1
|
Namatame C, Abe Y, Miyasaka Y, Takai Y, Matsumoto Y, Takahashi T, Mashimo T, Misu T, Fujihara K, Yasui M, Aoki M. Humanized-Aquaporin-4-Expressing Rat Created by Gene-Editing Technology and Its Use to Clarify the Pathology of Neuromyelitis Optica Spectrum Disorder. Int J Mol Sci 2024; 25:8169. [PMID: 39125739 PMCID: PMC11311328 DOI: 10.3390/ijms25158169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Conventional rodent neuromyelitis optica spectrum disorder (NMOSD) models using patient-derived immunoglobulin G (IgG) are potentially affected by the differences between the human and rodent aquaporin-4 (AQP4) extracellular domains (ECDs). We hypothesized that the humanization of AQP4 ECDs would make the rodent model lesions closer to human NMOSD pathology. Humanized-AQP4-expressing (hAQP4) rats were generated using genome-editing technology, and the human AQP4-specific monoclonal antibody (mAb) or six patient-derived IgGs were introduced intraperitoneally into hAQP4 rats and wild-type Lewis (WT) rats after immunization with myelin basic protein and complete Freund's adjuvant. Human AQP4-specific mAb induced astrocyte loss lesions specifically in hAQP4 rats. The patient-derived IgGs also induced NMOSD-like tissue-destructive lesions with AQP4 loss, demyelination, axonal swelling, complement deposition, and marked neutrophil and macrophage/microglia infiltration in hAQP4 rats; however, the difference in AQP4 loss lesion size and infiltrating cells was not significant between hAQP4 and WT rats. The patient-derived IgGs bound to both human and rat AQP4 M23, suggesting their binding to the shared region of human and rat AQP4 ECDs. Anti-AQP4 titers positively correlated with AQP4 loss lesion size and neutrophil and macrophage/microglia infiltration. Considering that patient-derived IgGs vary in binding sites and affinities and some of them may not bind to rodent AQP4, our hAQP4 rat is expected to reproduce NMOSD-like pathology more accurately than WT rats.
Collapse
Affiliation(s)
- Chihiro Namatame
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Yoichiro Abe
- Department of Pharmacology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yoshiki Miyasaka
- Laboratory of Reproductive Engineering, Institute of Experimental Animal Sciences, Osaka University Medical School, Suita 565-0871, Japan
| | - Yoshiki Takai
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Yuki Matsumoto
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Toshiyuki Takahashi
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
- Department of Neurology, National Hospital Organization Yonezawa Hospital, Yonezawa 992-1202, Japan
| | - Tomoji Mashimo
- Division of Animal Genetics, Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Tatsuro Misu
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Kazuo Fujihara
- Department of Multiple Sclerosis & Therapeutics, Fukushima Medical University, Fukushima 960-1295, Japan
- Multiple Sclerosis & Neuromyelitis Optica Center, Southern Tohoku Research Institute for Neuroscience, Koriyama 963-8563, Japan
| | - Masato Yasui
- Department of Pharmacology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| |
Collapse
|
2
|
Piraino PS, Yednock TA, Freedman SB, Messersmith EK, Pleiss MA, Karlik SJ. Suppression of acute experimental allergic encephalomyelitis with a small molecule inhibitor of α4 integrin. Mult Scler 2016; 11:683-90. [PMID: 16320728 DOI: 10.1191/1352458505ms1223oa] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Purpose: To determine the efficacy of a small molecule inhibitor of α4 integrin (CT301) at reversing the clinical, pathological and MR- detectable deficits associated with the acute phase of experimental allergic encephalomyelitis (EAE). Materials and methods: EAE was induced in 36 female Hartley guinea pigs, and the treatment period was from day 11 to day 17 post-immunization. Animals received either saline (n=12), anti-α4 integrin antibody (AN100226m; n=12) or CT301 (n=12). T2-weighted fast spin echo and T1-weighted pre- and post-contrast scans were performed at the beginning (day 11) and end (day 18) of the treatment period, and scored for cerebral inflammation and gadolinium enhancement. T1-weighted images were further analyzed to quantify this enhancement as a measure of blood-brain barrier integrity. Dissected CNS was evaluated for inflammation and demyelination. Results: CT301 successfully reversed two clinical indicators of disease over the course of the treatment period. These animals showed decreased T2-weighted abnormalities, as well as a reduction in gadolinium leakage on T1-weighted images. Meningeal and perivascular inflammation was decreased by anti-α4 integrin treatments. Conclusion: CT301 effectively reverses the clinical, pathological and MR-detectable deficits of acute EAE, and may therefore be a promising therapeutic agent in multiple sclerosis (MS).
Collapse
Affiliation(s)
- P S Piraino
- Department of Physiology and Pharmacology, University of Western Ontario, London, Canada
| | | | | | | | | | | |
Collapse
|
3
|
Turjeman K, Bavli Y, Kizelsztein P, Schilt Y, Allon N, Katzir TB, Sasson E, Raviv U, Ovadia H, Barenholz Y. Nano-Drugs Based on Nano Sterically Stabilized Liposomes for the Treatment of Inflammatory Neurodegenerative Diseases. PLoS One 2015; 10:e0130442. [PMID: 26147975 PMCID: PMC4492950 DOI: 10.1371/journal.pone.0130442] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 05/20/2015] [Indexed: 12/28/2022] Open
Abstract
The present study shows the advantages of liposome-based nano-drugs as a novel strategy of delivering active pharmaceutical ingredients for treatment of neurodegenerative diseases that involve neuroinflammation. We used the most common animal model for multiple sclerosis (MS), mice experimental autoimmune encephalomyelitis (EAE). The main challenges to overcome are the drugs’ unfavorable pharmacokinetics and biodistribution, which result in inadequate therapeutic efficacy and in drug toxicity (due to high and repeated dosage). We designed two different liposomal nano-drugs, i.e., nano sterically stabilized liposomes (NSSL), remote loaded with: (a) a “water-soluble” amphipathic weak acid glucocorticosteroid prodrug, methylprednisolone hemisuccinate (MPS) or (b) the amphipathic weak base nitroxide, Tempamine (TMN). For the NSSL-MPS we also compared the effect of passive targeting alone and of active targeting based on short peptide fragments of ApoE or of β-amyloid. Our results clearly show that for NSSL-MPS, active targeting is not superior to passive targeting. For the NSSL-MPS and the NSSL-TMN it was demonstrated that these nano-drugs ameliorate the clinical signs and the pathology of EAE. We have further investigated the MPS nano-drug’s therapeutic efficacy and its mechanism of action in both the acute and the adoptive transfer EAE models, as well as optimizing the perfomance of the TMN nano-drug. The highly efficacious anti-inflammatory therapeutic feature of these two nano-drugs meets the criteria of disease-modifying drugs and supports further development and evaluation of these nano-drugs as potential therapeutic agents for diseases with an inflammatory component.
Collapse
Affiliation(s)
- Keren Turjeman
- Laboratory of Membrane and Liposome Research, Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel
- * E-mail:
| | - Yaelle Bavli
- Laboratory of Membrane and Liposome Research, Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Pablo Kizelsztein
- Laboratory of Membrane and Liposome Research, Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Yaelle Schilt
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Nahum Allon
- Laboratory of Membrane and Liposome Research, Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | - Efrat Sasson
- BioImage MRI Research & Consulting, Tel Aviv, Israel
| | - Uri Raviv
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Haim Ovadia
- Department of Neurology, Agnes Ginges Center for Human Neurogenetics, Hadassah University Hospital, Jerusalem, Israel
| | - Yechezkel Barenholz
- Laboratory of Membrane and Liposome Research, Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
4
|
Simon JH. MRI outcomes in the diagnosis and disease course of multiple sclerosis. HANDBOOK OF CLINICAL NEUROLOGY 2014; 122:405-25. [PMID: 24507528 DOI: 10.1016/b978-0-444-52001-2.00017-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite major advances in MRI, including practical implementations of multiple quantitative MRI methods, the conventional measures of focal, macroscopic disease remain the core MRI outcome measures in clinical trials. MRI enhancing lesion counts are used to assess inflammation, and new T2-lesions provide an index of (interval) activity between scans. These simple MRI measures also have immediate significance for early diagnosis as components of the 2010 revised dissemination in space and time criteria, and they provide a mechanism to monitor the subclinical disease in patients, including after treatment is initiated. The focal macroscopic injury, which includes demyelination and axonal damage, is at least partially linked to the diffuse injury through pathophysiologic mechanisms, such as secondary degeneration, but the diffuse diseases is largely independent. Quantitative measures of the more widespread pathology of the normal appearing white and gray matter currently remain applicable to populations of patients rather than individuals. Gray matter pathology, including focal lesions of the cortical gray matter and diffuse changes in the deep and cortical gray has emerged as both early and clinically relevant, as has atrophy. Major technical improvements in MRI hardware and pulse sequence design allow more specific and potentially more sensitive treatment metrics required for targeting outcomes most relevant to neuronal degeneration, remyelination and repair.
Collapse
Affiliation(s)
- Jack H Simon
- Oregon Health and Sciences University and Portland VA Medical Center, Portland, OR, USA.
| |
Collapse
|
5
|
Pirko I, Johnson AJ. Neuroimaging of demyelination and remyelination models. Curr Top Microbiol Immunol 2008; 318:241-66. [PMID: 18219821 DOI: 10.1007/978-3-540-73677-6_10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Small-animal magnetic resonance imaging is becoming an increasingly utilized noninvasive tool in the study of animal models of MS including the most commonly used autoimmune, viral, and toxic models. Because most MS models are induced in rodents with brains and spinal cords of a smaller magnitude than humans, small-animal MRI must accomplish much higher resolution acquisition in order to generate useful data. In this review, we discuss key aspects and important differences between high field strength experimental and human MRI. We describe the role of conventional imaging sequences including T1, T2, and proton density-weighted imaging, and we discuss the studies aimed at analyzing blood-brain barrier (BBB) permeability and acute inflammation utilizing gadolinium-enhanced MRI. Advanced MRI methods, including diffusion-weighted and magnetization transfer imaging in monitoring demyelination, axonal damage, and remyelination, and studies utilizing in vivo T1 and T2 relaxometry, provide insight into the pathology of demyelinating diseases at previously unprecedented details. The technical challenges of small voxel in vivo MR spectroscopy and the biologically relevant information obtained by analysis of MR spectra in demyelinating models is also discussed. Novel cell-specific and molecular imaging techniques are becoming more readily available in the study of experimental MS models. As a growing number of tissue restorative and remyelinating strategies emerge in the coming years, noninvasive monitoring of remyelination will be an important challenge in small-animal imaging. High field strength small-animal experimental MRI will continue to evolve and interact with the development of new human MR imaging and experimental NMR techniques.
Collapse
Affiliation(s)
- I Pirko
- Department of Neurology, Waddell Center for Multiple Sclerosis, University of Cincinnati, 260 Stetson St, Suite 2300, Cincinnati, OH 45267-0525, USA.
| | | |
Collapse
|
6
|
Blezer ELA, Bauer J, Brok HPM, Nicolay K, 't Hart BA. Quantitative MRI-pathology correlations of brain white matter lesions developing in a non-human primate model of multiple sclerosis. NMR IN BIOMEDICINE 2007; 20:90-103. [PMID: 16948176 DOI: 10.1002/nbm.1085] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Experimental autoimmune encephalomyelitis (EAE) induced with recombinant human myelin/oligodendrocyte glycoprotein in the common marmoset is a useful preclinical model of multiple sclerosis in which white matter lesions can be well visualized with MRI. In this study we characterized lesion progression with quantitative in vivo MRI (4.7 T; T(1) relaxation time +/- Gd-DTPA; T(2) relaxation time; magnetization transfer ratio, MTR, imaging) and correlated end stage MRI presentation with quantitative ex vivo MRI (formaldehyde fixed brains; T(1) and T(2) relaxation times; MTR) and histology. The histopathological characterization included axonal density measurements and the numeric quantification of infiltrated macrophages expressing markers for early active [luxol fast blue (LFB) or migration inhibition factor-related protein-14 positive] or late active/inactive [periodic acid Schiff (PAS) positive] demyelinating lesion. MRI experiments were done every two weeks until the monkeys were sacrificed with severe EAE-related motor deficits. Compared with the normal appearing white matter, lesions showed an initial increase in T(1) relaxation times, leakage of Gd-DTPA and decrease in MTR values. The progressive enlargement of lesions was associated with stabilized T(1) values, while T(2) initially increased and stabilized thereafter and MTR remained decreased. Gd-DTPA leakage was highly variable throughout the experiment. MRI characteristics of the cortex and (normal appearing) white matter did not change during the experiment. We observed that in vivo MTR values correlated positively with the number of early active (LFB+) and negatively with late active (PAS+) macrophages. Ex vivo MTR and relaxation times correlated positively with the number of PAS-positive macrophages. None of the investigated MRI parameters correlated with axonal density.
Collapse
Affiliation(s)
- Erwin L A Blezer
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
7
|
Beraud E, Viola A, Regaya I, Confort-Gouny S, Siaud P, Ibarrola D, Le Fur Y, Barbaria J, Pellissier JF, Sabatier JM, Medina I, Cozzone PJ. Block of neural Kv1.1 potassium channels for neuroinflammatory disease therapy. Ann Neurol 2006; 60:586-596. [PMID: 17044011 DOI: 10.1002/ana.21007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE We asked whether blockade of voltage-gated K+ channel Kv1.1, whose altered axonal localization during myelin insult and remyelination may disturb nerve conduction, treats experimental autoimmune encephalomyelitis (EAE). METHODS Electrophysiological, cell proliferation, cytokine secretion, immunohistochemical, clinical, brain magnetic resonance imaging, and spectroscopy studies assessed the effects of a selective blocker of Kv1.1, BgK-F6A, on neurons and immune cells in vitro and on EAE-induced neurological deficits and brain lesions in Lewis rats. RESULTS BgK-F6A increased the frequency of miniature excitatory postsynaptic currents in neurons and did not affect T-cell activation. EAE was characterized by ventriculomegaly, decreased apparent diffusion coefficient, and decreased (phosphocreatine + beta-adenosine triphosphate)/inorganic phosphate ratio. Reduced apparent diffusion coefficient and impaired energy metabolism indicate astrocytic edema. Intracerebroventricularly BgK-F6A-treated rats showed attenuated clinical EAE with unexpectedly reduced ventriculomegaly and preserved apparent diffusion coefficient values and (phosphocreatine + beta-adenosine triphosphate)/inorganic phosphate ratio. Thus, under BgK-F6A treatment, brain damage was dramatically reduced and energy metabolism maintained. INTERPRETATION Kv1.1 blockade may target neurons and astrocytes, and modulate neuronal activity and neural cell volume, which may partly account for the attenuation of the neurological deficits. We propose that Kv1.1 blockade has a broad therapeutic potential in neuroinflammatory diseases (multiple sclerosis, stroke, and trauma).
Collapse
Affiliation(s)
- Evelyne Beraud
- Service d'Immunologie, Faculté de Médecine, Université de la Méditerranée, Marseille, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
MacKenzie-Graham A, Tinsley MR, Shah KP, Aguilar C, Strickland LV, Boline J, Martin M, Morales L, Shattuck DW, Jacobs RE, Voskuhl RR, Toga AW. Cerebellar cortical atrophy in experimental autoimmune encephalomyelitis. Neuroimage 2006; 32:1016-23. [PMID: 16806982 DOI: 10.1016/j.neuroimage.2006.05.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Revised: 04/19/2006] [Accepted: 05/02/2006] [Indexed: 11/21/2022] Open
Abstract
Brain atrophy measured by MRI is an important correlate with clinical disability and disease duration in multiple sclerosis (MS). Unfortunately, neuropathologic mechanisms which lead to this grey matter atrophy remain unknown. The objective of this study was to determine whether brain atrophy occurs in the mouse model, experimental autoimmune encephalomyelitis (EAE). Postmortem high-resolution T2-weighted magnetic resonance microscopy (MRM) images from 32 mouse brains (21 EAE and 11 control) were collected. A minimum deformation atlas was constructed and a deformable atlas approach was used to quantify volumetric changes in neuroanatomical structures. A significant decrease in the mean cerebellar cortex volume in mice with late EAE (48-56 days after disease induction) as compared to normal strain, gender, and age-matched controls was observed. There was a direct correlation between cerebellar cortical atrophy and disease duration. At an early time point in disease, 15 days after disease induction, cerebellar white matter lesions were detected by both histology and MRM. These data demonstrate that myelin-specific autoimmune responses can lead to grey matter atrophy in an otherwise normal CNS. The model described herein can now be used to investigate neuropathologic mechanisms that lead to the development of gray matter atrophy in this setting.
Collapse
Affiliation(s)
- Allan MacKenzie-Graham
- Laboratory of Neuro Imaging, Department of Neurology, University of California-Los Angeles, 635 Charles Young Drive South, Los Angeles, CA 90095-1769, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Broom KA, Anthony DC, Blamire AM, Waters S, Styles P, Perry VH, Sibson NR. MRI reveals that early changes in cerebral blood volume precede blood-brain barrier breakdown and overt pathology in MS-like lesions in rat brain. J Cereb Blood Flow Metab 2005; 25:204-16. [PMID: 15678123 DOI: 10.1038/sj.jcbfm.9600020] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Magnetic resonance imaging (MRI) is an established clinical tool for diagnosing multiple sclerosis (MS), the archetypal central nervous system neuroinflammatory disease. In this study, we have used a model of delayed-type hypersensitivity in the rat brain, which bears many of the hallmarks of an MS lesion, to investigate the development of MRI-detectable changes before the appearance of conventional indices of lesion development. In addition, we have correlated the MRI-detectable changes with the developing histopathology. Significant increases in regional cerebral blood volume (rCBV) preceded overt changes in blood-brain barrier (BBB) permeability, T2 relaxation and the diffusion properties of tissue water. Thus, changes in rCBV might be a more sensitive indicator of lesion onset than the conventional indices used clinically in MS patients, such as contrast enhancement. In addition, we show that BBB breakdown, and consequent edema formation, are more closely correlated with astrogliosis than any other histopathologic changes, while regions of T1 and T2 hypointensity appear to reflect hypercellularity.
Collapse
Affiliation(s)
- Kerry A Broom
- Experimental Neuroimaging Group, Department of Biochemistry, University of Oxford, Oxford, UK.
| | | | | | | | | | | | | |
Collapse
|
10
|
Rausch M, Hiestand P, Foster CA, Baumann DR, Cannet C, Rudin M. Predictability of FTY720 efficacy in experimental autoimmune encephalomyelitis by in vivo macrophage tracking: Clinical implications for ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging. J Magn Reson Imaging 2004; 20:16-24. [PMID: 15221804 DOI: 10.1002/jmri.20057] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To examine the efficacy of FTY720 as a new agent to reduce inflammatory activity in an animal model of multiple sclerosis (MS) by in vivo macrophage tracking. MATERIAL AND METHODS FTY720 was used for treatment of rats in a model of chronic relapsing experimental autoimmune encephalomyelitis (EAE) at an oral dose of 0.3 mg/kg/day. Magnetic resonance imaging (MRI) based on in vivo tracking of macrophages labeled with ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles, immunohistological staining (IHC), and neurological readouts was used to study the burden of disease in treated and untreated animals. RESULTS While untreated animals showed severe paralysis of the hind paws, intense accumulation of macrophages in brain tissue, and areas of blood-brain barrier (BBB) disruption, FTY720-treated animals displayed no signs of inflammatory activity or neurological impairment. These observations were made for both acute phase and first relapse. CONCLUSION Tracking of macrophages by MRI provides direct evidence of the immunomodulatory efficacy of FTY720 in the EAE model and correlates well with neurological symptoms and histology.
Collapse
MESH Headings
- Acute Disease
- Animals
- Blood-Brain Barrier
- Brain/metabolism
- Brain/pathology
- Contrast Media
- Dextrans
- Encephalomyelitis, Autoimmune, Experimental/diagnosis
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Ferrosoferric Oxide
- Fingolimod Hydrochloride
- Heterocyclic Compounds
- Immunohistochemistry
- Immunosuppressive Agents/therapeutic use
- Iron
- Macrophages/pathology
- Magnetic Resonance Imaging
- Magnetite Nanoparticles
- Organometallic Compounds
- Oxides
- Propylene Glycols/therapeutic use
- Rats
- Rats, Inbred Lew
- Receptors, G-Protein-Coupled/agonists
- Receptors, Lysophospholipid
- Recurrence
- Sphingosine
Collapse
Affiliation(s)
- Martin Rausch
- Novartis Institute for Biomedical Research, Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|