1
|
Li G, Cheng J, Yang L, Chen P, Duan X. Ethanol extract of Rubia yunnanensis inhibits carotid atherosclerosis via the PI3K/AKT signaling pathway. Biomed Rep 2024; 20:19. [PMID: 38170026 PMCID: PMC10758924 DOI: 10.3892/br.2023.1707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/13/2023] [Indexed: 01/05/2024] Open
Abstract
Atherosclerosis is a multifactorial vascular disease caused by endothelial dysfunction. Because of adverse reactions to drugs used to treat atherosclerosis. For example, statins, which significantly reduce the burden of atherosclerotic disease, have been associated with muscle toxicity. There is a need to identify novel drugs for the prevention and treatment of atherosclerosis Rubia yunnanensis is a herbs commonly used in Asian countries for its protective effects against cardiovascular diseases. However, the mechanism of action of R. yunnanensis extract in carotid artery atherosclerosis has not been found. The carotid artery is usually used as a site for clinical evaluation of atherosclerosis. The present study aimed to determine the mechanism of action of R. yunnanensis extract in the inhibition of carotid atherosclerosis in apolipoprotein E gene knockout (ApoE-/-) mice. The mechanism of atherosclerosis inhibition was elucidated by detecting the blood lipid level, carotid artery pathology, and the protein expression of PI3K and AKT. The present study demonstrated that ethanol extract of R. yunnanensis reduced lipid levels, intima damage and carotid lipid accumulation and increased p-PI3K/PI3K and p-AKT/AKT protein levels in ApoE-/- mice fed high-fat diet for 12 weeks. It was hypothesized that the effects of R. yunnanensis extract may be achieved by regulation of the phosphatidylinositol-3-kinase/protein kinase B signaling pathway. Ethanol extract of R. yunnanensis decreased carotid atherosclerosis in ApoE-/- mice fed a high-fat diet via the phosphatidylinositol-3-kinase/protein kinase B signaling pathway. Therefore, R. yunnanensis may be a promising option for treating atherosclerosis in the future.
Collapse
Affiliation(s)
- Gaoyizhou Li
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Jianghao Cheng
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Liping Yang
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Pu Chen
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Xiaohua Duan
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
2
|
The role of lactoferrin in atherosclerosis. Biometals 2022; 36:509-519. [PMID: 36053470 DOI: 10.1007/s10534-022-00441-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/24/2022] [Indexed: 11/02/2022]
Abstract
Atherosclerosis (AS) is a common pathological basis for many cardiovascular diseases (CVDs) and result in high mortality and immense health and economic burdens worldwide. Early prevention, diagnosis, and treatment are promising approaches for stemming the development and progression of AS. Lactoferrin (Lf) is an iron-binding glycoprotein belonging to the transferrin family. It is widely found in body fluids such as digestive tract fluids, tears, and milk. Lf possesses anti-inflammatory, antibacterial, immunoregulatory, antioxidant and many other physiological functions. The serum Lf level is reportedly associated with the risk of AS and AS-related CVDs. Lf administration is closely involved in several mechanisms, including cholesterol metabolism, foam cell formation, ICAM-1 expression, homocysteine and leptin levels, anti-inflammatory and antioxidant function. Moreover, Lf has also been applied in the sythesis of magnetic resonance imaging (MRI) contrast agents to detect AS. Lf plays an important role in AS and may therefore be used in its diagnosis and treatment. Thus, this article aims to review the association between Lf and the risk of AS and AS-related CVDs, the mechanisms of Lf administration on AS, and its potential application in AS diagnosis.
Collapse
|
3
|
Macho-González A, Bastida S, Garcimartín A, López-Oliva ME, González P, Benedí J, González-Muñoz MJ, Sánchez-Muniz FJ. Functional Meat Products as Oxidative Stress Modulators: A Review. Adv Nutr 2021; 12:1514-1539. [PMID: 33578416 PMCID: PMC8321872 DOI: 10.1093/advances/nmaa182] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/21/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
High meat consumption has been associated with increased oxidative stress mainly due to the generation of oxidized compounds in the body, such as malondialdehyde, 4-hydroxy-nonenal, oxysterols, or protein carbonyls, which can induce oxidative damage. Meat products are excellent matrices for introducing different bioactive compounds, to obtain functional meat products aimed at minimizing the pro-oxidant effects associated with high meat consumption. Therefore, this review aims to summarize the concept and preparation of healthy and functional meat, which could benefit antioxidant status. Likewise, the key strategies regarding meat production and storage as well as ingredients used (e.g., minerals, polyphenols, fatty acids, walnuts) for developing these functional meats are detailed. Although most effort has been made to reduce the oxidation status of meat, newly emerging approaches also aim to improve the oxidation status of consumers of meat products. Thus, we will delve into the relation between functional meats and their health effects on consumers. In this review, animal trials and intervention studies are discussed, ascertaining the extent of functional meat products' properties (e.g., neutralizing reactive oxygen species formation and increasing the antioxidant response). The effects of functional meat products in the frame of diet-gene interactions are analyzed to 1) discover target subjects that would benefit from their consumption, and 2) understand the molecular mechanisms that ensure precision in the prevention and treatment of diseases, where high oxidative stress takes place. Long-term intervention-controlled studies, testing different types and amounts of functional meat, are also necessary to ascertain their positive impact on degenerative diseases.
Collapse
Affiliation(s)
- Adrián Macho-González
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, Madrid, Spain
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Sara Bastida
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, Madrid, Spain
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Alba Garcimartín
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, Madrid, Spain
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - María Elvira López-Oliva
- Departmental Section of Physiology, Pharmacy School, Complutense University of Madrid, Madrid, Spain
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Pilar González
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, Madrid, Spain
| | - Juana Benedí
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, Madrid, Spain
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - María José González-Muñoz
- Biomedical Sciences Department, Toxicology Teaching Unit, Pharmacy School, Alcala University, Alcalá de Henares, Spain
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Francisco J Sánchez-Muniz
- Nutrition and Food Science Department (Nutrition), Pharmacy School, Complutense University of Madrid, Madrid, Spain
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| |
Collapse
|
4
|
Wei T, Liu J, Zhang D, Wang X, Li G, Ma R, Chen G, Lin X, Guo X. The Relationship Between Nutrition and Atherosclerosis. Front Bioeng Biotechnol 2021; 9:635504. [PMID: 33959594 PMCID: PMC8094392 DOI: 10.3389/fbioe.2021.635504] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/19/2021] [Indexed: 01/07/2023] Open
Abstract
Atherosclerosis is the basic pathological process of many diseases, such as coronary atherosclerosis and stroke. Nutrients can affect the occurrence and development of atherosclerosis. At present, in nutrition science, the research on atherosclerosis focuses on which nutrients play an important role in its prevention strategy, and what are the possible mechanisms of its action. In the current study, the process of atherosclerosis can be affected by adjusting the proportion of nutrients in the diet. In this review, we pay attention to the effects of phytosterols, omega-3-polyunsaturated fatty acids, polyphenol, vitamin, and other nutrients on atherosclerosis, pay attention to their current epidemiological status, current nutritional research results, and prevention or a possible mechanism to reduce the risk of development of atherosclerosis. So that more personalized nutritional approaches may be more effective in terms of nutritional intervention responses to atherosclerosis.
Collapse
Affiliation(s)
- Taotao Wei
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Junnan Liu
- Lanzhou University Second Hospital, The Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Demei Zhang
- Lanzhou University Second Hospital, The Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xiaomei Wang
- Lanzhou University Second Hospital, The Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Guangling Li
- Lanzhou University Second Hospital, The Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ruchao Ma
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Gang Chen
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Xin Lin
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Xueya Guo
- Department of Cardiology, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China.,Lanzhou University Second Hospital, The Second Clinical Medical College of Lanzhou University, Lanzhou, China
| |
Collapse
|
5
|
Song L, Chen RZ, Zhao XX, Sheng ZX, Zhou P, Liu C, Li JN, Zhou JY, Wang Y, Zhao HJ, Yan HB. Mean Platelet Volume/Platelet Count Ratio and Culprit Plaque Morphologies: An Optical Coherence Tomography Study in Patients with ST Segment Elevation Myocardial Infarction. J Cardiovasc Transl Res 2021; 14:1093-1103. [PMID: 33649987 DOI: 10.1007/s12265-021-10113-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/16/2021] [Indexed: 10/22/2022]
Abstract
This study aimed to investigate the predictive value of mean platelet volume/platelet count ratio (MPR) for coronary plaque features in patients with ST segment elevation myocardial infarction (STEMI). A total of 275 STEMI patients undergoing preintervention optical coherence tomography examination were included, with 142 categorized as plaque rupture (PR) and 133 as plaque erosion (PE). Multivariable logistic regression showed higher MPR was an independent predictor of PR (tertile 3 vs tertile 1, odds ratio: 6.257, 95% confidence interval: 1.586-24.686, P = 0.009). MPR showed better diagnostic performance than other platelet indices. The optimal MPR threshold for diagnosing PR was 0.0473 (sensitivity: 0.721, specificity: 0.647). When added to models of established risk factors, MPR significantly improved the predictive accuracy of PR (area under the curve: 0.767 vs 0.722, P difference = 0.004). In conclusion, for STEMI patients, MPR was an independent predictor of PR and improved diagnostic performance for PR.
Collapse
Affiliation(s)
- Li Song
- Coronary Heart Disease Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, No. 167, Beilishi Road, Beijing, 100037, China
| | - Run-Zhen Chen
- Coronary Heart Disease Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, No. 167, Beilishi Road, Beijing, 100037, China
| | - Xiao-Xiao Zhao
- Coronary Heart Disease Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, No. 167, Beilishi Road, Beijing, 100037, China
| | - Zhao-Xue Sheng
- Coronary Heart Disease Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, No. 167, Beilishi Road, Beijing, 100037, China
| | - Peng Zhou
- Coronary Heart Disease Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, No. 167, Beilishi Road, Beijing, 100037, China
| | - Chen Liu
- Coronary Heart Disease Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, No. 167, Beilishi Road, Beijing, 100037, China
| | - Jian-Nan Li
- Coronary Heart Disease Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, No. 167, Beilishi Road, Beijing, 100037, China
| | - Jin-Ying Zhou
- Coronary Heart Disease Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, No. 167, Beilishi Road, Beijing, 100037, China
| | - Ying Wang
- Coronary Heart Disease Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, No. 167, Beilishi Road, Beijing, 100037, China
| | - Han-Jun Zhao
- Coronary Heart Disease Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, No. 167, Beilishi Road, Beijing, 100037, China
| | - Hong-Bing Yan
- Coronary Heart Disease Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, No. 167, Beilishi Road, Beijing, 100037, China.
- Department of Cardiology, Fuwai Hospital Chinese Academy of Medical Sciences, No. 12, Langshan Road, Shenzhen, 518000, China.
| |
Collapse
|
6
|
Gamboa R, Jaramillo-Estrella MJ, Martínez-Alvarado MDR, Soto ME, Torres-Paz YE, Gonzalo-Calvo DD, Del Valle-Mondragón L, López-Marure R, Llorente-Cortés VC, Huesca-Gómez C. Monocyte Low-Density Lipoprotein Receptor-Related Protein 1 (LRP1) Expression Correlates with cIMT in Mexican Hypertensive Patients. Arq Bras Cardiol 2021; 116:56-65. [PMID: 33566965 PMCID: PMC8159500 DOI: 10.36660/abc.20190535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 03/16/2020] [Indexed: 12/26/2022] Open
Abstract
Fundamento A hipertensão arterial (HTA) representa um grande fator de risco de morbidade e mortalidade cardiovascular. Ainda não se sabe que mecanismos moleculares específicos estão associados ao desenvolvimento de hipertensão essencial. Objetivo Neste trabalho, analisamos a associação entre expressão mRNA de monócito LRP1, expressão de proteína LRP1, e espessura íntima-média de carótida (EIMC) de pacientes com hipertensão essencial. Métodos A expressão mRNA de monócito LRP1 e os níveis de proteína e EIMC foram quantificados em 200 indivíduos mexicanos, sendo 91 normotensos (NT) e 109 hipertensos (HT) A significância estatística foi definida em p < 0,05. Resultados O grupo de pacientes HT tinha EIMC maior altamente significativa em comparação com os pacientes NT (p = 0,002), e isso está relacionado ao aumento na expressão mRNA de LRP1 (6,54 versus. 2,87) (p = 0,002) e expressão de proteína LRP1 (17,83 versus 6,25), respectivamente (p = 0,001). Essas diferenças foram mantidas mesmo quando dividimos nossos grupos de estudo, levando em consideração apenas aqueles que apresentavam dislipidemia na expressão de mRNA (p = 0,041) e de proteínas (p < 0,001). Também se identificou que a indução de LRP1 mediada por LRP1 em monócitos em de maneira dependente de dose e tempo, com diferença significativa em NT versus HT (0,195 ± 0,09 versus 0,226 ± 0,12, p = 0,046). Conclusão Foi encontrado um aumento em EIMC em indivíduos com hipertensão, associada a expressões de proteína LRP1 e mRNA mais altas em monócitos, independente da presença de dislipidemia em pacientes HT. Esses resultados que a upregulation de LRP1 em monócitos de pacientes hipertensos mexicanos poderia estar envolvida na diminuição da EIMC. (Arq Bras Cardiol. 2021; 116(1):56-65)
Collapse
Affiliation(s)
- Ricardo Gamboa
- Instituto Nacional de Cardiologia Ignacio Chavez, Ciudad de México - México
| | | | | | - Maria Elena Soto
- Instituto Nacional de Cardiologia Ignacio Chavez, Ciudad de México - México
| | | | - David de Gonzalo-Calvo
- Hospital de Sant Pau - Lipids and Cardiovascular Pathology Group, Barcelona, Catalunya - Espanha
| | | | | | | | | |
Collapse
|
7
|
Gąsecka A, Rogula S, Szarpak Ł, Filipiak KJ. LDL-Cholesterol and Platelets: Insights into Their Interactions in Atherosclerosis. Life (Basel) 2021; 11:39. [PMID: 33440673 PMCID: PMC7826814 DOI: 10.3390/life11010039] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/23/2022] Open
Abstract
Atherosclerosis and its complications, including acute coronary syndromes, are the major cause of death worldwide. The two most important pathophysiological mechanisms underlying atherosclerosis include increased platelet activation and increased low-density lipoproteins (LDL) concentration. In contrast to LDL, oxidized (ox)-LDL have direct pro-thrombotic properties by functional interactions with platelets, leading to platelet activation and favoring thrombus formation. In this review, we summarize the currently available evidence on the interactions between LDL-cholesterol and platelets, which are based on (i) the presence of ox-LDL-binding sites on platelets, (ii) generation of ox-LDL by platelets and (iii) the role of activated platelets and ox-LDL in atherosclerosis. In addition, we elaborate on the clinical implications of these interactions, including development of the new therapeutic possibilities. The ability to understand and modulate mechanisms governing interactions between LDL-cholesterol and platelets may offer new treatment strategies for atherosclerosis prevention.
Collapse
Affiliation(s)
- Aleksandra Gąsecka
- Department of Cardiology, Medical University of Warsaw, 02-091 Warsaw, Poland; (S.R.); (K.J.F.)
| | - Sylwester Rogula
- Department of Cardiology, Medical University of Warsaw, 02-091 Warsaw, Poland; (S.R.); (K.J.F.)
| | - Łukasz Szarpak
- Bialystok Oncology Center, 15-027, Bialystok, Poland;
- Maria Sklodowska-Curie Medical Academy in Warsaw, 03-411 Warsaw, Poland
| | - Krzysztof J. Filipiak
- Department of Cardiology, Medical University of Warsaw, 02-091 Warsaw, Poland; (S.R.); (K.J.F.)
| |
Collapse
|
8
|
20( S)-Protopanaxadiol Saponins Mainly Contribute to the Anti-Atherogenic Effects of Panax notoginseng in ApoE Deficient Mice. Molecules 2019; 24:molecules24203723. [PMID: 31623159 PMCID: PMC6832312 DOI: 10.3390/molecules24203723] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis mainly contributes to cardiovascular disease, a leading cause of global morbidity and mortality. Panax notoginseng saponins (PNS) are proved to therapeutically attenuate the formation of atherosclerotic lesions. According to different sapogenin, PNS are generally classified into 20(S)-protopanaxadiol saponins (PDS) and 20(S)-protopanaxatriol saponins (PTS). It was reported that PDS and PTS might exert diverse or even antagonistic bioactivities. In this study, the probable effects of PTS and PDS on atherosclerotic development were investigated and compared in ApoE-deficient mice (ApoE-/-). Male mice were gavaged daily by PNS (200 mg/kg/d), PTS (100 mg/kg/d), or PDS (100 mg/kg/d), respectively for eight weeks. The treatments of PNS and PDS, but not PTS, showed decreased atherosclerotic lesions in the entire aorta by 45.6% and 41.3%, respectively, as evaluated by an en-face method. Both PNS and PDS can improve the plaque vulnerability, as evidenced by the increased collagen fiber, increased expression of α- smooth muscle actin (α-SMA), and decreased Cluster of differentiation 14 (CD14). Additionally, PDS also inhibit the nuclear factor kappa B (NF-κB)-mediated vascular inflammation in the aorta. In conclusion, PDS, but not PTS, might mainly contribute to the anti-atherosclerosis of P. notoginseng.
Collapse
|
9
|
Marchio P, Guerra-Ojeda S, Vila JM, Aldasoro M, Victor VM, Mauricio MD. Targeting Early Atherosclerosis: A Focus on Oxidative Stress and Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8563845. [PMID: 31354915 PMCID: PMC6636482 DOI: 10.1155/2019/8563845] [Citation(s) in RCA: 384] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/10/2019] [Accepted: 05/19/2019] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is a chronic vascular inflammatory disease associated to oxidative stress and endothelial dysfunction. Oxidation of low-density lipoprotein (LDL) cholesterol is one of the key factors for the development of atherosclerosis. Nonoxidized LDL have a low affinity for macrophages, so they are not themselves a risk factor. However, lowering LDL levels is a common clinical practice to reduce oxidation and the risk of major events in patients with cardiovascular diseases (CVD). Atherosclerosis starts with dysfunctional changes in the endothelium induced by disturbed shear stress which can lead to endothelial and platelet activation, adhesion of monocytes on the activated endothelium, and differentiation into proinflammatory macrophages, which increase the uptake of oxidized LDL (oxLDL) and turn into foam cells, exacerbating the inflammatory signalling. The atherosclerotic process is accelerated by a myriad of factors, such as the release of inflammatory chemokines and cytokines, the generation of reactive oxygen species (ROS), growth factors, and the proliferation of vascular smooth muscle cells. Inflammation and immunity are key factors for the development and complications of atherosclerosis, and therefore, the whole atherosclerotic process is a target for diagnosis and treatment. In this review, we focus on early stages of the disease and we address both biomarkers and therapeutic approaches currently available and under research.
Collapse
Affiliation(s)
- Patricia Marchio
- Department of Physiology, Faculty of Medicine and Odontology, Universitat de Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - Sol Guerra-Ojeda
- Department of Physiology, Faculty of Medicine and Odontology, Universitat de Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - José M. Vila
- Department of Physiology, Faculty of Medicine and Odontology, Universitat de Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - Martín Aldasoro
- Department of Physiology, Faculty of Medicine and Odontology, Universitat de Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - Victor M. Victor
- Department of Physiology, Faculty of Medicine and Odontology, Universitat de Valencia and Institute of Health Research INCLIVA, Valencia, Spain
- Service of Endocrinology, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Maria D. Mauricio
- Department of Physiology, Faculty of Medicine and Odontology, Universitat de Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| |
Collapse
|
10
|
Pang J, Hu P, Wang J, Jiang J, Lai J. Vorapaxar stabilizes permeability of the endothelial barrier under cholesterol stimulation via the AKT/JNK and NF‑κB signaling pathways. Mol Med Rep 2019; 19:5291-5300. [PMID: 31059055 PMCID: PMC6522885 DOI: 10.3892/mmr.2019.10211] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 03/15/2019] [Indexed: 01/20/2023] Open
Abstract
Atherosclerosis (AS) is an inflammatory disease that occurs in the arterial wall and is characterized by progressive lipid accumulation within the intima of large arteries, leading to the dysfunction of endothelial cells and further destruction of the endothelial barrier and vascular tone. Arterial intima injury accelerates the adhesion and activation of platelets at the injury site. The activation of platelets results in the secretion of growth factors, leading to the migration and proliferation of vascular smooth muscle cells (VSMCs), promoting the formation of plaque, resulting in the formation of thrombus. The present study found that vorapaxar could alleviate the inflammatory response induced by a high concentration of cholesterol stimulation and increase the release of nitric oxide (NO) via the protein kinase B (AKT) signaling pathway and regulation of the intracellular concentration of Ca2+ ([Ca2+]i). We also found that vorapaxar could reduce the damage of DNA caused by cholesterol stimulation and regulate the cell cycle via the AKT/JNK signaling pathway and its downstream molecules glycogen synthase kinase 3β (GSK‑3β) and connexin 43, maintaining the integrity of the endothelial barrier and proliferation of endothelial cells, serving a protective role in endothelial cells.
Collapse
Affiliation(s)
- Jianliang Pang
- Department of Vascular Surgery, Tiantai People's Hospital of Zhejiang Province, Taizhou, Zhejiang 317200, P.R. China
| | - Peiyang Hu
- Department of Surgery, Tiantai People's Hospital of Zhejiang Province, Taizhou, Zhejiang 317200, P.R. China
| | - Junwei Wang
- Department of Internal Medicine, Tiantai People's Hospital of Zhejiang Province, Taizhou, Zhejiang 317200, P.R. China
| | - Jinsong Jiang
- Department of Vascular Surgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Jifu Lai
- Department of Vascular Surgery, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
11
|
Nutrition and Cardiovascular Health. Int J Mol Sci 2018; 19:ijms19123988. [PMID: 30544955 PMCID: PMC6320919 DOI: 10.3390/ijms19123988] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 11/30/2018] [Accepted: 12/06/2018] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in Western countries, representing almost 30% of all deaths worldwide. Evidence shows the effectiveness of healthy dietary patterns and lifestyles for the prevention of CVD. Furthermore, the rising incidence of CVD over the last 25 years has become a public health priority, especially the prevention of CVD (or cardiovascular events) through lifestyle interventions. Current scientific evidence shows that Western dietary patterns compared to healthier dietary patterns, such as the ‘Mediterranean diet’ (MeDiet), leads to an excessive production of proinflammatory cytokines associated with a reduced synthesis of anti-inflammatory cytokines. In fact, dietary intervention allows better combination of multiple foods and nutrients. Therefore, a healthy dietary pattern shows a greater magnitude of beneficial effects than the potential effects of a single nutrient supplementation. This review aims to identify potential targets (food patterns, single foods, or individual nutrients) for preventing CVD and quantifies the magnitude of the beneficial effects observed. On the other hand, we analyze the possible mechanisms implicated in this cardioprotective effect.
Collapse
|
12
|
Ma S, Wang S, Li M, Zhang Y, Zhu P. The effects of pigment epithelium-derived factor on atherosclerosis: putative mechanisms of the process. Lipids Health Dis 2018; 17:240. [PMID: 30326915 PMCID: PMC6192115 DOI: 10.1186/s12944-018-0889-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 10/03/2018] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease (CVD) is a leading cause of death worldwide. Atherosclerosis is believed to be the major cause of CVD, characterized by atherosclerotic lesion formation and plaque disruption. Although remarkable advances in understanding the mechanisms of atherosclerosis have been made, the application of these theories is still limited in the prevention and treatment of atherosclerosis. Therefore, novel and effective strategies to treat high-risk patients with atherosclerosis require further development. Pigment epithelium-derived factor (PEDF), a glycoprotein with anti-inflammatory, anti-oxidant, anti-angiogenic, anti-thrombotic and anti-tumorigenic properties, is of considerable interest in the prevention of atherosclerosis. Accumulating research has suggested that PEDF exerts beneficial effects on atherosclerotic lesions and CVD patients. Our group, along with colleagues, has demonstrated that PEDF may be associated with acute coronary syndrome (ACS), and that the polymorphisms of rs8075977 of PEDF are correlated with coronary artery disease (CAD). Moreover, we have explored the anti-atherosclerosis mechanisms of PEDF, showing that oxidized-low density lipoprotein (ox-LDL) reduced PEDF concentrations through the upregulation of reactive oxygen species (ROS), and that D-4F can protect endothelial cells against ox-LDL-induced injury by preventing the downregulation of PEDF. Additionally, PEDF might alleviate endothelial injury by inhibiting the Wnt/β-catenin pathway. These data suggest that PEDF may be a novel therapeutic target for the treatment of atherosclerosis. In this review, we will summarize the role of PEDF in the development of atherosclerosis, focusing on endothelial dysfunction, inflammation, oxidative stress, angiogenesis and cell proliferation. We will also discuss its promising therapeutic implications for atherosclerosis.
Collapse
Affiliation(s)
- Shouyuan Ma
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Shuxia Wang
- Department of Cadre Clinic, Chinese PLA General Hospital, Beijing, 100853, China
| | - Man Li
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yan Zhang
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Ping Zhu
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
13
|
Effects of fermented Sorghum bicolor L. Moench extract on inflammation and thickness in a vascular cell and atherosclerotic mice model. J Nat Med 2018; 73:34-46. [PMID: 30066240 DOI: 10.1007/s11418-018-1231-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/24/2018] [Indexed: 10/28/2022]
Abstract
Atherosclerosis is a major cause of coronary heart disease. As a result of the development of atherosclerotic lesions, the walls of blood vessels become thicker and inhibit blood circulation. Atherosclerosis is caused by a high-fat diet and vascular injury. Chronic arterial inflammation plays an important role in the pathogenesis of atherosclerosis. In particular, secretion of the pro-atherogenic cytokine tumor necrosis factor-α induces expression of endothelial adhesion molecules including P-selectin, vascular cell adhesion molecule 1 (VCAM-1), and intercellular adhesion molecule 1 (ICAM-1), which mediate attachment of circulating monocytes and lymphocytes. In this study, we examined the anti-atherosclerotic effect of sorghum, which is known to have anti-oxidant and anti-inflammatory activity. A 50% ethanol extract of Sorghum bicolor L. Moench fermented with Aspergillus oryzae NK (fSBE) was used for experiments. In vitro expression of endothelial adhesion molecules VCAM-1 and ICAM-1 and pro-inflammatory factor cyclooxygenase-2 was significantly decreased and that of the anti-atherogenic factor heme oxygenase-1 significantly increased by fSBE (P < 0.05). At the in vivo level, we examined fat droplets of liver tissue, and aortic thickness via histological analysis, and determined the blood lipid profile through chemical analysis. fSBE at a dose of 200 mg/kg significantly improved blood and vascular health (P < 0.05). Taken together, these results demonstrate that fSBE has potential as a therapeutic anti-atherosclerotic agent.
Collapse
|
14
|
Jung SH, Han JH, Park HS, Lee JJ, Yang SY, Kim YH, Heo KS, Myung CS. Inhibition of Collagen-Induced Platelet Aggregation by the Secobutanolide Secolincomolide A from Lindera obtusiloba Blume. Front Pharmacol 2017; 8:560. [PMID: 28878675 PMCID: PMC5572288 DOI: 10.3389/fphar.2017.00560] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 08/08/2017] [Indexed: 11/13/2022] Open
Abstract
Atherothrombosis is one of the main underlying cause of cardiovascular diseases. In addition to treating atherothrombosis with antithrombotic agents, there is growing interest in the role of natural food products and biologically active ingredients for the prevention and treatment of cardiovascular diseases. This study aimed to investigate the effect of secolincomolide A (3) isolated from Lindera obtusiloba Blume on platelet activity and identify possible signaling pathways. In our study, the antiplatelet activities of 3 were measured by collagen-induced platelet aggregation and serotonin secretion in freshly isolated rabbit platelets. Interestingly, 3 effectively inhibited the collagen-induced platelet aggregation and serotonin secretion via decreased production of diacylglycerol, arachidonic acid, and cyclooxygenase-mediated metabolites such as thromboxane B2 (TXB2), and prostaglandin D2 (PGD2). In accordance with the antiplatelet activities, 3 prolonged bleeding time and attenuated FeCl3-induced thrombus formation in arterial thrombosis model. Notably, 3 abolished the phosphorylation of phospholipase Cγ2 (PLCγ2), spleen tyrosine kinase (Syk), p47, extracellular signal-regulated kinase 1/2 (ERK1/2), protein kinase B (Akt) by inhibiting the activation of the collagen receptor, glycoprotein VI (GPVI). Taken together, our results indicate the therapeutic potential of 3 in antiplatelet action through inhibition of the GPVI-mediated signaling pathway and the COX-1-mediated AA metabolic pathways.
Collapse
Affiliation(s)
- Sang-Hyuk Jung
- Department of Pharmacology, College of Pharmacy, Chungnam National UniversityDaejeon, South Korea
| | - Joo-Hui Han
- Department of Pharmacology, College of Pharmacy, Chungnam National UniversityDaejeon, South Korea
| | - Hyun-Soo Park
- Department of Pharmacology, College of Pharmacy, Chungnam National UniversityDaejeon, South Korea
| | - Jung-Jin Lee
- Korean Medicine Application Center, Korea Institute of Oriental MedicineDaegu, South Korea
| | - Seo Young Yang
- Department of Natural Product Chemistry, College of Pharmacy, Chungnam National UniversityDaejeon, South Korea
| | - Young Ho Kim
- Department of Natural Product Chemistry, College of Pharmacy, Chungnam National UniversityDaejeon, South Korea.,Institute of Drug Research and Development, Chungnam National UniversityDaejeon, South Korea
| | - Kyung-Sun Heo
- Department of Pharmacology, College of Pharmacy, Chungnam National UniversityDaejeon, South Korea
| | - Chang-Seon Myung
- Department of Pharmacology, College of Pharmacy, Chungnam National UniversityDaejeon, South Korea.,Institute of Drug Research and Development, Chungnam National UniversityDaejeon, South Korea
| |
Collapse
|
15
|
Hwang KA, Hwang YJ, Hwang IG, Song J, Cho SM. Cholesterol-lowering effect of astringent persimmon fruits ( Diospyros kaki Thunb.) extracts. Food Sci Biotechnol 2017; 26:229-235. [PMID: 30263533 DOI: 10.1007/s10068-017-0031-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/20/2016] [Accepted: 11/16/2016] [Indexed: 01/04/2023] Open
Abstract
This study aimed to investigate the effects of ethanol extract of astringent persimmon on antioxidant activity, cholesterol, 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase activity, and mRNA expression of cholesterol metabolism-related genes in human hepatoma cell line (HepG2 cells). In the results, DPPH and ABTS radical scavenging activity showed that the different types cultivars of astringent persimmon was similar to Vitamin C as positive control. However, there are not significant differences among samples. In addition, our results showed that cholesterol amounts and HMG-CoA reductase activity were inhibited by astringent persimmon in HepG2 cells. Further, treatment with astringent persimmon upregulated the expression of LDL receptor and SREBP-2, and also increased the level of HDL-associated ABCA1. Taken together, our results indicate that astringent persimmon regulate cholesterol accumulation by inhibiting the oxidative stress and controlling the levels of LDL & HDLassociated gene.
Collapse
Affiliation(s)
- Kyung-A Hwang
- Department of Agrofood Resources, National Academy of Agricultural Science, RDA, Wanju, Jeonbuk, 55365 Korea
| | - Yu-Jin Hwang
- Department of Agrofood Resources, National Academy of Agricultural Science, RDA, Wanju, Jeonbuk, 55365 Korea
| | - In Guk Hwang
- Department of Agrofood Resources, National Academy of Agricultural Science, RDA, Wanju, Jeonbuk, 55365 Korea
| | - Jin Song
- Department of Agrofood Resources, National Academy of Agricultural Science, RDA, Wanju, Jeonbuk, 55365 Korea
| | - Soo Muk Cho
- Department of Agrofood Resources, National Academy of Agricultural Science, RDA, Wanju, Jeonbuk, 55365 Korea
| |
Collapse
|
16
|
Chinese Herbal Compounds for the Prevention and Treatment of Atherosclerosis: Experimental Evidence and Mechanisms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:752610. [PMID: 26089946 PMCID: PMC4451781 DOI: 10.1155/2015/752610] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/15/2014] [Indexed: 12/21/2022]
Abstract
Atherosclerosis is a leading cause of disability and death worldwide. Research into the disease has led to many compelling hypotheses regarding the pathophysiology of atherosclerotic lesion formation and the resulting complications such as myocardial infarction and stroke. Herbal medicine has been widely used in China as well as other Asian countries for the treatment of cardiovascular diseases for hundreds of years; however, the mechanisms of action of Chinese herbal medicine in the prevention and treatment of atherosclerosis have not been well studied. In this review, we briefly describe the mechanisms of atherogenesis and then summarize the research that has been performed in recent years regarding the effectiveness and mechanisms of antiatherogenic Chinese herbal compounds in an attempt to build a bridge between traditional Chinese medicine and cellular and molecular cardiovascular medicine.
Collapse
|
17
|
Apple Peel Supplemented Diet Reduces Parameters of Metabolic Syndrome and Atherogenic Progression in ApoE-/- Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:918384. [PMID: 26075004 PMCID: PMC4449944 DOI: 10.1155/2015/918384] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 10/03/2014] [Accepted: 10/04/2014] [Indexed: 11/18/2022]
Abstract
Cardiovascular Diseases (CVD) represent about 30% of all causes of death worldwide. The development of CVD is related in many cases with the previous existence of metabolic syndrome (MS). It is known that apple consumption has a cardiovascular protecting effect, containing phenolic compounds with antioxidant effect, which are concentrated in the fruit peel. The objective of this study was to test the effect of apple peel consumption in a murine model of MS and apoE−/− mice. Apple supplemented diets reduced the biochemical parameters (glycaemia, total cholesterol, HDL-cholesterol, LDL-cholesterol, ureic nitrogen, triglycerides, insulin, and asymmetric dimethylarginine (ADMA)) of MS model in CF1 mice significantly. The model apoE−/− mouse was used to evaluate the capacity of the apple peel to revert the progression of the atherogenesis. FD with HAP reverts cholesterol significantly and slows down the progression of the plate diminishing the cholesterol accumulation area. With these results, it can be concluded that the consumption of apple peel reduces several MS parameters and the atherogenic progression in mice.
Collapse
|
18
|
Mosawy S, Jackson DE, Woodman OL, Linden MD. The flavonols quercetin and 3',4'-dihydroxyflavonol reduce platelet function and delay thrombus formation in a model of type 1 diabetes. Diab Vasc Dis Res 2014; 11:174-81. [PMID: 24623318 DOI: 10.1177/1479164114524234] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Diabetes is associated with increased cardiovascular risk. We have recently shown that the naturally occurring flavonol quercetin (Que) or the synthetic flavonol 3',4'-dihydroxyflavonol (DiOHF) inhibits platelet function and delays thrombus formation in healthy mice. Therefore, the aim of this study was to investigate the effect of Que or DiOHF treatment on platelet function and ferric chloride-induced carotid artery thrombosis in a mouse model of type 1 diabetes. Diabetic mice treated with Que or DiOHF maintained blood flow at a significantly higher level than untreated diabetic mice at the end of the recording period. In addition, treatment with Que or DiOHF significantly reduced diabetes-induced platelet hyper-aggregability in response to platelet agonist stimulation. Furthermore, treatment with Que or DiOHF significantly inhibited dense, but not alpha, granule exocytosis in diabetic and control mice. Our demonstration that flavonols delay thrombus formation in diabetes suggests a potential clinical role for these compounds in anti-platelet therapy.
Collapse
Affiliation(s)
- Sapha Mosawy
- School of Medical Sciences, RMIT University, Melbourne, VIC, Australia
| | | | | | | |
Collapse
|
19
|
Overview of platelet physiology: its hemostatic and nonhemostatic role in disease pathogenesis. ScientificWorldJournal 2014; 2014:781857. [PMID: 24729754 PMCID: PMC3960550 DOI: 10.1155/2014/781857] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 11/10/2013] [Indexed: 12/23/2022] Open
Abstract
Platelets are small anucleate cell fragments that circulate in blood playing crucial role in managing vascular integrity and regulating hemostasis. Platelets are also involved in the fundamental biological process of chronic inflammation associated with disease pathology. Platelet indices like mean platelets volume (MPV), platelets distributed width (PDW), and platelet crit (PCT) are useful as cheap noninvasive biomarkers for assessing the diseased states. Dynamic platelets bear distinct morphology, where α and dense granule are actively involved in secretion of molecules like GPIIb , IIIa, fibrinogen, vWf, catecholamines, serotonin, calcium, ATP, ADP, and so forth, which are involved in aggregation. Differential expressions of surface receptors like CD36, CD41, CD61 and so forth have also been quantitated in several diseases. Platelet clinical research faces challenges due to the vulnerable nature of platelet structure functions and lack of accurate assay techniques. But recent advancement in flow cytometry inputs huge progress in the field of platelets study. Platelets activation and dysfunction have been implicated in diabetes, renal diseases, tumorigenesis, Alzheimer's, and CVD. In conclusion, this paper elucidates that platelets are not that innocent as they keep showing and thus numerous novel platelet biomarkers are upcoming very soon in the field of clinical research which can be important for predicting and diagnosing disease state.
Collapse
|
20
|
Badimon L, Padró T, Vilahur G. Atherosclerosis, platelets and thrombosis in acute ischaemic heart disease. EUROPEAN HEART JOURNAL-ACUTE CARDIOVASCULAR CARE 2013; 1:60-74. [PMID: 24062891 DOI: 10.1177/2048872612441582] [Citation(s) in RCA: 246] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 01/25/2012] [Indexed: 12/17/2022]
Abstract
Atherosclerosis is the underlying reason for nearly all causes of coronary artery disease and peripheral arterial disease and many cases of stroke. Atherosclerosis is a systemic inflammatory process characterised by the accumulation of lipids and macrophages/lymphocytes within the intima of large arteries. The deposition of these blood borne materials and the subsequent thickening of the wall often significantly compromise the residual lumen leading to ischaemic events distal to the arterial stenosis. However, these initial fatty streak lesions may also evolve into vulnerable plaques susceptible to rupture or erosion. Plaque disruption initiates both platelet adhesion and aggregation on the exposed vascular surface and the activation of the clotting cascade leading to the so-called atherothrombotic process. Yet, platelets have also been shown to be transporters of regulatory molecules (micro-RNA), to drive the inflammatory response and mediate atherosclerosis progression. Here we discuss our current understanding of the pathophysiological mechanisms involved in atherogenesis - from fatty streaks to complex and vulnerable atheromas - and highlight the molecular machinery used by platelets to regulate the atherogenic process, thrombosis and its clinical implications.
Collapse
Affiliation(s)
- Lina Badimon
- Cardiovascular Research Center, CSIC-ICCC, HSCSP, Barcelona, Spain ; CIBER OBN -Instituto Salud Carlos III, Madrid, Spain ; Cardiovascular Research Chair, UAB, Barcelona, Spain
| | | | | |
Collapse
|
21
|
Haimeur A, Messaouri H, Ulmann L, Mimouni V, Masrar A, Chraibi A, Tremblin G, Meskini N. Argan oil prevents prothrombotic complications by lowering lipid levels and platelet aggregation, enhancing oxidative status in dyslipidemic patients from the area of Rabat (Morocco). Lipids Health Dis 2013; 12:107. [PMID: 23870174 PMCID: PMC3751630 DOI: 10.1186/1476-511x-12-107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/04/2013] [Indexed: 11/10/2022] Open
Abstract
Background It is now established that patients with hyperlipidemia have a high risk of atherosclerosis and thrombotic complications, which are two important events responsible for the onset and progression of cardiovascular disease. In the context of managing dyslipidemia by means of dietary advice based on the consumption of argan oil, we wanted to investigate the effect of virgin argan oil on plasma lipids, and for the first time, on the platelet hyperactivation and oxidative status associated with dyslipidemia. This study concerns patients recruited in the area of Rabat in Morocco. Methods 39 dyslipidemic (79% women) patients were recruited for our study in the area of Rabat in Morocco. They were randomly assigned to the two following groups: the argan group, in which the subjects consumed 25 mL/day of argan oil at breakfast for 3 weeks, and the control group in which argan oil was replaced by butter. Results After a 3-week consumption period, blood total cholesterol was significantly lower in the argan oil group, as was LDL cholesterol (23.8% and 25.6% lower, respectively). However, the HDL cholesterol level had increased by 26% at the end of the intervention period compared to baseline. Interestingly, in the argan oil group thrombin-induced platelet aggregation was lower, and oxidative status was enhanced as a result of lower platelet MDA and higher GPx activity, respectively. Conclusions In conclusion, our results, even if it is not representative of the Moroccan population, show that argan oil can prevent the prothrombotic complications associated with dyslipidemia, which are a major risk factor for cardiovascular disease.
Collapse
Affiliation(s)
- Adil Haimeur
- IUT Département Génie Biologique, Université du Maine, PRES L'UNAM, EA 2160 MMS (Mer, Molécules, Santé), Faculté des Sciences et Techniques, Le Mans, Laval, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Badimon L, Vilahur G. LDL-cholesterol versus HDL-cholesterol in the atherosclerotic plaque: inflammatory resolution versus thrombotic chaos. Ann N Y Acad Sci 2012; 1254:18-32. [DOI: 10.1111/j.1749-6632.2012.06480.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
PALOMO IVÁN, FUENTES EDUARDO, PADRÓ TERESA, BADIMON LINA. Platelets and atherogenesis: Platelet anti-aggregation activity and endothelial protection from tomatoes (Solanum lycopersicum L.). Exp Ther Med 2012; 3:577-584. [PMID: 22969932 PMCID: PMC3438755 DOI: 10.3892/etm.2012.477] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 12/19/2011] [Indexed: 02/03/2023] Open
Abstract
In recent years, it has been shown that platelets are not only involved in the arterial thrombotic process, but also that they play an active role in the inflammatory process of atherogenesis from the beginning. The interaction between platelets and endothelial cells occurs in two manners: activated platelets unite with intact endothelial cells, or platelets in resting adhere to activated endothelium. In this context, inhibition of the platelet function (adhesion/aggregation) could contribute to the prevention of atherothrombosis, the leading cause of cardiovascular morbidity. This can be achieved with antiplatelet agents. However, at the public health level, the level of primary prevention, a healthy diet has also been shown to exert beneficial effects. Among those elements of a healthy diet, the consumption of tomatoes (Solanum lycopersicum L.) stands out for its effect on platelet anti-aggregation activity and endothelial protection, which may be beneficial for cardiovascular health. This article briefly discusses the involvement of platelets in atherogenesis and the possible mechanisms of action provided by tomatoes for platelet anti-aggregation activity and endothelial protection.
Collapse
Affiliation(s)
- IVÁN PALOMO
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, University of Talca
- Centro de Estudios en Alimentos Procesados (CEAP), Conicyt-Regional, Gore Maule, Talca,
Chile
| | - EDUARDO FUENTES
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, University of Talca
- Centro de Estudios en Alimentos Procesados (CEAP), Conicyt-Regional, Gore Maule, Talca,
Chile
| | - TERESA PADRÓ
- Cardiovascular Research Center (CSIC-ICCC), Hospital de la Santa Creu i Sant Pau-Instituto de Investigación Biomédica Sant Pau, CiberOBENU, Instituto Carlos III, Barcelona,
Spain
| | - LINA BADIMON
- Cardiovascular Research Center (CSIC-ICCC), Hospital de la Santa Creu i Sant Pau-Instituto de Investigación Biomédica Sant Pau, CiberOBENU, Instituto Carlos III, Barcelona,
Spain
| |
Collapse
|
24
|
Park HB, Yang JH, Chung KH. Characterization of the cytokine profile of platelet rich plasma (PRP) and PRP-induced cell proliferation and migration: Upregulation of matrix metalloproteinase-1 and -9 in HaCaT cells. THE KOREAN JOURNAL OF HEMATOLOGY 2011; 46:265-73. [PMID: 22259633 PMCID: PMC3259519 DOI: 10.5045/kjh.2011.46.4.265] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 12/08/2011] [Accepted: 12/13/2011] [Indexed: 11/29/2022]
Abstract
Background The underlying rationale of platelet rich plasma (PRP) therapy is that an injection of concentrated PRP at the site of injury may promote tissue repair via cytokine release from platelets. The molecular mechanisms of PRP therapy in the skin wound healing process are not well understood at present, and would benefit from clarification. Methods PRP was stimulated with angonists for 5 min, and cytokine profile analysis was performed. To investigate the wound healing activity of PRP, cell proliferation and migration analyses were performed in skin cells. The effects of PRP were analyzed on the expression and activity of matrix metalloproteinase (MMP)-1, -2, -9, and the activation of transcription factors. Results Thrombin was found to be a strong stimulator of PRP activation to release growth factors and chemokines. PRP induced cell proliferation and migration in HUVECs, HaCaT cells, and HDFs, as well as MMP-1and MMP-9 expression in HaCaT cells, but PRP did not have a significant effect on the expression or activity of MMPs in HDFs. The transcription factors, including signal transducer and activator of transcription-3 (STAT-3) were found to be phosphorylated following PRP treatment in HaCaT cells. Conclusion In this study, we have identified the cytokine profile of activated PRP after agonist stimulation. We have shown that PRP plays an active role in promoting the proliferation and migration of skin cells via the regulation of MMPs, and this may be applicable to the future development of PRP therapeutics to enhance skin wound healing.
Collapse
Affiliation(s)
- Hong-Bum Park
- Department of Applied Bioscience, College of Life Science, CHA University, Sungnam, Korea
| | | | | |
Collapse
|
25
|
Atherosclerosis and thrombosis: insights from large animal models. J Biomed Biotechnol 2011; 2011:907575. [PMID: 21274431 PMCID: PMC3022266 DOI: 10.1155/2011/907575] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 12/09/2010] [Indexed: 11/21/2022] Open
Abstract
Atherosclerosis and its thrombotic complications are responsible for remarkably high numbers of deaths. The combination of in vitro, ex vivo, and in vivo experimental approaches has largely contributed to a better understanding of the mechanisms underlying the atherothrombotic process. Indeed, different animal models have been implemented in atherosclerosis and thrombosis research in order to provide new insights into the mechanisms that have already been outlined in isolated cells and protein studies. Yet, although no model completely mimics the human pathology, large animal models have demonstrated better suitability for translation to humans. Indeed, direct translation from mice to humans should be taken with caution because of the well-reported species-related differences. This paper provides an overview of the available atherothrombotic-like animal models, with a particular focus on large animal models of thrombosis and atherosclerosis, and examines their applicability for translational research purposes as well as highlights species-related differences with humans.
Collapse
|
26
|
Franks ZG, Campbell RA, Weyrich AS, Rondina MT. Platelet-leukocyte interactions link inflammatory and thromboembolic events in ischemic stroke. Ann N Y Acad Sci 2010; 1207:11-7. [PMID: 20955420 DOI: 10.1111/j.1749-6632.2010.05733.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Stroke is a common and often fatal event, and, in survivors, it is accompanied by a high risk of recurrence. Ischemic stroke is associated with abnormal platelet activity and thrombus formation. In addition to their roles in the development of acute thrombi, platelets serve as a bridge for leukocytes within the vasculature. Myeloid leukocytes are critical mediators of atherosclerosis and atherothrombosis. Interactions between platelets and leukocytes foster an inflammatory and thrombotic milieu that influences lesion progression, facilitates plaque rupture, and triggers thrombus formation and embolization. Accordingly, antiplatelet agents, including aspirin, dipyridamole, and clopidogrel, are recommended therapies for most patients with a history of stroke. In addition to mitigating thrombosis, antiplatelet drugs have direct and indirect effects on inflammation, which may translate to enhanced clinical efficacy.
Collapse
Affiliation(s)
- Zechariah G Franks
- Program in Molecular Medicine, University of Utah, Salt Lake City, Utah, USA
| | | | | | | |
Collapse
|