1
|
Warwick RA, Riccitelli S, Heukamp AS, Yaakov H, Swain BP, Ankri L, Mayzel J, Gilead N, Parness-Yossifon R, Di Marco S, Rivlin-Etzion M. Top-down modulation of the retinal code via histaminergic neurons of the hypothalamus. SCIENCE ADVANCES 2024; 10:eadk4062. [PMID: 39196935 PMCID: PMC11352916 DOI: 10.1126/sciadv.adk4062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/21/2023] [Accepted: 07/24/2024] [Indexed: 08/30/2024]
Abstract
The mammalian retina is considered an autonomous circuit, yet work dating back to Ramon y Cajal indicates that it receives inputs from the brain. How such inputs affect retinal processing has remained unknown. We confirmed brain-to-retina projections of histaminergic neurons from the mouse hypothalamus. Histamine application ex vivo altered the activity of various retinal ganglion cells (RGCs), including direction-selective RGCs that gained responses to high motion velocities. These results were reproduced in vivo with optic tract recordings where histaminergic retinopetal axons were activated chemogenetically. Such changes could improve vision of fast-moving objects (e.g., while running), which fits with the known increased activity of histaminergic neurons during arousal. An antihistamine drug reduced optomotor responses to high-speed moving stimuli in freely moving mice. In humans, the same antihistamine nonuniformly modulated visual sensitivity across the visual field, indicating an evolutionary conserved function of the histaminergic system. Our findings expose a previously unappreciated role for brain-to-retina projections in modulating retinal function.
Collapse
Affiliation(s)
- Rebekah A. Warwick
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Serena Riccitelli
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Alina S. Heukamp
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Hadar Yaakov
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Bani Prasad Swain
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Lea Ankri
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Jonathan Mayzel
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Gilead
- Ophthalmology Department, Kaplan Medical Center, Rehovot, Israel
| | | | - Stefano Di Marco
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | | |
Collapse
|
2
|
Mabuchi Y, Cui X, Xie L, Kim H, Jiang T, Yapici N. Visual feedback neurons fine-tune Drosophila male courtship via GABA-mediated inhibition. Curr Biol 2023; 33:3896-3910.e7. [PMID: 37673068 PMCID: PMC10529139 DOI: 10.1016/j.cub.2023.08.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/09/2023] [Revised: 06/27/2023] [Accepted: 08/11/2023] [Indexed: 09/08/2023]
Abstract
Many species of animals use vision to regulate their social behaviors. However, the molecular and circuit mechanisms underlying visually guided social interactions remain largely unknown. Here, we show that the Drosophila ortholog of the human GABAA-receptor-associated protein (GABARAP) is required in a class of visual feedback neurons, lamina tangential (Lat) cells, to fine-tune male courtship. GABARAP is a ubiquitin-like protein that maintains cell-surface levels of GABAA receptors. We demonstrate that knocking down GABARAP or GABAAreceptors in Lat neurons or hyperactivating them induces male courtship toward other males. Inhibiting Lat neurons, on the other hand, delays copulation by impairing the ability of males to follow females. Remarkably, the fly GABARAP protein and its human ortholog share a strong sequence identity, and the fly GABARAP function in Lat neurons can be rescued by its human ortholog. Using in vivo two-photon imaging and optogenetics, we reveal that Lat neurons are functionally connected to neural circuits that mediate visually guided courtship pursuits in males. Our work identifies a novel physiological function for GABARAP in regulating visually guided courtship pursuits in Drosophila males. Reduced GABAA signaling has been linked to social deficits observed in the autism spectrum and bipolar disorders. The functional similarity between the human and the fly GABARAP raises the possibility of a conserved role for this gene in regulating social behaviors across insects and mammals.
Collapse
Affiliation(s)
- Yuta Mabuchi
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Xinyue Cui
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Lily Xie
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Haein Kim
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Tianxing Jiang
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Nilay Yapici
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
3
|
Mabuchi Y, Cui X, Xie L, Kim H, Jiang T, Yapici N. GABA-mediated inhibition in visual feedback neurons fine-tunes Drosophila male courtship. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525544. [PMID: 36747836 PMCID: PMC9900824 DOI: 10.1101/2023.01.25.525544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 01/27/2023]
Abstract
Vision is critical for the regulation of mating behaviors in many species. Here, we discovered that the Drosophila ortholog of human GABA A -receptor-associated protein (GABARAP) is required to fine-tune male courtship by modulating the activity of visual feedback neurons, lamina tangential cells (Lat). GABARAP is a ubiquitin-like protein that regulates cell-surface levels of GABA A receptors. Knocking down GABARAP or GABA A receptors in Lat neurons or hyperactivating them induces male courtship toward other males. Inhibiting Lat neurons, on the other hand, delays copulation by impairing the ability of males to follow females. Remarkably, the human ortholog of Drosophila GABARAP restores function in Lat neurons. Using in vivo two-photon imaging and optogenetics, we show that Lat neurons are functionally connected to neural circuits that mediate visually-guided courtship pursuits in males. Our work reveals a novel physiological role for GABARAP in fine-tuning the activity of a visual circuit that tracks a mating partner during courtship.
Collapse
Affiliation(s)
- Yuta Mabuchi
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA
| | - Xinyue Cui
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA
| | - Lily Xie
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA
| | - Haein Kim
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA
| | - Tianxing Jiang
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA
| | - Nilay Yapici
- Department of Neurobiology and Behavior, Cornell University, 14853, Ithaca, NY, USA
| |
Collapse
|
4
|
Harrison KR, Chervenak AP, Resnick SM, Reifler AN, Wong KY. Amacrine Cells Forming Gap Junctions With Intrinsically Photosensitive Retinal Ganglion Cells: ipRGC Types, Neuromodulator Contents, and Connexin Isoform. Invest Ophthalmol Vis Sci 2021; 62:10. [PMID: 33410914 PMCID: PMC7804497 DOI: 10.1167/iovs.62.1.10] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/14/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose Intrinsically photosensitive retinal ganglion cells (ipRGCs) signal not only centrally to non-image-forming visual centers of the brain but also intraretinally to amacrine interneurons through gap junction electrical coupling, potentially modulating image-forming retinal processing. We aimed to determine (1) which ipRGC types couple with amacrine cells, (2) the neuromodulator contents of ipRGC-coupled amacrine cells, and (3) whether connexin36 (Cx36) contributes to ipRGC-amacrine coupling. Methods Gap junction-permeable Neurobiotin tracer was injected into green fluorescent protein (GFP)-labeled ipRGCs in Opn4Cre/+; Z/EG mice to stain coupled amacrine cells, and immunohistochemistry was performed to reveal the neuromodulator contents of the Neurobiotin-stained amacrine cells. We also created Opn4Cre/+; Cx36flox/flox; Z/EG mice to knock out Cx36 in GFP-labeled ipRGCs and looked for changes in the number of ipRGC-coupled amacrine cells. Results Seventy-three percent of ipRGCs, including all six types (M1-M6), were tracer-coupled with amacrine somas 5.7 to 16.5 µm in diameter but not with ganglion cells. Ninety-two percent of the ipRGC-coupled somas were in the ganglion cell layer and the rest in the inner nuclear layer. Some ipRGC-coupled amacrine cells were found to accumulate serotonin or to contain nitric oxide synthase or neuropeptide Y. Knocking out Cx36 in M2 and M4 dramatically reduced the number of coupled somas. Conclusions Heterologous gap junction coupling with amacrine cells is widespread across mouse ipRGC types. ipRGC-coupled amacrine cells probably comprise multiple morphologic types and use multiple neuromodulators, suggesting that gap junctional ipRGC-to-amacrine signaling likely exerts diverse modulatory effects on retinal physiology. ipRGC-amacrine coupling is mediated partly, but not solely, by Cx36.
Collapse
Affiliation(s)
- Krystal R. Harrison
- Department of Molecular, Cellular, & Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
| | - Andrew P. Chervenak
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States
| | - Sarah M. Resnick
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States
| | - Aaron N. Reifler
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States
| | - Kwoon Y. Wong
- Department of Molecular, Cellular, & Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States
- Department of Ophthalmology & Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
5
|
Tang X, Tzekov R, Passaglia CL. Retinal cross talk in the mammalian visual system. J Neurophysiol 2016; 115:3018-29. [PMID: 26984426 DOI: 10.1152/jn.01137.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/21/2015] [Accepted: 03/13/2016] [Indexed: 11/22/2022] Open
Abstract
The existence and functional relevance of efferent optic nerve fibers in mammals have long been debated. While anatomical evidence for cortico-retinal and retino-retinal projections is substantial, physiological evidence is lacking, as efferent fibers are few in number and are severed in studies of excised retinal tissue. Here we show that interocular connections contribute to retinal bioelectrical activity in adult mammals. Full-field flash electroretinograms (ERGs) were recorded from one or both eyes of Brown-Norway rats under dark-adapted (n = 16) and light-adapted (n = 11) conditions. Flashes were confined to each eye by an opaque tube that blocked stray light. Monocular flashes evoked a small (5-15 μV) signal in the nonilluminated eye, which was named "crossed ERG" (xERG). The xERG began under dark-adapted conditions with a positive (xP1) wave that peaked at 70-90 ms and ended with slower negative (xN1) and positive (xP2) waves from 200 to 400 ms. xN1 was absent under light-adapted conditions. Injection of tetrodotoxin in either eye (n = 15) eliminated the xERG. Intraocular pressure elevation of the illuminated eye (n = 6) had the same effect. The treatments also altered the ERG b-wave in both eyes, and the alterations correlated with xERG disappearance. Optic nerve stimulation (n = 3) elicited a biphasic compound action potential in the nonstimulated nerve with 10- to 13-ms latency, implying that the xERG comes from slow-conducting (W type) fibers. Monocular dye application (n = 7) confirmed the presence of retino-retinal ganglion cells in adult rats. We conclude that mammalian eyes communicate directly with each other via a handful of optic nerve fibers. The cross talk alters retinal activity in rats, and perhaps other animals.
Collapse
Affiliation(s)
- Xiaolan Tang
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, Florida
| | - Radouil Tzekov
- Department of Ophthalmology, University of South Florida, Tampa, Florida; and The Roskamp Institute, Sarasota, Florida
| | - Christopher L Passaglia
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, Florida; Department of Ophthalmology, University of South Florida, Tampa, Florida; and
| |
Collapse
|
6
|
Pang JJ, Wu SM. Morphology and immunoreactivity of retrogradely double-labeled ganglion cells in the mouse retina. Invest Ophthalmol Vis Sci 2011; 52:4886-96. [PMID: 21482641 DOI: 10.1167/iovs.10-5921] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To examine the specificity and reliability of a retrograde double-labeling technique that was recently established for identification of retinal ganglion cells (GCs) and to characterize the morphology of displaced (d)GCs (dGs). METHODS A mixture of the gap-junction-impermeable dye Lucifer yellow (LY) and the permeable dye neurobiotin (NB) was applied to the optic nerve stump for retrograde labeling of GCs and the cells coupled with them. A confocal microscope was adopted for morphologic observation. RESULTS GCs were identified by LY labeling, and they were all clearly labeled by NB. Cells coupled to GCs contained a weak NB signal but no LY. LY and NB revealed axon bundles, somas and dendrites of GCs. The retrogradely identified GCs numbered approximately 50,000 per retina, and they constituted 44% of the total neurons in the ganglion cell layer (GCL). Somas of retrogradely identified dGs were usually negative for glycine, ChAT (choline acetyltransferase), bNOS (brain-type nitric oxidase), GAD (glutamate decarboxylase), and glial markers, and occasionally, they were weakly GABA-positive. dGs averaged 760 per retina and composed 1.7% of total GCs. Sixteen morphologic subtypes of dGs were encountered, three of which were distinct from known GCs. dGs sent dendrites to either sublaminas of the IPL, mostly sublamina a. CONCLUSIONS The retrograde labeling is reliable for identification of GCs. dGs participate in ON and OFF light pathways but favor the OFF pathway. ChAT, bNOS, glycine, and GAD remain reliable AC markers in the GCL. GCs may couple to GABAergic ACs, and the gap junctions likely pass NB and GABA.
Collapse
Affiliation(s)
- Ji-Jie Pang
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
7
|
Abudureheman A, Nakagawa S. Retinopetal neurons located in the diencephalon of the Japanese monkey (Macaca fuscata). Okajimas Folia Anat Jpn 2010; 87:17-23. [PMID: 20715568 DOI: 10.2535/ofaj.87.17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/09/2022]
Abstract
After a monocular injection of the cholera toxin B subunit (CTB) into the vitreous chamber of one eye, the retrogradely labeled retinopetal neurons were studied in the diencephalon of the Japanese monkey. The retrogradely transported tracer was visualized using the peroxidase antibody technique and an anti-cholera toxin antibody. The CTB-labeled nerve cell bodies were scattered in the periventricular nucleus of the hypothalamus, lateral hypothalamic area, and midline nuclei of the thalamus on both sides. In addition, a few retrogradely labeled nerve somata were observed in the most rostral portion of the lateral geniculate nucleus on the contralateral side.
Collapse
Affiliation(s)
- Abuduaini Abudureheman
- Laboratory for Neuroanatomy, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | | |
Collapse
|
8
|
Frazão R, Pinato L, da Silva AV, Britto LRG, Oliveira JA, Nogueira MI. Evidence of reciprocal connections between the dorsal raphe nucleus and the retina in the monkey Cebus apella. Neurosci Lett 2007; 430:119-23. [PMID: 18079059 DOI: 10.1016/j.neulet.2007.10.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/24/2007] [Revised: 10/06/2007] [Accepted: 10/25/2007] [Indexed: 10/22/2022]
Abstract
Possible connections between the retina and the raphe nuclei were investigated in the monkey Cebus apella by intraocular injection of cholera toxin B subunit (CTb). CTb-positive fibers were seen in the lateral region of the dorsal raphe nucleus (DR) on the side contralateral to the injection, and a few labeled perikarya were observed in the lateral portion of the DR on the ipsilateral side. Our findings suggest that direct and reciprocal connections between the retina and DR may exist in Cebus apella. These connections might be part of an important pathway through which the light/dark cycle influences the activity and/or functional status of raphe neurons, with potential effects on a broad set of neural and behavioral circuits.
Collapse
Affiliation(s)
- Renata Frazão
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
9
|
Repérant J, Médina M, Ward R, Miceli D, Kenigfest N, Rio J, Vesselkin N. The evolution of the centrifugal visual system of vertebrates. A cladistic analysis and new hypotheses. ACTA ACUST UNITED AC 2007; 53:161-97. [DOI: 10.1016/j.brainresrev.2006.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/11/2006] [Revised: 08/10/2006] [Accepted: 08/21/2006] [Indexed: 12/23/2022]
|
10
|
Abstract
Since 1892, anatomical studies have demonstrated that the retinas of mammals, including humans, receive input from the brain via axons emerging from the optic nerve. There are only a small number of these retinopetal axons, but their branches in the inner retina are very extensive. More recently, the neurons in the brain stem that give rise to these axons have been localized, and their neurotransmitters have been identified. One set of retinopetal axons arises from perikarya in the posterior hypothalamus and uses histamine, and the other arises from perikarya in the dorsal raphe and uses serotonin. These serotonergic and histaminergic neurons are not specialized to supply the retina; rather, they are a subset of the neurons that project via collaterals to many other targets in the central nervous system, as well. They are components of the ascending arousal system, firing most rapidly when the animal is awake and active. The contributions of these retinopetal axons to vision may be predicted from the known effects of serotonin and histamine on retinal neurons. There is also evidence suggesting that retinopetal axons play a role in the etiology of retinal diseases.
Collapse
Affiliation(s)
- Matthew J Gastinger
- Graduate School of Biomedical Sciences, The University of Texas Health Science Center Houston, Houston, Texas 77225, USA
| | | | | | | |
Collapse
|
11
|
Abstract
PURPOSE To describe serotonergic retinopetal axons in monkeys. METHODS Whole macaque and baboon retinas, fixed in 4% paraformaldehyde, were labeled with antisera raised against serotonin (5-HT). RESULTS Several large-diameter 5-HT-immunoreactive (IR) axons emerged from the optic disk. Most axons ran to the peripheral retina, where they branched extensively. Most terminated in the ganglion cell layer, but a few 5-HT-IR axons terminated in distal inner plexiform or within inner nuclear layer. Some axons branched extensively near the fovea, and a dense plexus of 5-HT-IR axons was also found around the optic disk. Varicose 5-HT-IR axons were also associated with blood vessels, especially in the central retina. CONCLUSIONS Immunoreactive serotonin is present in a distinct population of retinopetal axons in the monkey retina. Receptors for serotonin are present in the primate retinas, and based on physiological studies in other mammals, these retinopetal axons are expected to modulate neuronal activity and regulate blood flow.
Collapse
Affiliation(s)
- Matthew J Gastinger
- Department of Neurobiology and Anatomy, University of Texas Medical School at Houston, Houston, Texas 77225, USA
| | | | | | | |
Collapse
|
12
|
Repérant J, Ward R, Miceli D, Rio JP, Médina M, Kenigfest NB, Vesselkin NP. The centrifugal visual system of vertebrates: a comparative analysis of its functional anatomical organization. ACTA ACUST UNITED AC 2006; 52:1-57. [PMID: 16469387 DOI: 10.1016/j.brainresrev.2005.11.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/17/2005] [Revised: 11/24/2005] [Accepted: 11/30/2005] [Indexed: 10/25/2022]
Abstract
The present review is a detailed survey of our present knowledge of the centrifugal visual system (CVS) of vertebrates. Over the last 20 years, the use of experimental hodological and immunocytochemical techniques has led to a considerable augmentation of this knowledge. Contrary to long-held belief, the CVS is not a unique property of birds but a constant component of the central nervous system which appears to exist in all vertebrate groups. However, it does not form a single homogeneous entity but shows a high degree of variation from one group to the next. Thus, depending on the group in question, the somata of retinopetal neurons can be located in the septo-preoptic terminal nerve complex, the ventral or dorsal thalamus, the pretectum, the optic tectum, the mesencephalic tegmentum, the dorsal isthmus, the raphé, or other rhombencephalic areas. The centrifugal visual fibers are unmyelinated or myelinated, and their number varies by a factor of 1000 (10 or fewer in man, 10,000 or more in the chicken). They generally form divergent terminals in the retina and rarely convergent ones. Their retinal targets also vary, being primarily amacrine cells with various morphological and neurochemical properties, occasionally interplexiform cells and displaced retinal ganglion cells, and more rarely orthotopic ganglion cells and bipolar cells. The neurochemical signature of the centrifugal visual neurons also varies both between and within groups: thus, several neuroactive substances used by these neurons have been identified; GABA, glutamate, aspartate, acetylcholine, serotonin, dopamine, histamine, nitric oxide, GnRH, FMRF-amide-like peptides, Substance P, NPY and met-enkephalin. In some cases, the retinopetal neurons form part of a feedback loop, relaying information from a primary visual center back to the retina, while in other, cases they do not. The evolutionary significance of this variation remains to be elucidated, and, while many attempts have been made to explain the functional role of the CVS, opinions vary as to the manner in which retinal activity is modified by this system.
Collapse
Affiliation(s)
- J Repérant
- CNRS UMR 5166, MNHN USM 0501, Département Régulation, Développement et Diversité Moléculaire du Muséum National d'Histoire Naturelle, C. P. 32, 7 rue Cuvier, 75231 Paris cedex 05, France.
| | | | | | | | | | | | | |
Collapse
|
13
|
Fyk-Kolodziej B, Dzhagaryan A, Qin P, Pourcho RG. Immunocytochemical localization of three vesicular glutamate transporters in the cat retina. J Comp Neurol 2004; 475:518-30. [PMID: 15236233 DOI: 10.1002/cne.20199] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/05/2023]
Abstract
Vesicular transporters play an essential role in the packaging of glutamate for synaptic release and so are of particular importance in the retina, where glutamate serves as the neurotransmitter for photoreceptors, bipolar cells, and ganglion cells. In the present study, we have examined the distribution of the three known isoforms of vesicular glutamate transporter (VGLUT) in the cat retina. VGLUT1 was localized to all photoreceptor and bipolar cells, whereas VGLUT2 was found in ganglion cells. This basic pattern of complementary distribution for the two transporters among known populations of glutamatergic cells is similar to previous findings in the brain and spinal cord. However, the axon terminals of S-cone photoreceptors were found to express both VGLUT1 and VGLUT2 and some ganglion cells labeled for both VGLUT2 and VGLUT3. Such colocalizations suggest the existence of dual modes of regulation of vesicular glutamate transport in these neurons. Staining for VGLUT2 was also present in a small number of varicose processes, which were seen to ramify throughout the inner plexiform layer. These fibers may represent axon collaterals of ganglion cells. The most prominent site of VGLUT3 immunoreactivity was in a population of amacrine cells; the axon terminals of B-type horizontal cells were also labeled at their contacts with rod spherules. The presence of the VGLUT3 transporter at sites not otherwise implicated in glutamate release may indicate novel modes of glutamate signaling or additional roles for the transporter molecule.
Collapse
Affiliation(s)
- Bozena Fyk-Kolodziej
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
14
|
Médina M, Repérant J, Ward R, Miceli D. Centrifugal visual system of Crocodylus niloticus: a hodological, histochemical, and immunocytochemical study. J Comp Neurol 2004; 468:65-85. [PMID: 14648691 DOI: 10.1002/cne.10959] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/07/2022]
Abstract
The retinopetal neurons of Crocodylus niloticus were visualized by retrograde transport of rhodamine beta-isothiocyanate or Fast Blue administered by intraocular injection. Approximately 6,000 in number, these neurons are distributed in seven regions extending from the mesencephalic tegmentum to the rostral rhombencephalon, approximately 70% being located contralaterally to the injected eye. None of the centrifugal neurons projects to both retinae. The retinopetal neurons are located in rostrocaudal sequence in seven regions: the formatio reticularis lateralis mesencephali, the substantia nigra, the griseum centralis tectalis, the nucleus subcoeruleus dorsalis, the nucleus isthmi parvocellularis, the locus coeruleus, and the commissura nervi trochlearis. The greatest number of cells (approximately 93%) is found in the nucleus subcoeruleus dorsalis. The majority are multipolar or bipolar in shape and resemble the ectopic centrifugal visual neurons of birds, although a small number of monopolar neurons resembling those of the avian isthmo-optic nucleus may also be observed. A few retinopetal neurons in the griseum centralis tectalis were tyrosine hydroxylase (TH) immunoreactive. Moreover, in the nuclei subcoeruleus dorsalis and isthmi parvocellularis, both ipsilaterally and contralaterally, approximately one retinopetal neuron in three (35%) was immunoreactive to nitric oxide synthase (NOS), and a slightly higher proportion (38%) of retinopetal neurons were immunoreactive for choline acetyltransferase (ChAT). Some of them contained colocalized ChAT and NOS/reduced nicotinamide adenine dinucleotide phosphate-diaphorase. Fibers immunoreactive to TH, serotonin (5-HT), neuropeptide Y (NPY), or Phe-Met-Arg-Phe-amide (FMRF-amide) were frequently observed to make intimate contact with rhodamine-labeled retinopetal neurons. These findings are discussed in relation to previous results obtained in other reptilian species and in birds.
Collapse
Affiliation(s)
- Monique Médina
- Centre National de la Recherche Scientifique UMR8570-MNHN USM0302, F-75005 Paris, France.
| | | | | | | |
Collapse
|
15
|
Chanut E, Nguyen-Legros J, Labarthe B, Trouvin JH, Versaux-Botteri C. Serotonin synthesis and its light-dark variation in the rat retina. J Neurochem 2002; 83:863-9. [PMID: 12421358 DOI: 10.1046/j.1471-4159.2002.01194.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/20/2022]
Abstract
Retinal circadian rhythms are driven by an intrinsic oscillator, using chemical signals such as melatonin, secreted by photoreceptor cells. The purpose of the present work was to identify the origin of serotonin, the precursor of melatonin, in the retina of adult rat, where no immunoreactivity for serotonin or tryptophan hydroxylase had ever been detected. To demonstrate local synthesis of serotonin in the rat retina, substrates of tryptophan hydroxylase, the first limiting enzyme in the serotonin pathway, have been used. Tryptophan, in the presence of an inhibitor of aromatic amino acid decarboxylase, enhanced 5-hydroxytryptophan levels, whereas alpha-methyltryptophan, a competitive substrate inhibitor, was hydroxylated into alpha-methyl-5-hydroxytryptophan. Tryptophan hydroxylase substrate concentration was higher in the dark period than in the light period, and formation of hydroxylated compounds was increased. The presence of tryptophan hydroxylase mRNA in the rat retina was confirmed by RT-PCR. Taken together, the results support the local synthesis of serotonin by tryptophan hydroxylation, this metabolic pathway being required more critically when 5-HT is used for melatonin synthesis.
Collapse
Affiliation(s)
- Evelyne Chanut
- Laboratoire de Pharmacologie, Faculté de Pharmacie, Châtenay-Malabry, France
| | | | | | | | | |
Collapse
|
16
|
Abstract
Gonadotropin-releasing hormone (GnRH) projections from the terminal nerve to the retina are common in fish, but have not been reported in mammals. However, GnRH fibers have been seen previously in the optic nerves (but not retinas) of rats and monkeys. Using prairie voles, we tested the hypotheses that (1) GnRH-immunoreactive (-ir) neurons project into the optic nerve and (2) the retina expresses GnRH receptor mRNA as determined by reverse transcription-polymerase chain reaction (RT-PCR) combined with Southern blotting. In both adult and postnatal-day-2 voles, GnRH-ir fibers were observed within the optic nerve. In adult voles, GnRH-ir fibers projected only a short distance into the optic nerve compared with the much longer length of projections in neonates. Fibers immunoreactive for GnRH were not seen in the retinas of neonates or adults. However, RT-PCR-Southern blotting demonstrated GnRH receptor expression in the retina of adult voles. This study supports the hypothesis that GnRH has the potential of modulating visual processing in the retina of mammals.
Collapse
Affiliation(s)
- Celeste R Wirsig-Wiechmann
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | | |
Collapse
|
17
|
Abstract
Three optic nerves (L1, R2, R3) 12-18 mm behind the eyeball of the horse (Thoroughbred) were investigated quantitatively under light and electron microscopes. Thin sections at the thickness of 0.35 microm were cut, stained by toluidine blue and observed under the light microscope. The areas of the optic nerve and the axon bundles were 20.03 +/- 1.04 and 16.59 +/- 0.79 mm2 (mean +/- SD, n=3), respectively. The axon numbers for optic nerve L1, R2 and R3, estimated from light micrographs, were about 481 x 10(3), 543 x 10(3), and 494 x 10(3), respectively. Axons of optic nerve L1 were also counted from electron micrographs and the total number of 488 x 10(3) was received. Furthemore, axon diameters of optic nerve L1 were also measured from electron micrographs. The diameter of a circle with the same peripheral length as an axon, was regarded as its diameter. The medullary sheath of the axon was not included during measuring. Altogether 5,744 axons were measured and axon diameters were in a range of 0.23-12.69 microm, with a mean of 2.56 +/- 1.45 microm (mean +/- SD). A regional difference of axonal diameters was found across the optic nerve: the mean diameter of axons in the centrodorsal region (2.28 microm) was the smallest, and had significant difference with those in several peripheral regions (P<0.05).
Collapse
Affiliation(s)
- X Guo
- Department of Animal Science, Faculty of Agriculture, Utsunomiya University, Japan
| | | | | |
Collapse
|
18
|
De Juan J, García M. Spinules and nematosomes in retinal horizontal cells: a "thorny" issue. PROGRESS IN BRAIN RESEARCH 2001; 131:519-37. [PMID: 11420967 DOI: 10.1016/s0079-6123(01)31041-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Affiliation(s)
- J De Juan
- Departamento de Biotecnología, Facultad de Ciencias, Universidad de Alicante, Apdo. Correos 99, Alicante 03080, Spain.
| | | |
Collapse
|
19
|
Simon A, Martin-Martinelli E, Savy C, Verney C, Raisman-Vozari R, Nguyen-Legros J. Confirmation of the retinopetal/centrifugal nature of the tyrosine hydroxylase-immunoreactive fibers of the retina and optic nerve in the weaver mouse. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2001; 127:87-93. [PMID: 11287069 DOI: 10.1016/s0165-3806(01)00103-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/19/2022]
Abstract
The number of tyrosine hydroxylase-immunoreactive fibers in the nerve fiber layer is increased in the retina of the weaver compared to control mice (Dev. Brain Res. 121 (2000) 113). To confirm the retinopetal/centrifugal nature of these fibers, a newly devised whole-mounted optic nerve technique allowed us to determine, during development, their first appearance within the optic nerve (post-natal day 12) compared to retina (post-natal day 13). One such fiber was also observed looping in the retina of a monkey fetus.
Collapse
Affiliation(s)
- A Simon
- Institut des Neurosciences, Département de Neurobiologie des Signaux Intercellulaires, Université Paris VI, 7 quai Saint Bernard, 75252 cedex 05, Paris, France
| | | | | | | | | | | |
Collapse
|
20
|
Galambos R, Szabó-Salfay O, Szatmári E, Szilágyi N, Juhász G. Sleep modifies retinal ganglion cell responses in the normal rat. Proc Natl Acad Sci U S A 2001; 98:2083-8. [PMID: 11172079 PMCID: PMC29385 DOI: 10.1073/pnas.98.4.2083] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/18/2022] Open
Abstract
Recordings were obtained from the visual system of rats as they cycled normally between waking (W), slow-wave sleep (SWS), and rapid eye movement (REM) sleep. Responses to flashes delivered by a light-emitting diode attached permanently to the skull were recorded through electrodes implanted on the cornea, in the chiasm, and on the cortex. The chiasm response reveals the temporal order in which the activated ganglion cell population exits the eyeball; as reported, this triphasic event is invariably short in latency (5--10 ms) and around 300 ms in duration, called the histogram. Here we describe the differences in the histograms recorded during W, SWS, and REM. SWS histograms are always larger than W histograms, and an REM histogram can resemble either. In other words, the optic nerve response to a given stimulus is labile; its configuration depends on whether the rat is asleep or awake. We link this physiological information with the anatomical fact that the brain dorsal raphe region, which is known to have a sleep regulatory role, sends fibers to the rat retina and receives fibers from it. At the cortical electrode, the visual cortical response amplitudes also vary, being largest during SWS. This well known phenomenon often is explained by changes taking place at the thalamic level. However, in the rat, the labile cortical response covaries with the labile optic nerve response, which suggests the cortical response enhancement during SWS is determined more by what happens in the retina than by what happens in the thalamus.
Collapse
Affiliation(s)
- R Galambos
- University of California, San Diego, CA 92093, USA.
| | | | | | | | | |
Collapse
|
21
|
Repérant J, Araneda S, Miceli D, Medina M, Rio JP. Serotonergic retinopetal projections from the dorsal raphe nucleus in the mouse demonstrated by combined [(3)H] 5-HT retrograde tracing and immunolabeling of endogenous 5-HT. Brain Res 2000; 878:213-7. [PMID: 10996155 DOI: 10.1016/s0006-8993(00)02706-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Abstract
The present study demonstrated a direct serotonergic retinopetal projection in the mouse stemming from the lateral portion of the dorsal raphe nucleus bilaterally. A double-labeling technique was employed combining: (1) radioautography and retrograde axonal tracing following intraocular injection of [(3)H] 5-HT and (2) immunocytochemical identification of endogenous 5-HT. Radiolabeled neurons were only observed within the dorsal raphe nucleus and were always double-labeled with the 5-HT antibody. The radiolabeling appeared to be specific resulting from the retrograde transport of a radioactive 5-HT derivative product following uptake of the neurotransmitter by intraretinal terminals.
Collapse
Affiliation(s)
- J Repérant
- INSERM U 106, Laboratoire de Neuromorphologie, Développement, Evolution, Batiment de Pédiatrie, Hôpital de la Salpêtrière, Paris, France
| | | | | | | | | |
Collapse
|
22
|
Nguyen-Legros J, Hicks D. Renewal of photoreceptor outer segments and their phagocytosis by the retinal pigment epithelium. INTERNATIONAL REVIEW OF CYTOLOGY 2000; 196:245-313. [PMID: 10730217 DOI: 10.1016/s0074-7696(00)96006-6] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
Abstract
The discovery of disc protein renewal in rod outer segments, in 1960s, was followed by the observation that old discs were ingested by the retinal pigment epithelium. This process occurs in both rods and cones and is crucial for their survival. Photoreceptors completely degenerate in the Royal College of Surgeons mutant rat, whose pigment epithelium cannot ingest old discs. The complete renewal process includes the following sequential steps involving both photoreceptor and pigment epithelium activity: new disc assembly and old disc shedding by photoreceptor cells; recognition and binding to pigment epithelium membranes; then ingestion, digestion, and segregation of residual bodies in pigment epithelium cytoplasm. Regulating factors are involved at each step. While disc assembly is mostly genetically controlled, disc shedding and the subsequent pigment epithelium phagocytosis appear regulated by environmental factors (light and temperature). Disc shedding is rhythmically controlled by an eye intrinsic circadian oscillator using endogenous dopamine and melatonin as light and dark signal, respectively. Of special interest is the regulation of phagocytosis by multiple receptors, including specific phagocytosis receptors and receptors for neuroactive substances released from the neuroretina. The candidates for phagocytosis receptors are presented, but it is acknowledged that they are not completely known. The main neuromodulators are adenosine, dopamine, glutamate, serotonin, and melatonin. Although the transduction mechanisms are not fully understood, attention was brought to cyclic AMP, phosphoinositides, and calcium. The chapter points to the multiplicity of regulating factors and the complexity of their intermingling modes of action. Promising areas for future research still exist in this field.
Collapse
Affiliation(s)
- J Nguyen-Legros
- Institut National de la Santé et de la Recherche Médicale (INSERM, U-450) Laboratoire de NeuroCytologie Oculaire, Paris, France
| | | |
Collapse
|
23
|
Campbell G, Holt JK, Shotton HR, Anderson PN, Bavetta S, Lieberman AR. Spontaneous axonal regeneration after optic nerve injury in adult rat. Neuroreport 1999; 10:3955-60. [PMID: 10716240 DOI: 10.1097/00001756-199912160-00042] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/26/2022]
Abstract
Optic nerves of adult rats were crushed 2 mm behind the eye to examine the ability of retinal ganglion cells (RGCs) to regenerate their axons. Some animals were treated with the immunophilin ligands FK 506 or GPI 1046 for up to 4 weeks. After 10 days to 16 months, regenerating RGC axons were visualized using anterograde tracing and/or electron microscopy. A small proportion of RGC axons regenerated across the lesion site and grew very slowly along the entire optic nerve. Immunophilin ligands had no obvious effect. The regenerating axons were about 0.2 microm in diameter, and usually in clusters surrounded by astrocyte processes. Thus, some CNS axons can spontaneously regenerate long distances within degenerate white matter and this slow regeneration is not accelerated by immunophilin ligands.
Collapse
Affiliation(s)
- G Campbell
- Department of Anatomy and Developmental Biology, University College London.
| | | | | | | | | | | |
Collapse
|
24
|
Yamazaki S, Alones V, Irelan W, Menaker M. Serotonin-containing cell bodies in novel brain locations: effects of light input. Neuroreport 1999; 10:431-5. [PMID: 10203349 DOI: 10.1097/00001756-199902050-00041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/26/2022]
Abstract
Cell bodies staining positively for serotonin (5HT) appear in the suprachiasmatic nuclei (SCN) of hamsters that have been held in constant darkness (DD) for several months but are otherwise untreated. No such cell bodies are found in the SCN of animals that have been bilaterally enucleated for the same amount of time; however, in enucleated hamsters 5HT-containing cell bodies appear in the superior colliculus. These data provide the first indication that changes in sensory input can modulate 5HT levels in cells bodies outside of the raphe nuclei.
Collapse
Affiliation(s)
- S Yamazaki
- Department of Biology and NSF Center for Biological Timing, University of Virginia, Charlottesville 22903, USA
| | | | | | | |
Collapse
|
25
|
Abstract
Unilateral and bilateral dysplasias of the optic nerve (ON) were observed in 20/114 male and 14/110 female Sprague-Dawley rats at 12 weeks of age. Grossly, the intracranial segment of the affected ON had nodular thickening, bifurcation, and curvature. Nodular thickenings were seen in 20 males and 11 females. One female had a bifurcated ON. Curvature was observed in the left ONs of two females. Of 34 ON dysplasias, 12 ONs tapered off into a thin filament at the portion anterior to the dysplastic lesions. The intraorbital segments of the ONs in 33 rats were also reduced in size and were hardly recognizable in the meningeal sheath in 10 rats. Both eyeballs appeared normal in all the animals examined. Histologically, nerve fibers in intracranial and intraorbital segments of the ONs that appeared as slender filaments were markedly reduced in number. Nerve fibers in nodular thickenings were intertwined in haphazard fashion, forming scrollworklike structures. The meningeal sheaths in intracranial segments of the ONs in 15 rats and in intraorbital segments in eight rats were partially missing. The naked portion of the ON protruded into the meningeal spaces or gaps. The data indicate that developmental failures in the ON may have been induced due to insufficient blood supply through the meningeal covering or herniation of growing nerve fibers into the defective meninges. However, etiology and pathogenesis of this condition remain unclear.
Collapse
Affiliation(s)
- K Shibuya
- Nippon Institute for Biological Science, Ome, Tokyo, Japan
| | | | | |
Collapse
|
26
|
Médina M, Repérant J, Miceli D, Bertrand C, Bennis M. An immunohistochemical study of putative neuromodulators and transmitters in the centrifugal visual system of the quail (Coturnix japonica). J Chem Neuroanat 1998; 15:75-95. [PMID: 9719361 DOI: 10.1016/s0891-0618(98)00034-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022]
Abstract
The aim of the present study was to analyze the neurochemical properties of the centrifugal visual system (CVS) of the quail using an immunohistochemical approach by testing 16 neuropeptides (angiotensin: ANG, bradykinin: BK, cholecystokinin, dynorphin, L and M-enkephalin, beta-endorphin: beta-END, galanin, alpha-neoendorphin, neurokinin A, neuropeptide Y (NPY), ocytocin, somatostatin, substance P, vasopressin, vasoactive intestinal polypeptide) and three neurotransmitters or their synthetic enzymes (choline acetyltransferase: ChAT, tyrosine hydroxylase: TH, serotonin: 5-HT and nitric oxide synthase: NOS, including the histochemical nicotinamide adenine dinucleotide phosphate diaphorase technique). For each substance, the somatic and afferent fiber and terminal labeling was analyzed within the nucleus isthmo-opticus (NIO) and the ectopic area (EA) and compared with that of retinopetal cell bodies labeled retrogradely with RITC following its intraocular injection (double-labeling procedure). The results showed that none of the centrifugal neurons were reactive to any of the substances tested. In contrast, all with the exception of ANG, BK and beta-END, labeled fibers and terminals within the EA and only four (ChAT, 5-HT, NPY and NOS) within the NIO. Possible sources of these immunoreactive fibers terminating in the NIO and EA were investigated by mapping the somatic immunolabeling of the different substances within brainstem regions previously shown by Miceli and other authors to project upon the centrifugal neurons. The data suggests that, besides the rapid retino-tecto-NIO-retinal loop, which facilitates the transfer of meaningful or more relevant information within particular portions of the visual field, the multiple afferent input which stems from various brainstem regions utilizes a wide range of neuroactive substances. Some of these afferent projections upon the centrifugal neurons appear to belong to nonspecific systems which might play a role in modulating the excitability of centrifugal neurons as a function of arousal.
Collapse
Affiliation(s)
- M Médina
- CNRS-URA 1137, Laboratoire d'Anatomie Comparée, Muséum National d'Histoire Naturelle, Paris, France.
| | | | | | | | | |
Collapse
|
27
|
Abstract
The anterograde neuronal tracing properties of Fluoro-Gold (FG) were characterized in this study by its ability to label the retinohypothalamic tract (RHT) upon pressure injection of the substance into the vitrous body of the eye in the Djungarian hamster, Phodopus sungorus. Tracing was compared to the anterograde neuronal transport of cholera toxin B subunit (CTB), Fast blue (FB), Phaseolous vulgaris leucoagglutinin (PHA-L) and biocytin. After survival times that ranged from 24 h to 4 weeks, a major projection was found to the bilateral hypothalamic suprachiasmatic nuclei (SCN). Labeling was also found in the anterior medial preoptic nucleus and, in relatively sparse amounts, in the lateral geniculate nucleus, superior colliculus and lateral habenular nucleus. Similar results were obtained upon injection of CTB or FB, respectively, into the eye, whereas the application of PHA-L or biocytin did not label retinal afferents. The combined injection of FG and CTB or FB into the same eye labeled retino-afferent fibers only when FG was applied three days before the injection of the other tracers. Retrogradely labelled neurons were sen occasionally in the hypothalamus which may provide a sparse retinopetal projection. Additional experiments combining FG tracing and the immunofluorescent detection of the neuropeptides substance P (SP) or vasoactive intestinal polypeptide (VIP) in the SCN showed that FG-containing punctae were accumulated in the vicinity of immunoreactive cell bodies. Our data demonstrate that FG may be used as an anterograde axonal tracer of the retinohypothalamic pathway.
Collapse
Affiliation(s)
- S Reuss
- Department of Anatomy, School of Medicine, Johannes Gutenberg-University, Mainz, Germany
| | | |
Collapse
|