kHz (no active gain). The effect of 4AP and BAPTA on neural threshold and the receptor current represented by CM may be explained by their action on OHC transduction without the involvement of IHCs.
Collapse
Affiliation(s)
- P M Sellick
- The Auditory Laboratory, Discipline of Physiology, School of Biomedical and Chemical Sciences, University of Western Australia, Nedlands, WA 6009, Australia.
| | | | | |
Collapse
|
20
|
Shen J, Harada N, Nakazawa H, Yamashita T. Involvement of the nitric oxide-cyclic GMP pathway and neuronal nitric oxide synthase in ATP-induced Ca2+ signalling in cochlear inner hair cells. Eur J Neurosci 2005; 21:2912-22. [PMID: 15978003 DOI: 10.1111/j.1460-9568.2005.04135.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We recently demonstrated that extracellular adenosine 5'-triphosphate (ATP) induced nitric oxide (NO) production in the inner hair cells (IHCs) of the guinea pig cochlea, which inhibited the ATP-induced increase in the intracellular Ca(2+) concentrations ([Ca(2+)](i)) by a feedback mechanism [Shen, J., Harada, N. & Yamashita, T. (2003) Neurosci. Lett., 337, 135-138]. We herein investigated the role of the NO-cGMP pathway and neuronal NO synthase (nNOS) in the ATP-induced Ca(2+) signalling in IHCs using the Ca(2+)-sensitive dye fura-2 and the NO-sensitive dye DAF-2. Fura-2 fluorescence-quenching experiments with Mn(2+) showed that ATP triggered a Mn(2+) influx. L-N(G)-nitroarginine methyl ester (L-NAME), a nonspecific NOS inhibitor, accelerated the ATP-induced Mn(2+) influx while S-nitroso-N-acetylpenicillamine (SNAP), a NO donor, suppressed it. 1H-[1,2,4]oxadiazole[4,3-a] quinoxalin-1-one, an inhibitor of guanylate cyclase, and KT5823, an inhibitor of cGMP-dependent protein kinase, enhanced the ATP-induced [Ca(2+)](i) increase. 8-Bromoguanosine-cGMP, a membrane-permeant analogue of cGMP mimicked the effects of SNAP. Moreover, the effects of 7-nitroindazole, a selective nNOS inhibitor, mimicked the effects of L-NAME regarding both the enhancement of the ATP-induced Ca(2+) response and the attenuation of NO production. Immunofluorescent staining of nNOS using a single IHC revealed that nNOS was distributed throughout the IHCs, but enriched in the apical region of the IHCs as shown by intense staining. In conclusion, the ATP-induced Ca(2+) influx may be the principal source for nNOS activity, which may interact with P2X receptors in the apical region of IHCs. Thereafter, NO can be produced and conversely inhibits the Ca(2+) influx via the NO-cGMP-PKG pathway by a feedback mechanism.
Collapse
Affiliation(s)
- Jing Shen
- Hearing Research Laboratory, Department of Otolaryngology, Kansai Medical University, Fumizonocho 10-15, Moriguchi, Osaka 570-8507, Japan
| | | | | | | |
Collapse
|
21
|
Meyer J, Preyer S, Hofmann SI, Gummer AW. Tonic mechanosensitivity of outer hair cells after loss of tip links. Hear Res 2005; 202:97-113. [PMID: 15811703 DOI: 10.1016/j.heares.2004.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Accepted: 11/30/2004] [Indexed: 11/16/2022]
Abstract
Tip links - the extracellular connectors between the distal ends of adjacent stereocilia - are essential for the fast mechanical gating of hair-cell transducer channels. Transduction in the absence of tip links was investigated for outer hair cells of the adult guinea-pig cochlea by patch-clamp recordings of the whole-cell current during mechanical stimulation of the hair bundle. Loss of tip links induced by application of BAPTA led to permanently opened transducer channels, as evidenced by a constant inward current, loss of response to sinusoidal mechanical deflection of the hair bundle and block by the open-channel blocker dihydrostreptomycin (100 microM). Step deflection of the hair bundle (200-500 nm) in the inhibitory direction exponentially reduced this current to a constant value with time constant, tau(on), of the order of seconds. The current returned exponentially to the pre-stimulus level with time-constant, tau(off), also of the order of seconds. tau(on) was dependent on the inter-stimulus interval, Deltat, such that reducing this interval below about 40 s resulted in an exponentially faster response. tau(off) was independent of Deltat. Application of the calcium ionophore, ionomycin (10 microM), showed that tau(on) became independent of Deltat after saturating elevation of the intracellular Ca(2+) concentration. Flash-photolytic release of intracellular caged calcium (25-microM NP-EGTA/AM) showed that tau(on) is dependent on intracellular Ca(2+) concentration. These experiments imply an intracellular, calcium-dependent gating mechanism for hair-cell transducer channels.
Collapse
Affiliation(s)
- Jens Meyer
- Department of Otolaryngology, Section of Physiological Acoustics and Communication, University of Tübingen, Germany
| | | | | | | |
Collapse
|
22
|
Siemens J, Lillo C, Dumont RA, Reynolds A, Williams DS, Gillespie PG, Müller U. Cadherin 23 is a component of the tip link in hair-cell stereocilia. Nature 2004; 428:950-5. [PMID: 15057245 DOI: 10.1038/nature02483] [Citation(s) in RCA: 341] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Accepted: 03/09/2004] [Indexed: 11/09/2022]
Abstract
Mechanoelectrical transduction, the conversion of mechanical force into electrochemical signals, underlies a range of sensory phenomena, including touch, hearing and balance. Hair cells of the vertebrate inner ear are specialized mechanosensors that transduce mechanical forces arising from sound waves and head movement to provide our senses of hearing and balance; however, the mechanotransduction channel of hair cells and the molecules that regulate channel activity have remained elusive. One molecule that might participate in mechanoelectrical transduction is cadherin 23 (CDH23), as mutations in its gene cause deafness and age-related hearing loss. Furthermore, CDH23 is large enough to be the tip link, the extracellular filament proposed to gate the mechanotransduction channel. Here we show that antibodies against CDH23 label the tip link, and that CDH23 has biochemical properties similar to those of the tip link. Moreover, CDH23 forms a complex with myosin-1c, the only known component of the mechanotransduction apparatus, suggesting that CDH23 and myosin-1c cooperate to regulate the activity of mechanically gated ion channels in hair cells.
Collapse
Affiliation(s)
- Jan Siemens
- The Scripps Research Institute, Department of Cell Biology, Institute for Childhood and Neglected Disease, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The narrow stimulus limits of hair cell transduction, equivalent to a total excursion of about 100nm at the tip of the hair bundle, demand tight regulation of the mechanical input to ensure that the mechanoelectrical transducer (MET) channels operate in their linear range. This control is provided by multiple components of Ca(2+)-dependent adaptation. A slow mechanism limits the mechanical stimulus through the action of one or more unconventional myosins. There is also a fast, sub-millisecond, Ca(2+) regulation of the MET channel, which can generate resonance and confer tuning on transduction. Changing the conductance or kinetics of the MET channels can vary their resonant frequency. The tuning information conveyed in transduction may combine with the somatic motility of outer hair cells to produce an active process that supplies amplification and augments frequency selectivity in the mammalian cochlea.
Collapse
Affiliation(s)
- Robert Fettiplace
- Department of Physiology, University of Wisconsin Medical School, Madison, WI 53706, USA.
| | | |
Collapse
|
24
|
Abstract
Hair cells of the inner ear contain high concentrations of calcium-binding proteins that limit calcium signals and prevent cross talk between different signaling pathways during auditory transduction. Using light microscope immunofluorescence and post-embedding immunogold labeling in the electron microscope, we characterized the distribution of three calcium-buffering proteins in the turtle cochlea. Both calbindin-D28k and parvalbumin-beta were confined to hair cells in which they showed a similar distribution, whereas calretinin was present mainly in hair-cell nuclei but also occurred in supporting cells and nerve fibers. The hair-cell concentration of calbindin-D28k but not of parvalbumin-beta increased from the low- to high-frequency end of the cochlea. Calibration against standards containing known amounts of calcium-buffering protein processed in the same fluid drop as the cochlear sections gave cytoplasmic concentrations of calbindin-D28k as 0.13-0.63 mm and parvalbumin-beta as approximately 0.25 mm, but calretinin was an order of magnitude less. Total amount of Ca 2+-binding sites on the proteins is at least 1.0 mm in low-frequency hair cells and 3.0 mm in high-frequency cells. Reverse transcription-PCR showed that mRNA for all three proteins was expressed in turtle hair cells. We suggest that calbindin-D28k and parvalbumin-beta may serve as endogenous mobile calcium buffers, but the predominantly nuclear location of calretinin argues for another role in calcium signaling. The results support conclusions from electrophysiological measurements that millimolar concentrations of endogenous calcium buffers are present in turtle hair cells. Parvalbumin-beta was also found in both inner and outer hair cells of the guinea pig cochlea.
Collapse
|