1
|
Niu X, Qu W, Chen Z, Li H, Liu P, Sun M, Yang J, Xing Y, Li D. Condensed tannin from Caragana korshinskii extraction and protection effects on intestinal barrier function in mice. Front Vet Sci 2025; 12:1513371. [PMID: 39963270 PMCID: PMC11830745 DOI: 10.3389/fvets.2025.1513371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/18/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
Caragana korshinskii tannins (CKT) were extracted by response surface methodology and the protection effect of CKT on the jejunal mucosal barrier function of mice was investigated. Firstly, this work presents the extraction, purification and characterization of CKT. The results show that the extraction conditions were as follows: extraction temperature was 52°C, extraction time was 95 min, liquid-solid ratio was 20:1 and acetone volume fraction was 62%. The extraction yield of the CKT was 5.34%. The CKT has a typical polyphenol peak with a molecular weight of 8.662 kDa and is composed of epigallocatechin, catechin, epigallocatechin gallate, epicatechin, gallocatechin, epicatechin-3-o-gallate and catechin gallate with a molar ratio of 1:8.88:2.65:1.55:1.92:0.49:0.14. Additionally, the CKT showed strong antioxidants capacity in vitro. Secondly, the protection effect of CKT on the growth performance and mucosal barrier function of the mouse jejunum was examined. Totally, sixty KM mice were randomly divided into six treatment groups (n = 10) using a single-factor completely randomized experimental design. The treatment groups were intragastrically administered with 0, 25, 50, 100, 200, and 400 mg/kg BW of CKT aqueous solution once a day. The gavage volume was set at 0.2 mL per 10 g of body weight, administered daily for 21 days. The results showed that CKT significantly improved growth performance and physiological state of mouse intestine. CKT strengthened the intestinal physical barrier by upregulating the expression of Occludin and ZO-1 and decreasing the levels of serum diamine oxidase (DAO) and D-lactate (D-LA). Regarding biochemical barrier, CKT could upregulate the activity and gene expression of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and decreasing the content of malondialdehyde (MDA) in jejunum tissues. Generally, CKT may be used as a functional feed additive to regulate intestinal mucosal function, thereby enhancing the health of the intestine and host.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuanyuan Xing
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Dabiao Li
- Inner Mongolia Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
2
|
Adeyemi KD, Olatunji OS, Atolani O, Ishola H, Shittu RM, Okukpe KM, Chimezie VO, Kazeem MO. Cholesterol oxides and quality attributes of NaCl-substituted low-fat chicken sausages prepared with different antioxidants. Heliyon 2025; 11:e41796. [PMID: 39897823 PMCID: PMC11782976 DOI: 10.1016/j.heliyon.2025.e41796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/24/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 02/04/2025] Open
Abstract
This trial investigated how different salts and antioxidants influence cholesterol oxides, microbial profiles, physicochemical properties and organoleptic characteristics of low-fat chicken sausages (CS). CS were formulated with either 2 % NaCl, CS-1; 2 % NaCl +0.02 % butylated hydroxyanisole (BHA), CS-2; 1 % NaCl + 1 % KCl + 0.25 % onionskin extract (OSE), CS-3; 1 % NaCl + 1 % KCl + 0.5 % OSE, CS-4; 1 % NaCl + 1 % K3C6H5O7 + 0.25 % OSE, CS-5 or 1 % NaCl + 1 % K3C6H5O7 + 0.5 % OSE, CS-6, cooked, and refrigerated for 45 d. The Na content in CS-1 and CS-2 (1185 ± 21 mg/100 g) was greater than that in the other CS (640 ± 18 mg/100 g). The 19-hydroxy cholesterol, 7α-hydroxycholesterol, 25-hydroxycholesterol, 5,6β-epoxycholesterol, 7β-hydroxycholesterol and carbonyl content were greater in CS-1 than in the other sausages. The OSE-treated CS group had lower levels of 7β-hydroxycholesterol and 7α-hydroxycholesterol than did the CS-2 group. CS-1 and CS-2 were lighter than the other CS. Malondialdehyde, pH, chemical composition, textural profile, microbial counts, cook loss and sensorial quality were unaffected by additives. The partial replacement of NaCl with KCl and K3C6H5O7, along with the addition of BHA and OSE, decreased the Na and cholesterol oxide contents without affecting the organoleptic qualities of low-fat CS.
Collapse
Affiliation(s)
- Kazeem D. Adeyemi
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, PMB 1515, Ilorin, Nigeria
| | - Olaife S. Olatunji
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, PMB 1515, Ilorin, Nigeria
| | - Olubunmi Atolani
- Department of Chemistry, Faculty of Physical Sciences, University of Ilorin, PMB 1515, Ilorin, Nigeria
| | - Hakeem Ishola
- Department of Animal Production, Faculty of Agriculture, Kwara State University, Malete, Nigeria
| | - Rafiat M. Shittu
- Department of Food Science and Technology, Faculty of Agriculture, Kwara State University, Malete, Nigeria
| | - Kehinde M. Okukpe
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, PMB 1515, Ilorin, Nigeria
| | - Victoria O. Chimezie
- Department of Animal Production, Faculty of Agriculture, University of Ilorin, PMB 1515, Ilorin, Nigeria
| | - Muinat O. Kazeem
- Department of Microbiology, Faculty of Life Sciences, University of Ilorin, PMB 1515, Ilorin, Nigeria
| |
Collapse
|
3
|
Xiao Y, Gao X, Yuan J. Comparative Study of an Antioxidant Compound and Ethoxyquin on Feed Oxidative Stability and on Performance, Antioxidant Capacity, and Intestinal Health in Starter Broiler Chickens. Antioxidants (Basel) 2024; 13:1229. [PMID: 39456482 PMCID: PMC11505240 DOI: 10.3390/antiox13101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/13/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Concerns over the safety of ethoxyquin (EQ) highlight the need for safer, more effective feed antioxidants. This study investigated a healthier antioxidant compound (AC) as a potential alternative to EQ in broilers. A total of 351 one-day-old Arbor Acres Plus male broilers were randomly assigned to three treatments for 21 days: control (CON), EQ group (200 g/ton EQ at 60% purity), and AC group (200 g/ton AC containing 18% butylated hydroxytoluene, 3% citric acid, and 1% tertiary butylhydroquinone). AC supplementation reduced the acid value, peroxide value, and malondialdehyde content in stored feed, decreased feed intake and the feed conversion ratio without affecting body weight gain, and enhanced antioxidant capacity (liver total antioxidant capacity and superoxide dismutase; intestinal catalase and glutathione peroxidase 7). It improved intestinal morphology and decreased barrier permeability (lower diamine oxidase and D-lactate), potentially by promoting ZO-1, Occludin, and Mucin2 expression. The AC also upregulated NF-κB p50 and its inhibitor (NF-κB p105), enhancing immune regulation. Additionally, the AC tended to increase beneficial gut microbiota, including Lactobacillus, and reduced Bacteroides, Corprococcus, and Anaeroplasma. Compared to EQ, the AC further enhanced feed oxidative stability, the feed conversion ratio, intestinal morphology and barrier functions, and inflammatory status, suggesting its potential as a superior alternative to EQ for broiler diets.
Collapse
Affiliation(s)
| | | | - Jianmin Yuan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (Y.X.); (X.G.)
| |
Collapse
|
4
|
Ghanbari P, Alboebadi R, Bazyar H, Raiesi D, ZareJavid A, Azadbakht MK, Karimi M, Razmi H. Grape seed extract supplementation in non-alcoholic fatty liver disease. INT J VITAM NUTR RES 2024; 94:365-376. [PMID: 38419408 DOI: 10.1024/0300-9831/a000805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/02/2024]
Abstract
Background: Despite rising non-alcoholic fatty liver disease (NAFLD) prevalence and its impact on liver health, there's a lack of studies on grape seed extract's (GSE) effect on oxidative stress and quality of life (QoL) in NAFLD patients. This study aims to fill this gap by the potential benefits of GSE in reducing oxidative stress and improving QoL. Methods: In this randomized clinical trial study, fifty patients with NAFLD were randomly assigned to receive either 2 tablets of GSE containing 250 mg of proanthocyanidins or placebo (25 participants in each group) for two months. QoL was evaluated using the SF-36 questionnaire, and oxidative stress variables (TAC, MDA, SOD, GPx, CAT, and IL-6) were measured at the beginning and end of the study. Results: Compared with the control group, the group supplemented with GSE experienced greater reductions in IL-6 and MDA (3.14±1.43 pg/ml vs. 2.80±0.31 pg/ml; 4.16±2.09 μM vs. 4.59±1.19 μM, p for all <0.05), as well as greater increases in TAC, SOD, and GPx levels (0.18±0.08 mM vs. -0.03±0.09 mM; 10.5±6.69 U/ml vs. 8.93±1.63 U/ml; 14.7±13.4 U/ml vs. 8.24±3.03 U/ml, p for all <0.05). Furthermore, the QoL questionnaire showed that physical limitations, general health, and total physical health were significantly improved in the GSE group compared with the placebo (17.0±42.0 vs. -12.0±37.5; 3.80±14.8 vs. -3.92±9.55; 5.08 5.26 vs. -7.01±13.7, p for all <0.05). Conclusions: GSE can be effective in improving oxidative stress and QoL in patients with NAFLD. More studies are needed to confirm the results of this study.
Collapse
Affiliation(s)
- Parisa Ghanbari
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Iran
| | - Roghayeh Alboebadi
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Iran
| | - Hadi Bazyar
- Department of Public Health, Sirjan School of Medical Sciences, Sirjan, Iran
- Student Research Committee, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Davoud Raiesi
- Department of Internal Medicine, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Iran
| | - Ahmad ZareJavid
- Nutrition and Metabolic Diseases Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Iran
| | | | - Mahdi Karimi
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Iran
| | - Hamidreza Razmi
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Iran
| |
Collapse
|
5
|
Yu G, Fu X, Gong A, Gu J, Zou H, Yuan Y, Song R, Ma Y, Bian J, Liu Z, Tong X. Oligomeric proanthocyanidins ameliorates osteoclastogenesis through reducing OPG/RANKL ratio in chicken's embryos. Poult Sci 2024; 103:103706. [PMID: 38631227 PMCID: PMC11040129 DOI: 10.1016/j.psj.2024.103706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/21/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
Skeletal disorders can seriously threaten the health and the performance of poultry, such as tibial dyschondroplasia (TD) and osteoporosis (OP). Oligomeric proanthocyanidins (OPC) are naturally occurring polyphenolic flavonoid compounds that can be used as potential substances to improve the bone health and the growth performance of poultry. Eighty 7-day-old green-eggshell yellow feather layer chickens were randomly divided into 4 groups: basal diet and basal diet supplementation with 25, 50, and 100 mg/kg OPC. The results have indicated that the growth performance and bone parameters of chickens were significantly improved supplementation with OPC in vivo, including the bone volume (BV), the bone mineral density (BMD) and the activities of antioxidative enzymes, but ratio of osteoprotegerin (OPG)/receptor activator of NF-κB (RANK) ligand (RANKL) was decreased. Furthermore, primary bone marrow mesenchymal stem cells (BMSCs) and bone marrow monocytes/macrophages (BMMs) were successfully isolated from femur and tibia of chickens, and co-cultured to differentiate into osteoclasts in vitro. The osteogenic differentiation derived from BMSCs was promoted treatment with high concentrations of OPC (10, 20, and 40 µmol/L) groups in vitro, but emerging the inhibition of osteoclastogenesis by increasing the ratio of OPG/RANKL. In contrary, the osteogenic differentiation was also promoted treatment with low concentrations of OPC (2.5, 5, and 10 µmol/L) groups, but osteoclastogenesis was enhanced by decreasing the ratio of OPG/RANKL in vitro. In addition, OPG inhibits the differentiation and activity of osteoclasts by increasing the autophagy in vitro. Dietary supplementation of OPC can improve the growth performance of bone and alter the balance of osteoblasts and osteoclasts, thereby improving the bone health of chickens.
Collapse
Affiliation(s)
- Gengsheng Yu
- Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China) / College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, P. R. China
| | - Xiaohui Fu
- Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China) / College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, P. R. China
| | - Anqing Gong
- Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China) / College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, P. R. China
| | - Jianhong Gu
- Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China) / College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, P. R. China
| | - Hui Zou
- Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China) / College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, P. R. China
| | - Yan Yuan
- Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China) / College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, P. R. China
| | - Ruilong Song
- Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China) / College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, P. R. China
| | - Yonggang Ma
- Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China) / College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, P. R. China
| | - Jianchun Bian
- Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China) / College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, P. R. China
| | - Zongping Liu
- Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China) / College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, P. R. China
| | - Xishuai Tong
- Institute of Agricultural Science and Technology Development (Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China) / College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, P. R. China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, P. R. China.
| |
Collapse
|
6
|
Biswas S, Ahn JM, Kim IH. Assessing the potential of phytogenic feed additives: A comprehensive review on their effectiveness as a potent dietary enhancement for nonruminant in swine and poultry. J Anim Physiol Anim Nutr (Berl) 2024; 108:711-723. [PMID: 38264830 DOI: 10.1111/jpn.13922] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/20/2023] [Revised: 11/02/2023] [Accepted: 12/24/2023] [Indexed: 01/25/2024]
Abstract
Phytogenic feed additives (PFAs) often referred to as phytobiotics or botanical feed additives, are natural compounds derived from various plants, herbs, spices and other botanical sources. These feed additives are intended to serve a variety of purposes, including an immune system regulator, an antimicrobial, an antimutagenic, an antioxidant and a growth promoter. They are composed of bioactive compounds extracted from plants, including essential oils, polyphenols, terpenoids and flavonoids. They are mostly utilized as substitute antibiotic growth promoters in nonruminant (swine and poultry) livestock production, owing to the prohibition of antibiotic usage in the feed industry. It has been thoroughly examined to ascertain their impact on intestinal health and activity, correlation with animals' effective health and well-being, productivity, food security and environmental impact. The potential uses of these feed additives depend on the properties of herbs, the comprehension of their principal and secondary components, knowledge of their mechanisms of action, the safety of animals and the products they produce. They are gaining recognition as effective and sustainable tools for promoting animal health and performance while reducing the reliance on antibiotics in nonruminant nutrition. Their natural origins, multifaceted benefits and alignment with consumer preferences make them a valuable addition to modern animal farming process. However, because of their inconsistent effects and inadequate knowledge of the mechanisms of action, their usage as a feed additive has been limited. This review offers a comprehensive assessment of the applications of PFAs as an effective feed supplement in swine and poultry nutrition. In summary, this comprehensive review provides current knowledge, identifies gaps in research and emphasizes the potential of phytogenic additives to foster sustainable and healthier livestock production systems while addressing the global concerns associated with antibiotic use in livestock farming.
Collapse
Affiliation(s)
- Sarbani Biswas
- Department of Animal Resource and Science, Dankook University, Cheonan, South Korea
- Smart Animal Bio Institute, Dankook University, Cheonan, Korea
| | - Je M Ahn
- Department of Animal Resource and Science, Dankook University, Cheonan, South Korea
- Smart Animal Bio Institute, Dankook University, Cheonan, Korea
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, South Korea
- Smart Animal Bio Institute, Dankook University, Cheonan, Korea
| |
Collapse
|
7
|
Yvon S, Beaumont M, Dayonnet A, Eutamène H, Lambert W, Tondereau V, Chalvon-Demersay T, Belloir P, Paës C. Effect of diet supplemented with functional amino acids and polyphenols on gut health in broilers subjected to a corticosterone-induced stress. Sci Rep 2024; 14:1032. [PMID: 38200093 PMCID: PMC10781708 DOI: 10.1038/s41598-023-50852-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/21/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
To address the overuse of antimicrobials in poultry production, new functional feed ingredients, i.e. ingredients with benefits beyond meeting basic nutritional requirements, can play a crucial role thanks to their prophylactic effects. This study evaluated the effects of the supplementation of arginine, threonine and glutamine together with grape polyphenols on the gut integrity and functionality of broilers facing a stress condition. 108 straight-run newly hatched Ross PM3 chicks were kept until 35 days and were allocated to 3 treatments. Broilers in the control group were raised in standard conditions. In experimental groups, birds were administered with corticosterone in drinking water (CORT groups) to impair the global health of the animal and were fed a well-balanced diet supplemented or not with a mix of functional amino acids together with grape extracts (1 g/kg of diet-CORT + MIX group). Gut permeability was significantly increased by corticosterone in non-supplemented birds. This corticosterone-induced stress effect was alleviated in the CORT + MIX group. MIX supplementation attenuated the reduction of crypt depth induced by corticosterone. Mucin 2 and TNF-α gene expression was up-regulated in the CORT + MIX group compared to the CORT group. Caecal microbiota remained similar between the groups. These findings indicate that a balanced diet supplemented with functional AA and polyphenols can help to restore broiler intestinal barrier after a stress exposure.
Collapse
Affiliation(s)
- Sophie Yvon
- INP-Purpan, Toulouse, France
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université De Toulouse, Toulouse, France
| | - Martin Beaumont
- GenPhySE, INRAE, ENVT, Université De Toulouse, Toulouse, France
| | | | - Hélène Eutamène
- INP-Purpan, Toulouse, France
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université De Toulouse, Toulouse, France
| | | | - Valérie Tondereau
- INP-Purpan, Toulouse, France
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, UPS, Université De Toulouse, Toulouse, France
| | | | | | - Charlotte Paës
- INP-Purpan, Toulouse, France.
- GenPhySE, INRAE, ENVT, Université De Toulouse, Toulouse, France.
| |
Collapse
|
8
|
Izadfar F, Belyani S, Pormohammadi M, Alizadeh S, Hashempor M, Emadi E, Sangsefidi ZS, Jalilvand MR, Abdollahi S, Toupchian O. The effects of grapes and their products on immune system: a review. Immunol Med 2023; 46:158-162. [PMID: 37158605 DOI: 10.1080/25785826.2023.2207896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/01/2022] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
Immune system plays a significant role in preventing and controlling diseases. Some studies reported the beneficial effects of grapes and their products on immunity. However, their results are controversial. This review aimed to discuss the effects of grapes and their products on immune system and their mechanisms of action. Although various in-vio and in-vitro studies and some human studies suggested that grapes and their products may help to improve the immune system's function, clinical trials in this area are limited and inconsistent.In conclusions, although, consumption of grapes and their products may help to having a healthy immune syste, further studies particularly human studies are required to clarify the precise effects of them and their mechanisms regarding immune system.
Collapse
Affiliation(s)
- Fatemeh Izadfar
- Department of Nutrition, School of Public Health, North Khorasan University of Medical SciencesBojnurd, Iran
| | - Saba Belyani
- Department of Nutrition, School of Public Health, North Khorasan University of Medical SciencesBojnurd, Iran
| | - Masomeh Pormohammadi
- Department of Nutrition, School of Public Health, North Khorasan University of Medical SciencesBojnurd, Iran
| | - Simin Alizadeh
- Department of Nutrition, School of Public Health, North Khorasan University of Medical SciencesBojnurd, Iran
| | - Mehrara Hashempor
- Department of Nutrition, School of Public Health, North Khorasan University of Medical SciencesBojnurd, Iran
| | - Elaheh Emadi
- Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health ServicesYazd, Iran
| | - Zohreh Sadat Sangsefidi
- Department of Nutrition, School of Public Health, North Khorasan University of Medical SciencesBojnurd, Iran
| | - Mohammad Reza Jalilvand
- Department of Nutrition, School of Public Health, North Khorasan University of Medical SciencesBojnurd, Iran
| | - Shima Abdollahi
- Department of Nutrition, School of Public Health, North Khorasan University of Medical SciencesBojnurd, Iran
| | - Omid Toupchian
- Department of Nutrition, School of Public Health, North Khorasan University of Medical SciencesBojnurd, Iran
| |
Collapse
|
9
|
Chen X, Xiong P, Song W, Song Q, Zou Z, Huang J, Chen J, Xu C, Su W, Ai G, Wei Q. Dietary supplementation with honeycomb extracts positively improved egg nutritional and flavor quality, serum antioxidant and immune functions of laying ducks. Front Vet Sci 2023; 10:1277293. [PMID: 37901107 PMCID: PMC10600442 DOI: 10.3389/fvets.2023.1277293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/14/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Honeycomb is a traditional natural health medicine and has antioxidant, antibacterial, anti-inflammatory, antiviral and antitumor activities. It is currently unclear whether honeycomb extract supplementation has positive effects on the intensive farming laying duck production. This study aims to evaluate the effects of honeycomb extracts on the laying performance, egg nutritional and flavor quality, serum biochemical indexes, and antioxidant and immune status in laying ducks. Methods A total of 672 healthy 28-week-old Shanma laying ducks with similar laying performance and body weight were randomly distributed into four dietary treatments with 6 replicates of 28 birds. The birds in each treatment were fed the basal diet supplemented with 0 (control group), 0.5, 1.0 or 1.5 g/kg honeycomb extracts, respectively. Feed and water were provided ad libitum for 45 days. Laying performance, egg quality, egg nutrition and flavor quality, serum parameters were assessed. Results The results showed that compared with the control group, honeycomb extracts addition significantly increased the average daily feed intake but did not affect the other laying performance indexes, egg quality or serum biochemical indexes of laying ducks. Dietary supplementation with honeycomb extracts significantly increased crude protein content and decreased the contents of cholesterol and trimethylamine in eggs. Diets supplemented with 1.5 g/kg honeycomb extracts significantly improved egg total amino acids and flavor amino acids contents, monounsaturated fatty acids and polyunsaturated fatty acids composition and enhanced the serum antioxidant activity and immune functions of ducks. Discussion Duck eggs are rich in nutrients and a valuable source of high-quality food for human, while they are rarely consumed directly by consumers because of their stronger fishy odor and lower sensory quality. Many studies have showed that the influence of dietary supplementation on egg components. This study indicated that dietary supplementation with honeycomb extracts positively reduced the contents of egg cholesterol and trimethylamine, improve egg amino acids contents and fatty acid profiles, enhanced serum antioxidant and immune status of laying ducks. The recommended supplemental level of honeycomb extracts was 1.5 g/kg in the diet of laying ducks.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Qipeng Wei
- Institute of Animal Husbandry and Veterinary Science, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| |
Collapse
|
10
|
Liu J, Liang S, Qin K, Jia B, Ren Z, Yang X, Yang X. Acer truncatum leaves extract modulates gut microbiota, improves antioxidant capacity, and alleviates lipopolysaccharide-induced inflammation in broilers. Poult Sci 2023; 102:102951. [PMID: 37562124 PMCID: PMC10432845 DOI: 10.1016/j.psj.2023.102951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/08/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 08/12/2023] Open
Abstract
This study investigated the appropriate way of dietary Acer truncatum leaves (ATL) addition, the effect of disease prevention and its mechanism of action. In experiment 1, 192 Arbor Acres broilers were assigned to 4 treatment groups, fed with basal diets containing 2% bran, replacing it with primary and fermented ATL, and additional 0.3% ATL extract to the basal diet for 42 d, respectively. In experiment 2, 144 broilers were assigned to 3 treatment groups for 21-d trial: (1) C-N group, basal diets, and injected with 0.9% (w/v) sterile saline; (2) C-L group, basal diets, and injected with lipopolysaccharide (LPS); (3) T-L group, ATL diets and injected with LPS. In experiment 1, ATL significantly decreased the index of abdominal fat at 42 d (P < 0.05). ATL extract had a better ability to improve antioxidant capacity and reduce inflammatory levels among all treatment groups, which significantly decreased the content of MDA in the liver and ileum mucosa at 21 d, and increased the expression of IL-10 and Occludin in jejunal mucosa at 42 d (P < 0.05). In experiment 2, ATL significantly increased the level of T-AOC in the liver, decreased the expression of NF-κB in the jejunal mucosa and ileum mucosa (P < 0.05), and restored LPS-induced the changed level of CAT in jejunal mucosa, the expression of IL-6, Claudin-1, and ZO-1 in jejunal mucosa and IL-1β in ileum mucosa (P < 0.05). Analysis of gut microbiota indicated that ATL enhanced the abundances of Bacteroidota and reduced the proportion of Firmicutes (P < 0.05), and the changed levels of T-AOC in body, IL-1β, IL-6, IL-10, and NF-κB in jejunum mucosa and propionic acid in cecal were associated with gut microbiota. Collectively, our data showed that the extract of ATL had a better antioxidant and anti-inflammatory effects than primality and fermented. Extraction of ATL modulated intestinal microbiota, and had a protective effect on oxidative stress, inflammation, and intestinal barrier function in broilers challenged with LPS.
Collapse
Affiliation(s)
- Jiongyan Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Saisai Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Kailong Qin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Bingzheng Jia
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Zhouzheng Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Xin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China; Key Laboratory of Livestock Biology, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China.
| |
Collapse
|
11
|
Abd El-Hack ME, de Oliveira MC, Attia YA, Kamal M, Almohmadi NH, Youssef IM, Khalifa NE, Moustafa M, Al-Shehri M, Taha AE. The efficacy of polyphenols as an antioxidant agent: An updated review. Int J Biol Macromol 2023; 250:126525. [PMID: 37633567 DOI: 10.1016/j.ijbiomac.2023.126525] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/13/2023] [Revised: 08/07/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Global production of the two major poultry products, meat and eggs, has increased quickly. This, in turn, indicates both the relatively low cost and the customers' desire for these secure and high-quality products. Natural feed additives have become increasingly popular to preserve and enhance the health and productivity of poultry and livestock. We consume a lot of polyphenols, which are a kind of micronutrient. These are phytochemicals with positive effects on cardiovascular, cognitive, anti-inflammatory, detoxifying, anti-tumor, anti-pathogen, a catalyst for growth, and immunomodulating functions, among extra health advantages. Furthermore, high quantities of polyphenols have unknown and occasionally unfavorable impacts on the digestive tract health, nutrient assimilation, the activity of digestive enzymes, vitamin and mineral assimilation, the performance of the laying hens, and the quality of the eggs. This review clarifies the numerous sources, categories, biological functions, potential limitations on usage, and effects of polyphenols on poultry performance, egg composition, exterior and interior quality traits.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | | | - Youssef A Attia
- Department of Agriculture, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Animal and Poultry Production, Faculty of Agriculture, Damnahur University, Damanhour 22516, Egypt
| | - Mahmoud Kamal
- Animal Production Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt
| | - Najlaa H Almohmadi
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, P.O Box 715, Makkah 21955, Saudi Arabia
| | - Islam M Youssef
- Animal Production Research Institute, Agricultural Research Center, Dokki, Giza 12618, Egypt
| | - Norhan E Khalifa
- Department of Physiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh 51511, Egypt
| | - Mahmoud Moustafa
- Department of Biology, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Mohammed Al-Shehri
- Department of Biology, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Edfina 22578, Egypt
| |
Collapse
|
12
|
Hu Y, Tang S, Zhao W, Wang S, Sun C, Chen B, Zhu Y. Effects of Dried Blueberry Pomace and Pineapple Pomace on Growth Performance and Meat Quality of Broiler Chickens. Animals (Basel) 2023; 13:2198. [PMID: 37443996 DOI: 10.3390/ani13132198] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/30/2023] [Revised: 06/22/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
The purpose of this study was to investigate the effects of dried blueberry pomace (BP) and pineapple pomace (PP) on the growth performance and meat quality of broiler chickens. A total of 240 1-day-old Ross 308 broiler chickens were randomly divided into 3 groups, with 10 replicates per treatment group and 8 birds per replicate (4 males and 4 females). The three groups were the control (CON) group, the 3% BP group, and 3% PP group. The entire trial period lasted 42 days. The results show that the average daily feed intake, average daily gain, and feed-to-gain ratio of the BP group and the PP group were not significantly different from those in the CON group (p > 0.05). Adding BP to the diet significantly reduced the proportion of liver and giblets (p < 0.05). Adding PP to the diet significantly reduced the proportion of liver, while the proportion of gizzard significantly increased (p < 0.05). The pH24h and L* of breast muscles were significantly lower in the PP group than in the CON group (p < 0.05). The water-holding capacity of the leg muscles in the BP group and the PP group was significantly lower than that in the CON group (p < 0.05). The crude protein content of breast muscle and the ether extract content of leg muscle in the BP group were significantly lower than those in the CON group (p < 0.05). In conclusion, the addition of 3% BP and PP to broiler chickens' diets had no adverse effects on growth performance or meat quality.
Collapse
Affiliation(s)
- Yaodong Hu
- College of Animal Science, Xichang University, Xichang 615000, China
| | - Shi Tang
- College of Animal Science, Xichang University, Xichang 615000, China
| | - Wei Zhao
- College of Animal Science, Xichang University, Xichang 615000, China
| | - Silu Wang
- College of Animal Science, Xichang University, Xichang 615000, China
| | - Caiyun Sun
- College of Animal Science, Xichang University, Xichang 615000, China
| | - Binlong Chen
- College of Animal Science, Xichang University, Xichang 615000, China
| | - Yuxing Zhu
- College of Animal Science, Xichang University, Xichang 615000, China
| |
Collapse
|
13
|
Meng WS, Zou Q, Xiao Y, Ma W, Zhang J, Wang T, Li D. Growth performance and cecal microbiota of broiler chicks as affected by drinking water disinfection and/or herbal extract blend supplementation. Poult Sci 2023; 102:102707. [PMID: 37216884 PMCID: PMC10209021 DOI: 10.1016/j.psj.2023.102707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/07/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 05/24/2023] Open
Abstract
Environmental exposures during early life are important for animals' intestinal microbiota composition and their production performance. This experiment investigated the growth performance, hematology parameters, jejunal morphology, and cecal microbiota of broiler chicks as affected by exogenous factors from the aspects of drinking water quality and dietary manipulation. A total of 480-day-old broiler chicks (Arbor acre; 41.59 ± 0.88 g) were randomly assigned into 4 groups (CON, HWGM, CA, CAHWGM). Each group had 6 replicates with 20 birds per replicate. Broiler chicks in CON group were fed with basal diet and drank normal drinking water; in HWGM group were fed with basal diet supplemented with 1.5g/kg herbal extract blend (hops, grape seed, and wheat germ) and drank normal drinking water; in CA group were fed with basal diet and drank sodium dichlorocyanurate (50 mg/L) treated-drinking water; in CAHWGM group were fed with basal diet supplemented with 1.5 g/kg herbal extract blend and drank chlorinated drinking water. The experimental period was 42 d. We found that broiler chicks drank chlorinated drinking water led to an increase in body weight gain and feed efficiency during d 22 to 42 and 1 to 42, as well as a decrease in cecal Dysgonomonas and Providencia abundance. Dietary supplementation of herbal extract blend increased cecal Lactobacillus and Enterococcus abundance, whereas decreased Dysgonomonas abundance. Moreover, we observed that cecal Dysgonomonas abundance synergistically decreased by treating drinking water with sodium dichlorocyanurate and supplementing herbal extract blend to the diet. Therefore, results obtained in this study indicated that providing chlorinated drinking water is an effective strategy to improve the growth performance of broiler chicks by regulating intestinal microbiota. Additionally, dietary supplementation of herbal extract blend alone or combined with chlorinated drinking water is able to regulate cecal microbiota.
Collapse
Affiliation(s)
- Wei Shuang Meng
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China
| | - Qiangqiang Zou
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China
| | - Yingying Xiao
- Liaoning Kaiwei Biotechnology Co., Ltd., Jinzhou 121000, China
| | - Wei Ma
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China
| | - Jiawen Zhang
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China
| | - Tieliang Wang
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China; Liaoning Kaiwei Biotechnology Co., Ltd., Jinzhou 121000, China
| | - Desheng Li
- College of Animal Science and Veterinary Medicine, Jinzhou Medical University, Jinzhou 121001, China; Jinzhou Zhongke Gene Detection Service Co., Ltd., Jinzhou 121219, China.
| |
Collapse
|
14
|
Cao G, Wang H, Yu Y, Tao F, Yang H, Yang S, Qian Y, Li H, Yang C. Dietary bamboo leaf flavonoids improve quality and microstructure of broiler meat by changing untargeted metabolome. J Anim Sci Biotechnol 2023; 14:52. [PMID: 37024991 PMCID: PMC10080799 DOI: 10.1186/s40104-023-00840-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/15/2022] [Accepted: 01/13/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Dietary bamboo leaf flavonoids (BLFs) are rarely used in poultry production, and it is unknown whether they influence meat texture profile, perceived color, or microstructure. RESULTS A total of 720 one-day-old Arbor Acres broilers were supplemented with a basal diet with 20 mg bacitracin/kg, 50 mg BLFs/kg, or 250 mg BLFs/kg or without additions. Data showed that the dietary BLFs significantly (P < 0.05) changed growth performance and the texture profile. In particular, BLFs increased birds' average daily gain and average daily feed intake, decreased the feed:gain ratio and mortality rate, improved elasticity of breast meat, enhanced the gumminess of breast and leg meat, and decreased the hardness of breast meat. Moreover, a significant (P < 0.05) increase in redness (a*) and chroma (c*) of breast meat and c* and water-holding capacity of leg meat was found in BLF-supplemented broilers compared with control broilers. In addition, BLFs supplementation significantly decreased (P < 0.05) the β-sheet ratio and serum malondialdehyde and increased the β-turn ratio of protein secondary structure, superoxide dismutase, and glutathione peroxidase of breast meat and total antioxidant capacity and catalase of serum. Based on the analysis of untargeted metabolome, BLFs treatment considerably altered 14 metabolites of the breast meat, including flavonoids, amino acids, and organic acids, as well as phenolic and aromatic compounds. CONCLUSIONS Dietary BLFs supplementation could play a beneficial role in improving meat quality and sensory color in the poultry industry by changing protein secondary structures and modulating metabolites.
Collapse
Affiliation(s)
- Guangtian Cao
- College of Standardisation, China Jiliang University, Hangzhou, 310018, People's Republic of China
| | - Huixian Wang
- Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, 311300, People's Republic of China
| | - Yang Yu
- Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, 311300, People's Republic of China
| | - Fei Tao
- College of Standardisation, China Jiliang University, Hangzhou, 310018, People's Republic of China
| | - Huijuan Yang
- College of Standardisation, China Jiliang University, Hangzhou, 310018, People's Republic of China
| | - Shenglan Yang
- Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, 311300, People's Republic of China
| | - Ye Qian
- Zhejiang Vegamax Biotechnology Co., Ltd., Anji, 313300, People's Republic of China
| | - Hui Li
- Zhejiang Vegamax Biotechnology Co., Ltd., Anji, 313300, People's Republic of China
| | - Caimei Yang
- Key Laboratory of Applied Technology On Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health and Internet Technology, College of Animal Science and Technology, Zhejiang A & F University, Hangzhou, 311300, People's Republic of China.
| |
Collapse
|
15
|
Bampidis V, Azimonti G, Bastos MDL, Christensen H, Dusemund B, Durjava M, Kouba M, López‐Alonso M, López Puente S, Marcon F, Mayo B, Pechová A, Petkova M, Ramos F, Sanz Y, Villa RE, Woutersen R, Brantom P, Chesson A, Martelli G, Westendorf J, Ortuño J, Manini P, Pizzo F. Safety and efficacy of a feed additive consisting of a dry grape extract (Nor-Grape® α) for all avian species (Nor-Feed S.A.S.). EFSA J 2023; 21:e07964. [PMID: 37064055 PMCID: PMC10100694 DOI: 10.2903/j.efsa.2023.7964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 04/18/2023] Open
Abstract
Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the safety and efficacy of a feed additive consisting of a dry grape extract (Nor-Grape® α) as a zootechnical feed additive, functional group physiological condition stabilisers - increase antioxidant defences, for all avian species. The additive is already authorised for use as a feed flavouring for all animal species, except dogs. The FEEDAP Panel concluded that the additive is safe for all avian species. The use of the additive in animal nutrition is of no concern for consumer safety. Based on the data submitted, the FEEDAP Panel could not conclude on the potential of the additive to be a skin or eye irritant or a dermal or respiratory sensitiser. However, the Panel considered that exposure through inhalation is likely. The use of the feed additive is considered safe for the environment. The Panel was unable to conclude on the potential of the additive to be efficacious under the proposed conditions of use.
Collapse
|
16
|
Zou Q, Meng W, Li C, Wang T, Li D. Feeding broilers with wheat germ, hops and grape seed extract mixture improves growth performance. Front Physiol 2023; 14:1144997. [PMID: 37057186 PMCID: PMC10086265 DOI: 10.3389/fphys.2023.1144997] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/15/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
In the study, Wheat germ, Hops and Grape seed extracts were made into a mixture (BX). The BX was supplemented in AA + broilers diets to investigate the effects of BX on broiler growth performance, blood indicators, microbiota, and noxious gas emissions in faeces. Four hundred and eighty 1-day-old AA + male broilers with an average initial body weight (44.82 ± 0.26) were randomly divided into four dietary treatments of six replicates each, with 20 birds per replicate. The experimental groups consisted of a group fed a basal diet and groups fed basal diet supplemented with 0.05%, 0.1%, and 0.2% BX. The trail was 42 days. The results showed that supplementing the dietary with graded levels of BX linearly increased ADG and ADFI from days 22–42 and 1–42. When dietarys supplemented with 0.2% BX significantly increased ADG and ADFI on days 22–42 and 1–42 (p < 0.05). The addition of BX reduced H2S and NH3 emissions in the faeces; the levels of E. coli and Salmonella in the faeces were significantly reduced and the levels of Lactobacillus were increased (p < 0.05). In this trial, when the diet was supplemented with 0.2% BX, faecal levels of E. coli and Salmonella were consistently at their lowest levels and Lactobacillus were at their highest. At the same time, NH3 and H2S emissions from broiler faecal also had been at their lowest levels. Conclusion: Dietary supplementation with a 0.2% BX could improve the growth performance of broilers and also reduced faecal H2S and NH3 emissions, as well as faecal levels of E. coli and Salmonella, and increased levels of Lactobacillus. Thus, BX made by Wheat germ, Hops and Grape seed extract is expected to be an alternative to antibiotics. And based on the results of this trial, the recommended dose for use in on-farm production was 0.2%.
Collapse
Affiliation(s)
- Qiangqiang Zou
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Weishuang Meng
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Chunxiao Li
- Anshan Animal Disease Prevention and Control Center, Anshan, China
| | - Tieliang Wang
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
| | - Desheng Li
- College of Animal Husbandry and Veterinary Medicine, Jinzhou Medical University, Jinzhou, China
- *Correspondence: Desheng Li,
| |
Collapse
|
17
|
Performance, blood biochemistry, carcass fatty acids, antioxidant status, and HSP70 gene expressions in Japanese quails reared under high stocking density: the effects of grape seed powder and meal. Trop Anim Health Prod 2023; 55:53. [PMID: 36708502 DOI: 10.1007/s11250-023-03481-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/09/2022] [Accepted: 01/23/2023] [Indexed: 01/29/2023]
Abstract
Japanese quails reared under high stocking density (SD) were evaluated for the effects of grape seed powder (GSP) and meal (GSM) supplementation on performance, blood biochemistry, thigh and breast muscle fatty acids, antioxidant status, and HSP70 gene expression. We randomly assigned 288 (15-day-old) quail chicks to six treatment groups in a factorial design (2 × 3) with four replicates, involving two density levels [160 cm2/bird (LD) and 80 cm2/bird (HD)] and three feed forms (FFs) [no supplementation, grape seed powder (3% GSP), grape seed meal (3% GSM)]. SD had a significant effect on live weight, but not on weekly feed intake, daily weight gain, and feed conversion ratio. Serum creatinine and aspartate aminotransferase levels were significantly affected by FF and SD × FF (p < 0.05). A high SD reduced the n-3/n-6 ratio of breast muscle and a significant interaction was found between FF (p < 0.001). The SD × FF interaction reduced the Σn-6 ratio in HDM's thigh muscle, whereas in LDM, the ratio increased (p < 0.01). At high SD, neither GSP nor GSM reduced biological markers of oxidative stress (p > 0.05). Compared to GSP, GSM had higher efficacy at reducing HSP70 levels related to high SD levels. Despite this, at high SD, a diet containing 3% of GSP and GSM was not effective in overcoming oxidative stress. Therefore, more studies using different doses of GSM and GSP in quail diets would be beneficial.
Collapse
|
18
|
Basiouni S, Tellez-Isaias G, Latorre JD, Graham BD, Petrone-Garcia VM, El-Seedi HR, Yalçın S, El-Wahab AA, Visscher C, May-Simera HL, Huber C, Eisenreich W, Shehata AA. Anti-Inflammatory and Antioxidative Phytogenic Substances against Secret Killers in Poultry: Current Status and Prospects. Vet Sci 2023; 10:55. [PMID: 36669057 PMCID: PMC9866488 DOI: 10.3390/vetsci10010055] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/17/2022] [Revised: 11/19/2022] [Accepted: 01/04/2023] [Indexed: 01/17/2023] Open
Abstract
Chronic stress is recognized as a secret killer in poultry. It is associated with systemic inflammation due to cytokine release, dysbiosis, and the so-called leaky gut syndrome, which mainly results from oxidative stress reactions that damage the barrier function of the cells lining the gut wall. Poultry, especially the genetically selected broiler breeds, frequently suffer from these chronic stress symptoms when exposed to multiple stressors in their growing environments. Since oxidative stress reactions and inflammatory damages are multi-stage and long-term processes, overshooting immune reactions and their down-stream effects also negatively affect the animal's microbiota, and finally impair its performance and commercial value. Means to counteract oxidative stress in poultry and other animals are, therefore, highly welcome. Many phytogenic substances, including flavonoids and phenolic compounds, are known to exert anti-inflammatory and antioxidant effects. In this review, firstly, the main stressors in poultry, such as heat stress, mycotoxins, dysbiosis and diets that contain oxidized lipids that trigger oxidative stress and inflammation, are discussed, along with the key transcription factors involved in the related signal transduction pathways. Secondly, the most promising phytogenic substances and their current applications to ameliorate oxidative stress and inflammation in poultry are highlighted.
Collapse
Affiliation(s)
- Shereen Basiouni
- Institute of Molecular Physiology, Johannes-Gutenberg University, 55128 Mainz, Germany
- Clinical Pathology Department, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Guillermo Tellez-Isaias
- Department of Poultry Science, University of Arkansas Agricultural Experiment Station, Fayetteville, AR 72701, USA
| | - Juan D. Latorre
- Department of Poultry Science, University of Arkansas Agricultural Experiment Station, Fayetteville, AR 72701, USA
| | - Brittany D. Graham
- Department of Poultry Science, University of Arkansas Agricultural Experiment Station, Fayetteville, AR 72701, USA
| | - Victor M. Petrone-Garcia
- Facultad de Estudios Superiores Cuautitlan, Universidad Nacional Autonoma de Mexico (UNAM), Cuautitlan Izcalli 58190, Mexico
| | - Hesham R. El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, SE 751 24 Uppsala, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu Education Department, Jiangsu University, Nanjing 210024, China
| | - Sakine Yalçın
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Ankara University (AU), 06110 Ankara, Turkey
| | - Amr Abd El-Wahab
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hanover, Germany
- Department of Nutrition and Nutritional Deficiency Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Christian Visscher
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hanover, Germany
| | - Helen L. May-Simera
- Institute of Molecular Physiology, Johannes-Gutenberg University, 55128 Mainz, Germany
| | - Claudia Huber
- Structural Biochemistry of Membranes, Bavarian NMR Center, Technical University of Munich (TUM), D-85747 Garching, Germany
| | - Wolfgang Eisenreich
- Structural Biochemistry of Membranes, Bavarian NMR Center, Technical University of Munich (TUM), D-85747 Garching, Germany
| | - Awad A. Shehata
- Avian and Rabbit Diseases Department, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
- Research and Development Section, PerNaturam GmbH, An der Trift 8, 56290 Gödenroth, Germany
- Prophy-Institute for Applied Prophylaxis, 59159 Bönen, Germany
| |
Collapse
|
19
|
Response surface methodology optimization and HPLC-ESI-QTOF-MS/MS analysis on ultrasonic-assisted extraction of phenolic compounds from okra (Abelmoschus esculentus) and their antioxidant activity. Food Chem 2022; 405:134966. [PMID: 36436230 DOI: 10.1016/j.foodchem.2022.134966] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/26/2022] [Revised: 10/07/2022] [Accepted: 11/13/2022] [Indexed: 11/17/2022]
Abstract
Okra (Abelmoschus esculentus) has attracted a growing attention for its nutritional and medicinal values, while few studies focused on systemic study of okra polyphenols (OP). In order to obtain the maximum extracted efficiency, response surface methodology was used to optimize ultrasonic-assisted extraction conditions. The maximum TPC was 7.02 mg GAE/g dw under the condition of solid-liquid ratio 1:25, ethanol concentration 70 %, 40 min, and 142 W at 46 °C. Then 27 compounds in OP were identified by HPLC-ESI-QTOF-MS/MS, among which 7-hydroxycoumarin, scopoletin, luteolin and et al were firstly identified from okra. Furthermore, OP exhibited antioxidant activity in reducing power (FRAP, 9.77 mM Fe2+/g OP) and radical scavenging (DPPH, IC50 19.31 µg/mL; SARC, IC50 210.81 µg/ml). Moreover, OP significantly inhibited cell apoptosis and ROS generation, and alleviated oxidative damage in t-BHP induced HUVECs. Overall, our findings could provide perspective for further potential employments of okra as functional food.
Collapse
|
20
|
Xi Y, Chen J, Guo S, Wang S, Liu Z, Zheng L, Qi Y, Xu P, Li L, Zhang Z, Ding B. Effects of tannic acid on growth performance, relative organ weight, antioxidative status, and intestinal histomorphology in broilers exposed to aflatoxin B 1. Front Vet Sci 2022; 9:1037046. [PMID: 36337182 PMCID: PMC9634217 DOI: 10.3389/fvets.2022.1037046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/05/2022] [Accepted: 10/03/2022] [Indexed: 08/31/2023] Open
Abstract
A total of 480 one-day-old AA broiler chicks were randomly allocated to one of four treatments in a 2 × 2 factorial to investigate the effects of tannic acid (TA) on growth performance, relative organ weight, antioxidant capacity, and intestinal health in broilers dietary exposed to aflatoxin B1 (AFB1). Treatments were as follows: (1) CON, control diet; (2) TA, CON + 250 mg/kg TA; (3) AFB1, CON + 500 μg/kg AFB1; and (4) TA+AFB1, CON + 250 mg/kg TA + 500 μg/kg AFB1. There were 10 replicate pens with 12 broilers per replicate. Dietary AFB1 challenge increased the feed conversion ratio during days 1 to 21 (P < 0.05). The TA in the diet did not show significant effects on the growth performance of broilers during the whole experiment period (P > 0.05). The liver and kidney relative weight was increased in the AF challenge groups compared with the CON (P < 0.05). The addition of TA could alleviate the relative weight increase of liver and kidney caused by AFB1 (P < 0.05). Broilers fed the AFB1 diets had lower activity of glutathione peroxidase, catalase, total superoxide dismutase, S-transferase, and total antioxidant capacity in plasma, liver and jejunum, and greater malondialdehyde content (P < 0.05). Dietary supplemented with 250 mg/kg TA increased the activities of antioxidative enzymes, and decreased malondialdehyde content (P < 0.05). In addition, AFB1 significantly reduced the villus height and crypt depth ratio in the ileum on day 42 (P < 0.05). In conclusion, supplementation with 250 mg/kg TA could partially protect the antioxidant capacity and prevent the enlargement of liver in broilers dietary challenged with 500 μg/kg AFB1.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zhengfan Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Binying Ding
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
21
|
Calcium anacardate in the diet of broiler chickens: Performance, carcass characteristics and meat quality. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/24/2022]
|
22
|
Costa MM, Alfaia CM, Lopes PA, Pestana JM, Prates JAM. Grape By-Products as Feedstuff for Pig and Poultry Production. Animals (Basel) 2022; 12:ani12172239. [PMID: 36077957 PMCID: PMC9454619 DOI: 10.3390/ani12172239] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/05/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Grape by-products are exceptional options for replacement of conventional and unsustainable feed sources, since large amounts are generated every year from the winery industry. However, the majority is wasted with severe environmental and economic consequences. The present review aimed to evaluate the effects of grape by-products on pig and poultry growth performance. The most recent literature was reviewed using ScienceDirect and PubMed databases and the results of a total of 16 and 38 papers for pigs and poultry, respectively, were assessed. Fewer studies are documented for pig, but the incorporation of grape by-products up to 9% feed led to an improvement in growth performance with an increase in average daily gain. Conversely, lower levels (<3% feed) are needed to achieve these results in poultry. The beneficial effects of grape by-products on animal performance are mainly due to their antioxidant, antimicrobial, and gut morphology modulator properties, but their high level of cell wall lignification and content of polyphenolic compounds (e.g., tannin) limits nutrient digestion and absorption by monogastric animals. The use of exogenous enzymes or mechanical/chemical processes can provide additional nutritional value to these products by improving nutrient bioavailability. Overall, the valorization of grape by-products is imperative to use them as feed alternatives and intestinal health promoters, thereby contributing to boost circular agricultural economy.
Collapse
Affiliation(s)
- Mónica M. Costa
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - Cristina M. Alfaia
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - Paula A. Lopes
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - José M. Pestana
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
| | - José A. M. Prates
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
23
|
Pascual A, Pauletto M, Trocino A, Birolo M, Dacasto M, Giantin M, Bordignon F, Ballarin C, Bortoletti M, Pillan G, Xiccato G. Effect of the dietary supplementation with extracts of chestnut wood and grape pomace on performance and jejunum response in female and male broiler chickens at different ages. J Anim Sci Biotechnol 2022; 13:102. [PMID: 35978386 PMCID: PMC9387010 DOI: 10.1186/s40104-022-00736-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/03/2022] [Accepted: 06/01/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Recently, interest in the use of herbs and phytogenic compounds has grown because of their potential role in the production and health of livestock animals. Among these compounds, several tannins have been tested in poultry, but those from chestnut wood and grape-industry byproducts have attracted remarkable interest. Thus, the present study aimed to gain further insights into the mechanisms involved in the response to the dietary supplementation with extracts of chestnut wood or grape pomace. To this purpose, 864 broiler chickens were fed a control diet (C) or the same diet supplemented 0.2% chestnut wood (CN) extract or 0.2% grape pomace (GP) extract from hatching until commercial slaughtering (at 45 days of age) to assess their effects on performance, meat quality, jejunum immune response and whole-transcriptome profiling in both sexes at different ages (15 and 35 d). RESULTS Final live weight and daily weight gain significantly increased (P < 0.01) in chickens fed GP diets compared to CN and C diets. The villi height was lower in chickens fed the CN diet than in those fed the C diet (P < 0.001); moreover, a lower density of CD45+ cells was observed in chickens fed the CN diet (P < 0.05) compared to those fed the C and GP diets. Genes involved in either pro- or anti-inflammatory response pathways, and antimicrobial and antioxidant responses were affected by GP and CN diets. There was no effect of the dietary treatment on meat quality. Regarding sex, in addition to a lower growth performance, females showed a lower occurrence of wooden breast (16.7% vs. 55.6%; P < 0.001) and a higher occurrence of spaghetti meat (48.6% vs. 4.17%; P < 0.001) in pectoralis major muscles after slaughtering than those in males. Based on the results of whole-transcriptome profiling, a significant activation of some molecular pathways related to immunity was observed in males compared with those of females. CONCLUSIONS The GP supplementation improved chicken performance and promoted immune responses in the intestinal mucosa; moreover, age and sex were associated with the most relevant transcriptional changes.
Collapse
Affiliation(s)
- A Pascual
- Department of Agronomy, Food, Natural Resources, Animal and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020, Padova, Legnaro, Italy
| | - M Pauletto
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, 35020, Padova, Legnaro, Italy
| | - A Trocino
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, 35020, Padova, Legnaro, Italy.
| | - M Birolo
- Department of Agronomy, Food, Natural Resources, Animal and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020, Padova, Legnaro, Italy
| | - M Dacasto
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, 35020, Padova, Legnaro, Italy
| | - M Giantin
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, 35020, Padova, Legnaro, Italy
| | - F Bordignon
- Department of Agronomy, Food, Natural Resources, Animal and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020, Padova, Legnaro, Italy
| | - C Ballarin
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, 35020, Padova, Legnaro, Italy
| | - M Bortoletti
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, 35020, Padova, Legnaro, Italy
| | - G Pillan
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell'Università 16, 35020, Padova, Legnaro, Italy
| | - G Xiccato
- Department of Agronomy, Food, Natural Resources, Animal and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020, Padova, Legnaro, Italy
| |
Collapse
|
24
|
The Effects of Purple Corn Pigment on Growth Performance, Blood Biochemical Indices, Meat Quality, Muscle Amino Acids, and Fatty Acids of Growing Chickens. Foods 2022; 11:foods11131870. [PMID: 35804685 PMCID: PMC9265630 DOI: 10.3390/foods11131870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/19/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 12/18/2022] Open
Abstract
This study investigated the effects of dietary supplementation with different levels of purple corn pigment (PCP) on the growth performance, blood biochemical indices, meat quality, muscle amino acids, and fatty acids of growing chickens. A total of 288 (8 weeks of age) growing Chishui black-bone chickens (body weight, 940 ± 80 g; mean ± standard deviation) were randomly divided into 4 groups using a completely randomized design. The four diet groups were as follows: (1) control, basal diet; (2) treatment 1, treatment 2, and treatment 3, which were basal diet with 80, 160, and 240 mg/kg PCP, respectively. The results showed that compared with the control group, the feeding of anthocyanins significantly (p < 0.05) increased the average daily feed intake and average daily gain in chickens. Moreover, chickens receiving 80 mg/kg PCP significantly increased (p < 0.05) plasma total antioxidant capacity, superoxide dismutase, glutathione peroxidase, catalase, high-density lipoprotein cholesterol, and albumin concentrations relative to the control group. For meat quality, dietary supplementation with PCP significantly (p < 0.05) reduced the drip loss and water loss rate in breast muscle. Additionally, chickens receiving PCP tended to increase (p < 0.05) the levels of most individual amino acids, essential amino acids, and umami amino acids in the muscle. Specifically, the addition of 80 mg/kg PCP significantly improved (p < 0.05) total polyunsaturated fatty acids in chicken muscle. Accordingly, the consumption of anthocyanin-rich PCP by the growing chickens had the potential to increase the growth performance, enhance antioxidant and immune capacities, increase meat quality, and improve essential and umami amino acids as well as unsaturated fatty acids in the muscle.
Collapse
|
25
|
Tan Z, Halter B, Liu D, Gilbert ER, Cline MA. Dietary Flavonoids as Modulators of Lipid Metabolism in Poultry. Front Physiol 2022; 13:863860. [PMID: 35547590 PMCID: PMC9081441 DOI: 10.3389/fphys.2022.863860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/27/2022] [Accepted: 03/07/2022] [Indexed: 01/04/2023] Open
Abstract
Flavonoids, naturally-occurring compounds with multiple phenolic structures, are the most widely distributed phytochemicals in the plant kingdom, and are mainly found in vegetables, fruits, grains, roots, herbs, and tea and red wine products. Flavonoids have health-promoting effects and are indispensable compounds in nutritional and pharmaceutical (i.e., nutraceutical) applications. Among the demonstrated bioactive effects of flavonoids are anti-oxidant, anti-inflammatory, and anti-microbial in a range of research models. Through dietary formulation strategies, numerous flavonoids provide the ability to support bird health while improving the nutritional quality of poultry meat and eggs by changing the profile of fatty acids and reducing cholesterol content. A number of such compounds have been shown to inhibit adipogenesis, and promote lipolysis and apoptosis in adipose tissue cells, and thereby have the potential to affect fat accretion in poultry at various ages and stages of production. Antioxidant and anti-inflammatory properties contribute to animal health by preventing free radical damage in tissues and ameliorating inflammation in adipose tissue, which are concerns in broiler breeders and laying hens. In this review, we summarize the progress in understanding the effects of dietary flavonoids on lipid metabolism and fat deposition in poultry, and discuss the associated physiological mechanisms.
Collapse
Affiliation(s)
- Zhendong Tan
- Department of Animal and Poultry Sciences, Blacksburg, VA, United States
| | - Bailey Halter
- Department of Animal and Poultry Sciences, Blacksburg, VA, United States
| | - Dongmin Liu
- Department of Human Nutrition, Foods, and Exercise, Blacksburg, VA, United States
| | | | - Mark A Cline
- Department of Animal and Poultry Sciences, Blacksburg, VA, United States
| |
Collapse
|
26
|
Zhang ZF, Xi Y, Wang ST, Zheng LY, Qi Y, Guo SS, Ding BY. Effects of Chinese Gallnut Tannic Acid on Growth Performance, Blood Parameters, Antioxidative Status, Intestinal Histomorphology, and Cecal Microbial Shedding in Broilers Challenged with Aflatoxin B1. J Anim Sci 2022; 100:6555769. [PMID: 35352127 PMCID: PMC9030211 DOI: 10.1093/jas/skac099] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/11/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
The objective of the present study was to investigate the effects of tannic acid (TA) on growth performance, blood parameters, antioxidant capacity, and intestinal health in broilers challenged with aflatoxin B1 (AFB1). A total of 480 1-d-old broilers were randomly allotted into 4 treatments: 1) CON, control diet, 2) AF, CON + 60 μg/kg AFB1 of feed during d 1 to 21, CON + 120 μg/kg AFB1 of feed during d 22 to 42, 3) TA1, AF +250 mg/kg TA, 4) TA2, AF +500 mg/kg TA. Average daily gain (ADG) and average daily feed intake (ADFI) were increased in the TA1 during d 1 to 21, d 22 to 42 and d1 to 42 compared with CON and AF treatments (P < 0.05). Broilers fed the TA2 diet had greater ADG and ADFI than those fed the CON and AF diets during the finisher and the whole period (P < 0.05). Administration of TA decreased the relative weight of liver and kidney compared with broilers fed the AF diet on d 42 (P < 0.05). The blood activity of alanine transferase (ALT) and gamma-glutamyl transferase (GGT) was increased in the AF treatment compared with the CON (P < 0.05). Broilers fed the TA1 decreased the ALT content on d 21, and the level of ALT and GGT was decreased in the TA2 compared with the AF group on d 42 (P < 0.05). The activity of total superoxide dismutase (T-SOD) and glutathione peroxidase (GSH-Px) in plasma, and the hepatic glutathione S-transferase (GST) was decreased in the AF group compared with the CON group (P < 0.05). The TA decreased plasma malondialdehyde concentration, and increased plasma T-SOD, GSH-Px, total antioxidant capacity, and hepatic GST activity compared to the AF (P < 0.05). The crypt depth of jejunum was decreased in the TA1 treatment on d 21, and the villus height of ileum was increased in the TA2 group on d 42 compared with the AF treatment (P < 0.05). The cecal Lactobacillus counts on d 21 was tended to increase in the TA treatments compared with the AF (P = 0.061). In conclusion, dietary inclusion of 250 mg/kg and 500 mg/kg TA could improve the growth, antioxidant capacity, and partially protected the intestinal health of broilers challenged with AFB1.
Collapse
Affiliation(s)
- Zheng Fan Zhang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Yu Xi
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Si Tian Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Li Yun Zheng
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Ya Qi
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Shuang Shuang Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| | - Bin Ying Ding
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
27
|
Engler P, Desguerets C, Benarbia MEA, Mallem Y. Supplementing young cattle with a rumen-protected grape extract around vaccination increases humoral response and antioxidant defenses. Vet Anim Sci 2022; 15:100232. [PMID: 35079659 PMCID: PMC8777116 DOI: 10.1016/j.vas.2022.100232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/26/2022] Open
|
28
|
Tong Z, Lei F, Liu L, Wang F, Guo A. Effects of Plotytarya strohilacea Sieb. et Zuce Tannin on the Growth Performance, Oxidation Resistance, Intestinal Morphology and Cecal Microbial Composition of Broilers. Front Vet Sci 2022; 8:806105. [PMID: 35071393 PMCID: PMC8766804 DOI: 10.3389/fvets.2021.806105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/31/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
The purpose of this experiment was to study the effects of Plotytarya strohilacea Sieb. et Zuce tannin on broilers growth performance, antioxidant function, intestinal development, intestinal morphology and the cecal microbial composition. In this experiment, a total of 360 1-day-old Arbor Acres male broilers were randomly divided into 4 treatment groups, with 6 replicates in each group and 15 broilers in each replicate. The control group (Control) was fed the basal diet, and the broilers were fed a basal diet supplemented with 0 (Control), 100 (PT1), 400 (PT2), and 800 (PT3) mg/kg Plotytarya strohilacea Sieb. et Zuce tannins for 42 days, respectively. The results showed that the average daily feed intake (ADFI) of the PT1 group was significantly lower than that of the control group, and there was a significant quadratic relationship between the ADFI and the concentration of tannin (P < 0.05). Compared with the control group, the F/G of broilers during the 22-42 days phase in the PT1 group showed a decreasing trend (P = 0.063). The serum catalase (CAT) activity in the PT1 group was significantly higher than those of the other three groups, and the effect was significantly quadratically related to the dosage (P < 0.05). The glutathione peroxidase (GSH-Px) activity in the PT1, PT2 and control groups were significantly higher than that of the PT3 group, and the effect was significantly quadratically related to the addition amount (P < 0.05). The serum total antioxidant capacity (T-AOC) activity in the PT1 group was significantly higher than that in the control group, and the effect was significantly quadratically related to the addition amount (P < 0.05). Compared to the control group, the villus height of jejunum in the PT1, PT2 and PT3 groups were significantly higher, and there was a significant quadratic relationship between the villus height of jejunum and the addition amount (P < 0.05). In addition, adding tannins to diets significantly increased Parabacteroides in the dominant genus (P < 0.05). In conclusion, dietary supplementation with Plotytarya strohilacea Sieb. et Zuce tannin improved the growth performance, antioxidant function, and intestinal morphology along with an increased abundance of Parabacteroides in the cecum, and the recommended dosage of tannin in broiler diets was 100 mg/kg.
Collapse
Affiliation(s)
- Zhenkai Tong
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
| | - Fuhong Lei
- Moringa oleifera Research Center, Yunnan Institute of Tropical Crops, Jinghong, China
| | - Lixuan Liu
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
| | - Fei Wang
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
| | - Aiwei Guo
- Faculty of Life Sciences, Southwest Forestry University, Kunming, China
| |
Collapse
|
29
|
Tong Z, He W, Fan X, Guo A. Biological Function of Plant Tannin and Its Application in Animal Health. Front Vet Sci 2022; 8:803657. [PMID: 35083309 PMCID: PMC8784788 DOI: 10.3389/fvets.2021.803657] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/28/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
Plant tannins are widely found in plants and can be divided into hydrolyzed tannins and condensed tannins. In recent years, researchers have become more and more interested in using tannin-rich plants and plant extracts in ruminant diets to improve the quality of animal products. Some research results show that plant tannins can effectively improve the quality of meat and milk, and enhance the oxidative stability of the product. In this paper, the classification and extraction sources of plant tannins are reviewed, as well as the biological functions of plant tannins in animals. The antioxidant function of plant tannins is discussed, and the influence of their structure on antioxidation is analyzed. The effects of plant tannins against pathogenic bacteria and the mechanism of action are discussed, and the relationship between antibacterial action and antioxidant action is analyzed. The inhibitory effect of plant tannins on many kinds of pathogenic viruses and their action pathways are discussed, as are the antiparasitic properties of plant tannins. The anti-inflammatory action of tannins and its mechanism are analyzed. The function of plant tannins in antidiarrheal action and its influencing factors are discussed. In addition, the effects of plant tannins as feed additives on animals and the influencing factors are reviewed in this paper to provide a reference for further research.
Collapse
|
30
|
Mogire MK, Choi J, Lu P, Yang C, Liu S, Adewole D, Rodas-Gonzalez A, Yang C. Effects of red-osier dogwood extracts on growth performance, intestinal digestive and absorptive functions, and meat quality of broiler chickens. CANADIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1139/cjas-2020-0191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/10/2023]
Abstract
A total of 320 one-day-old Cobb 500 chicks with an initial weight of 48.3 ± 3.3 g·pen−1 were assigned to four dietary treatments with eight replicates provided in three phases for 46 d. The treatments were fed as mash diets and included (1) negative control (NC) corn-soybean basal diet, (2) positive control (PC) basal diet with 30 ppm avilamycin, (3) basal diet supplemented with 1000 ppm red-osier dogwood extracts (RDE1), and (4) basal diet with 3000 ppm red-osier dogwood extracts (RDE2). Results showed reduced jejunal crypt depth in RDE1 and increased villus:crypt ratio in groups (either RDE1 or RDE2) (P < 0.05). Cationic amino acid (AA) transporter mRNA abundance was decreased (P < 0.05) in RDE1, RDE2, and PC treatments, but peptide and neutral AA transporter mRNA abundance were higher (P < 0.05) in RDE2 compared with NC. Apparent ileal digestibility of crude fat was increased in RDE2 and PC compared with NC, whereas AA digestibility was greater in RDE1, RDE2, and PC (P < 0.05). In conclusion, red-osier dogwood had no effect on growth performance, improved the intestinal health and function of broiler chickens, and had no detrimental effects on meat quality.
Collapse
Affiliation(s)
- Marion K. Mogire
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Janghan Choi
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Peng Lu
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Chongwu Yang
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Shangxi Liu
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Deborah Adewole
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | | | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
31
|
Supplementing functional amino acids and polyphenols at low dose can restore performance and amino acid digestibility in broilers challenged with coccidiosis. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022]
|
32
|
Employment of Phenolic Compounds from Olive Vegetation Water in Broiler Chickens: Effects on Gut Microbiota and on the Shelf Life of Breast Fillets. Molecules 2021; 26:molecules26144307. [PMID: 34299582 PMCID: PMC8306377 DOI: 10.3390/molecules26144307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/23/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022] Open
Abstract
Olive vegetation water (OVW) is a by-product with a noticeable environmental impact; however, its polyphenols may be reused food and feed manufacture as high-value ingredients with antioxidant/antimicrobial activities. The effect of dietary supplementation with OVW polyphenols on the gut microbiota, carcass and breast quality, shelf life, and lipid oxidation in broiler chickens has been studied. Chicks were fed diets supplemented with crude phenolic concentrate (CPC) obtained from OVW (220 and 440 mg/kg phenols equivalent) until reaching commercial size. Cloacal microbial community (rRNA16S sequencing) was monitored during the growth period. Breasts were submitted to culture-dependent and -independent microbiological analyses during their shelf-life. Composition, fatty acid concentration, and lipid oxidation of raw and cooked thawed breasts were measured. Growth performance and gut microbiota were only slightly affected by the dietary treatments, while animal age influenced the cloacal microbiota. The supplementation was found to reduce the shelf life of breasts due to the growth of spoilers. Chemical composition and lipid oxidation were not affected. The hydroxytyrosol (HT) concentration varied from 178.6 to 292.4 ug/kg in breast muscle at the beginning of the shelf-life period. The identification of HT in meat demonstrates that the absorption and metabolism of these compounds was occurring efficiently in the chickens.
Collapse
|
33
|
Hidayat C, Irawan A, Jayanegara A, Sholikin MM, Prihambodo TR, Yanza YR, Wina E, Sadarman S, Krisnan R, Isbandi I. Effect of dietary tannins on the performance, lymphoid organ weight, and amino acid ileal digestibility of broiler chickens: A meta-analysis. Vet World 2021; 14:1405-1411. [PMID: 34316185 PMCID: PMC8304436 DOI: 10.14202/vetworld.2021.1405-1411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/24/2021] [Accepted: 04/15/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Tannins are functional secondary metabolites that may provide benefits to ruminants. However, to date, their effects on broiler chickens remain inconclusive. This study aimed to evaluate the effectiveness of dietary tannin levels on the performance, body organs, and amino acid (AA) digestibility of broiler chickens using a meta-analysis. Materials and Methods: After verification and evaluation, a total of 22 articles were included in the present study. All data regarding dietary tannin dosages, performance, digestibility, and gastrointestinal physiology of broiler chickens were tabulated into a database. The database data were then statistically analyzed using mixed models, with tannin dose as a fixed effect and study as a random effect. Results: High levels of dietary tannins negatively affected the average daily gain and average daily feed intake of broiler chickens according to linear patterns (p<0.001). In addition, dietary tannins decreased drumstick and liver weights, as well as bursa of Fabricius and spleen weight (p<0.05). Meanwhile, other carcass traits (i.e., thigh, wings, and body fat) were not influenced by dietary tannins. Regarding AA digestibility, high dietary tannin concentrations induced negative responses on isoleucine, leucine, and methionine digestibility (p<0.05). Conclusion: Dietary tannins appear to have a negative effect on broiler performance, lymphoid organ weight, and AA ileal digestibility. Hence, the addition of tannins to broiler diets is not recommended.
Collapse
Affiliation(s)
- Cecep Hidayat
- Indonesian Research Institute For Animal Production, Ciawi Bogor 16720, Indonesia.,Animal Feed and Nutrition Modelling Research Group, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
| | - Agung Irawan
- Animal Feed and Nutrition Modelling Research Group, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia.,Vocational School, Universitas Sebelas Maret, Surakarta 57126, Indonesia
| | - Anuraga Jayanegara
- Animal Feed and Nutrition Modelling Research Group, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia.,Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
| | - Muhammad Miftakhus Sholikin
- Animal Feed and Nutrition Modelling Research Group, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia.,Graduate Study Program of Nutrition and Feed Science, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
| | - Tri Rachmanto Prihambodo
- Animal Feed and Nutrition Modelling Research Group, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia.,Graduate Study Program of Nutrition and Feed Science, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
| | - Yulianri Rizki Yanza
- Animal Feed and Nutrition Modelling Research Group, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia.,Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, Poznań 60-637, Poland
| | - Elizabeth Wina
- Indonesian Research Institute For Animal Production, Ciawi Bogor 16720, Indonesia
| | - Sadarman Sadarman
- Animal Feed and Nutrition Modelling Research Group, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia.,Department of Animal Science, Sultan Syarif Kasim State Islamic University, Pekanbaru 28293, Indonesia.,Center for Livestock Studies and Development, Pahlawan Tuanku Tambusai University, Bangkinang 28412, Indonesia
| | - Rantan Krisnan
- Indonesian Research Institute For Animal Production, Ciawi Bogor 16720, Indonesia.,Animal Feed and Nutrition Modelling Research Group, Faculty of Animal Science, IPB University, Bogor 16680, Indonesia
| | - Isbandi Isbandi
- Indonesian Research Institute For Animal Production, Ciawi Bogor 16720, Indonesia
| |
Collapse
|
34
|
Hasted TL, Sharif S, Boerlin P, Diarra MS. Immunostimulatory Potential of Fruits and Their Extracts in Poultry. Front Immunol 2021; 12:641696. [PMID: 34079540 PMCID: PMC8165432 DOI: 10.3389/fimmu.2021.641696] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/14/2020] [Accepted: 04/21/2021] [Indexed: 11/13/2022] Open
Abstract
The impact of antibiotic use for growth promotion in livestock and poultry production on the rise of antimicrobial resistance (AMR) in bacteria led to the ban of this practice in the European Union in 2006 and a restriction of antimicrobial use (AMU) in animal agriculture in Canada and the United States of America. There is a high risk of infectious diseases such as necrotic enteritis due to Clostridium perfringens, and colibacillosis due to avian pathogenic Escherichia coli in antimicrobial-free broiler chickens. Thus, efficient and cost-effective methods for reducing AMU, maintaining good poultry health and reducing public health risks (food safety) are urgently needed for poultry production. Several alternative agents, including plant-derived polyphenolic compounds, have been investigated for their potential to prevent and control diseases through increasing poultry immunity. Many studies in humans reported that plant flavonoids could modulate the immune system by decreasing production of pro-inflammatory cytokines, T-cell activation, and proliferation. Fruits, especially berries, are excellent sources of flavonoids while being rich in nutrients and other functionally important molecules (vitamins and minerals). Thus, fruit byproducts or wastes could be important resources for value-added applications in poultry production. In the context of the circular economy and waste reduction, this review summarizes observed effects of fruit wastes/extracts on the general health and the immunity of poultry.
Collapse
Affiliation(s)
- Teri-Lyn Hasted
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON, Canada.,Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Shayan Sharif
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Patrick Boerlin
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Moussa Sory Diarra
- Guelph Research and Development Center, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| |
Collapse
|
35
|
Mahfuz S, Shang Q, Piao X. Phenolic compounds as natural feed additives in poultry and swine diets: a review. J Anim Sci Biotechnol 2021; 12:48. [PMID: 33823919 PMCID: PMC8025492 DOI: 10.1186/s40104-021-00565-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/28/2020] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
Due to ban on using antibiotics in feed industry, awareness of using natural feed additives have led to a great demand. The interest of plants phenolic compounds as a potential natural antioxidant source has been considered in research community due to their predictable potential role as feed additives in poultry and swine production. However, the mode of action for their functional role and dosage recommendation in animal diets are still remain indistinct. Taking into account, the present review study highlights an outline about the mode of action of phenolic compound and their experimental uses in poultry and swine focusing on the growth performance, antioxidant function, immune function, antimicrobial role and overall health status, justified with the past findings till to date. Finally, the present review study concluded that supplementation of phenolic compounds as natural feed additives may have a role on the antioxidant, immunity, antimicrobial and overall production performance in poultry and swine.
Collapse
Affiliation(s)
- Shad Mahfuz
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Qinghui Shang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiangshu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
36
|
Dupak R, Kovac J, Kalafova A, Kovacik A, Tokarova K, Hascik P, Simonova N, Kacaniova M, Mellen M, Capcarova M. Supplementation of grape pomace in broiler chickens diets and its effect on body weight, lipid profile, antioxidant status and serum biochemistry. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00737-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
|
37
|
Rafiei F, Khajali F. Flavonoid antioxidants in chicken meat production: Potential application and future trends. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2021.1891401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022]
Affiliation(s)
- Fariba Rafiei
- Department of Plant Breeding and Biotechnology, Shahrekord University, Shahrekord, Iran
| | - Fariborz Khajali
- Department of Animal Science, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
38
|
Ölmez M, Şahin T, Karadağoğlu Ö, Yörük MA, Kara K, Dalğa S. Growth performance, carcass characteristics, and fatty acid composition of breast and thigh meat of broiler chickens fed gradually increasing levels of supplemental blueberry extract. Trop Anim Health Prod 2021; 53:109. [PMID: 33423128 DOI: 10.1007/s11250-020-02542-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/06/2020] [Accepted: 12/22/2020] [Indexed: 11/26/2022]
Abstract
The effect of gradually increasing supplemental levels of blueberry extract on growth performance, carcass characteristics, and fatty acid composition of breast and thigh muscles of broiler chickens was investigated. One hundred ninety-two 7-day-old chickens were randomly distributed into four groups having four replicates with 12 birds in each replicate. Basal diets were prepared for starter (days 8 to 21) and finisher (days 22 to 42). Basal diets were offered to the control group only, whereas other treatments received basal diets fortified with 0.5, 1, and 2% blueberry extract (BB0.5, BB1, and BB2 groups, respectively). The duration of experiment was 35 days (days 8 to 42). During finisher and overall growth phases, broilers in the BB2 group had greater body weight gain than those in the BB0.5 and control groups, whereas the BB1 group had higher body weight gain than the control group (P < 0.001). Body weight gain remained unaffected during the starter phase. Feed intake was greater in the BB2 group than in the control group at days 8 to 21, 22 to 42, and 8 to 42 (P = 0.002, P = 0.035, and P = 0.001, respectively). The control group had poor FCR than the BB2 group in the starter phase (P = 0.034). At days 22 to 42, feeding blueberry extract (BB0.5, BB1, and BB2) improved the FCR of broilers compared with the control group, whereas the BB2 group had better FCR than the BB0.5 group (P < 0.001). At 8 to 42 days, broilers in the control group had poor FCR compared with the BB1 and BB2 groups, whereas the BB0.5 group had poor FCR than the BB2 group (P < 0.001). Slaughter weight was lower in the control group than in the blueberry extract groups, whereas the BB2 group had greater slaughter weight than the BB0.5 group (P < 0.001). Dressing percentage of broilers in the control and BB0.5 groups was lower than that in other groups (P < 0.001). Gizzard yield was higher in the BB0.5 and BB2 groups than in the control group (P = 0.021). In addition, feeding 2% blueberry extract increased the concentration of different fatty acids in breast and thigh meat of broiler chickens. Findings suggest that feeding 2% blueberry extract may improve growth performance, carcass characteristics, and fatty acid composition of breast and thigh muscles of broilers.
Collapse
Affiliation(s)
- Mükremin Ölmez
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Kafkas University, 36100, Kars, Turkey.
| | - Tarkan Şahin
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Kafkas University, 36100, Kars, Turkey
| | - Özlem Karadağoğlu
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Kafkas University, 36100, Kars, Turkey
| | - Mehmet Akif Yörük
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Ataturk University, 25100, Erzurum, Turkey
| | - Kanber Kara
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Erciyes University, 38280, Kayseri, Turkey
| | - Sakine Dalğa
- Health Sciences Institute, Kafkas University, 36100, Kars, Turkey
| |
Collapse
|
39
|
Adeyemi KD, Oseni AI, Asogwa TN. Onionskin waste versus synthetic additives in broiler diet: influence on production indices, oxidative status, caecal bacteria, immune indices, blood chemistry and meat quality. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1892545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 10/21/2022]
Affiliation(s)
- Kazeem D. Adeyemi
- Faculty of Agriculture, Department of Animal Production, University of Ilorin, Ilorin, Nigeria
| | - Ayishat I. Oseni
- Faculty of Agriculture, Department of Animal Production, University of Ilorin, Ilorin, Nigeria
| | | |
Collapse
|
40
|
Basit MA, Kadir AA, Loh TC, Abdul Aziz S, Salleh A, Zakaria ZA, Banke Idris S. Comparative Efficacy of Selected Phytobiotics with Halquinol and Tetracycline on Gut Morphology, Ileal Digestibility, Cecal Microbiota Composition and Growth Performance in Broiler Chickens. Animals (Basel) 2020; 10:ani10112150. [PMID: 33227911 PMCID: PMC7699210 DOI: 10.3390/ani10112150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/30/2020] [Revised: 11/01/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Antimicrobial growth promoters (AGPs) are banned in Europe but still used in many countries including Asia. However, their indiscriminate use resulted in antibiotic-resistant bacterial strains that possibly transfer the resistant genes to the microorganisms pertinent to human health. Hence, it is essential to find alternatives that can improve the production performance in broiler chickens. In this scenario, phytobiotics or phytogenic feed additives (PFAs) are widely investigated to evaluate their influence on improving gut health, increasing digestibility, and thereby the growth performance. The present study is a continuity of our experiments on dietary inclusion of Piper betle and Persicaria odorata leaf meal and the first of its kind to evaluate the comparative efficacy of phytobiotics (Piper betle and Persicaria odorata leaf meal), with halquinol and tetracycline in broiler chickens. The current experiment findings indicated that, in comparison with the control group, either of the dietary treatments positively modulated the gut morphology, improved ileal digestibility, maintained the intestinal population of Lactobacillus and reduced the pathogenic bacteria such as Staphylococcus aureus, Salmonella, Escherichia coli, and Clostridium spp., thus improved the growth performance in broiler chickens. Abstract The current experiment was designed to estimate the comparative efficacy of selected phytobiotics Persicaria odorata leaf meal (POLM) and Piper betle leaf meal (PBLM) with halquinol, and tetracycline in broiler chickens. The 150-day-old broiler chickens were randomly assigned to five dietary groups. The dietary supplementation groups were the basal diet (BD), which served as the negative control (NC), and BD + 0.2 g/kg tetracycline, which served as the positive control (PC); BD + 0.03 g/kg halquinol (HAL), BD + 8 g/kg POLM (Po8), and BD + 4 g/kg PBLM (Pb4) were the treatment groups. Growth performance, gut morphology, ileal digestibility, and cecal microbiota composition were measured. On day 21, the body weight gain (BWG) was enhanced (p < 0.05) in the broiler chickens fed on phytobiotics (Po8 and Pb4) relative to the NC group, however, on day 42 and in terms of overall growth performance, BWG was enhanced (p < 0.05 in diets (Po8, Pb4, HAL and PC) in comparison with the NC group. Conversely, feed conversion ratio (FCR) was recorded reduced (p < 0.05) in Pb4, Po8, HAL, and PC group in comparison with the NC group. Supplementation of phytobiotics (Po8 and Pb4), HAL and PC, positively improved the gut morphology compared to the NC group. Furthermore, the maximum (p < 0.05) villus height (VH) in duodenum and jejunum was observed in broilers fed on diet Pb4. Supplementation of phytobiotics, HAL and PC, improved (p < 0.05) the digestibility of dry matter (DM) (except for HAL), organic matter (OM), crude protein (CP), ether extract (EE), and ash compared to the NC group. Dietary supplementation of phytobiotics (Po8 and Pb4), HAL and PC, significantly reduced the E. coli, Salmonella, and Staphylococcus aureus (except for HAL) counts compared to the NC group. However, supplementation of Pb4 resulted in significantly decreased total anaerobic bacteria and Clostridium spp. counts compared to the NC group. In addition, supplementation of phytobiotics significantly increased the Lactobacillus count compared to HAL, PC, and NC groups. In conclusion, dietary supplementation of phytobiotics improved the gut morphology, positively modulated and maintained the dynamics of cecal microbiota with enhanced nutrient digestibility, thus, increased the growth performance. Based on current results, phytobiotics could be used as an alternative to AGPs for sustainable broiler chicken production.
Collapse
Affiliation(s)
- Muhammad Abdul Basit
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Department of Biosciences, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan 60000, Punjab, Pakistan
- Correspondence: (M.A.B.); (A.A.K.); Tel.: +60-3-9769-3403 (A.A.K.)
| | - Arifah Abdul Kadir
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Correspondence: (M.A.B.); (A.A.K.); Tel.: +60-3-9769-3403 (A.A.K.)
| | - Teck Chwen Loh
- Department of Animal Sciences, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Saleha Abdul Aziz
- Department of Veterinary Pathology & Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Annas Salleh
- Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Zainul Amiruddin Zakaria
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Sherifat Banke Idris
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine Usmanu Danfodiyo University, Skoto 2346, Nigeria
| |
Collapse
|
41
|
Jiang Z, Yang Z, Zhang H, Yao Y, Ma H. Genistein activated adenosine 5'-monophosphate-activated protein kinase-sirtuin1/peroxisome proliferator-activated receptor γ coactivator-1α pathway potentially through adiponectin and estrogen receptor β signaling to suppress fat deposition in broiler chickens. Poult Sci 2020; 100:246-255. [PMID: 33357687 PMCID: PMC7772704 DOI: 10.1016/j.psj.2020.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/02/2020] [Revised: 09/15/2020] [Accepted: 10/06/2020] [Indexed: 01/09/2023] Open
Abstract
Genistein can be used as a dietary additive to control fat deposition in animals, while its mechanism is poorly understood. In this study, a total of 144 male broilers were randomly divided into 4 groups. Birds were fed standard diets supplemented with 0, 50, 100 or 150 mg of genistein/kg from 21 to 42 d of age. Results showed that genistein treatment decreased the relative weight of abdominal fat and triglyceride contents in broiler chickens. Genistein downregulated hepatic lipid droplets accumulation and upregulated the activity of lipoprotein lipase and hepatic lipase and the concentration of adiponectin. Furthermore, the liver X receptor α, sterol regulatory element–binding protein 1c (SREBP-1c), acetyl-CoA carboxylase (ACC), and fatty acid synthase (FAS) mRNA expressions were decreased, whereas adiponectin receptor 2, peroxisome proliferator-activated receptor α, adipose triglyceride lipase, and carnitine palmitoyl transferase-I (CPT-I) mRNA abundances were increased in the liver of broilers treated with genistein. In addition, genistein increased the NAD+ concentration and NAD+/NADH ratio in the liver. Genistein increased estrogen receptor β (ERβ), forkhead box O1, nicotinamide phosphoribosyl transferase, sirtuin1 (SIRT1), phospho (p)-adenosine 5′-monophosphate-activated protein kinase (AMPK), peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), p-ACC, and CPT-I protein levels, whereas the SREBP-1c and FAS levels were decreased. These data indicated that genistein might reduce fat accumulation in broiler chickens via activating the AMPK-SIRT1/PGC-1α signaling pathway. The activation of this signaling pathway might be achieved by its direct effect on improving the adiponectin secretion or its indirect effect on upregulation of ERβ expression level through paracrine acting of adiponectin.
Collapse
Affiliation(s)
- Zhihao Jiang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhongmiao Yang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Huihui Zhang
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yao Yao
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Haitian Ma
- Key Laboratory of Animal Physiology and Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
42
|
Performance of Slow-Growing Male Muscovy Ducks Exposed to Different Dietary Levels of Quebracho Tannin. Animals (Basel) 2020; 10:ani10060979. [PMID: 32512810 PMCID: PMC7341193 DOI: 10.3390/ani10060979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/07/2020] [Revised: 05/26/2020] [Accepted: 06/02/2020] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Different inclusion levels of Quebracho tannin (QT) in the diet of growing male Muscovy ducks of a slow-growing type were explored under free-range conditions. As a result of the dietary treatments tested in this trial, the growth performance or the total blood proteins were not affected. By contrast, dietary QT did not lead birds to produce less moist excreta, as observed in other bird species, as a desirable aspect for intensively raised poultry. A marked improvement in carcass yield was observed as a desirable economic trait in the extensive slow-type duck farming system. Abstract The study of the nutritional effects of tannins is complex due to the large chemical diversity; consequently, in poultry nutrition the biological responses may vary greatly. The aim of the present study was to evaluate the effect of different levels of dietary Quebracho tannins (QT) on growth and production performance in slow-growing type Muscovy ducks. For this purpose, a 42-d trial was carried out on 126 male ducks (42-d old at start), fed on three levels of dietary QT inclusion in the diet (0% as control diet, vs. 1.5% vs. 2.5% on an as fed basis). Birds were reared under free-range conditions. A linear increase in feed intake as a function of QT inclusion in the diet was observed (p < 0.05). No difference as to final body weight, overall average daily weight gain (ADG) and total feed conversion ratio (FCR) in relation to dietary treatments was observed. Carcass yields were positively improved in QT birds (p < 0.05). No adverse responses were recorded in total blood protein and liver weight. Dietary QT might be safely used up by to 2.5% in 42- to 84-d aged male Muscovy ducks.
Collapse
|
43
|
Basit MA, Arifah AK, Loh TC, Saleha AA, Salleh A, Kaka U, Idris SB. Effects of graded dose dietary supplementation of Piper betle leaf meal and Persicaria odorata leaf meal on growth performance, apparent ileal digestibility, and gut morphology in broilers. Saudi J Biol Sci 2020; 27:1503-1513. [PMID: 32489287 PMCID: PMC7254159 DOI: 10.1016/j.sjbs.2020.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/19/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 01/17/2023] Open
Abstract
Due to antimicrobial resistance and the public health hazard of antibiotic growth promoters, there is a grave need to find potential alternatives for sustainable poultry production. Piper betle (PB) and Persicaria odorata (PO) are herbs, which have been reported for antimicrobial, antioxidant, and anti-inflammatory properties. The present study aimed to estimate the influence of different dose supplementation of Piper betle leaf meal (PBLM) and Persicaria odorata leaf meal (POLM) on growth performance, ileal digestibility and gut morphology of broilers chickens. A total of 210 one day-old broiler chicks were randomly grouped into 7 treatments, and each treatment group has 3 replicates (n = 10) with a total number of 30 chicks. The treatments included T1 control (basal diet (BD) with no supplementation), T2 (BD + 2 g/kg PBLM); T3 (BD + 4 g/kg PBLM), T4 (BD + 8 g/kg PBLM), T5 (BD + 2 g/kg POLM), T6 (BD + 4 g/kg POLM), T7 (BD + 8 g/kg POLM). Growth performance, gut morphology and ileal digestibility were measured. Except for T4 (8 g/kg PBLM), graded dose inclusion of PBLM and POLM increased (P < 0.05) the body weight gain (BWG), positively modulated the gut architecture and enhanced nutrient digestibility in both stater and finisher growth phases of broiler chickens. Birds fed on PBLM 4 g/kg (T3), and POLM 8 g/kg (T7) had significantly higher (P < 0.05) BWG with superior (P < 0.05) feed efficiency in the overall growth period. Chickens fed on diets T3 and T7 had longer (P < 0.05) villi for duodenum as well as for jejunum. Furthermore, the birds fed on supplementations T3 and T7 showed improved (P < 0.05) digestibility of ether extract (EE), and dry matter (DM) compared to the control group. However, least (P < 0.05) crude protein (CP) digestibility was recorded for T4. In conclusion, dietary supplementations of PBLM 4 g/kg and POLM 8 g/kg were positively modulated the intestinal microarchitecture with enhanced nutrient digestibility, resulted in maximum body weight gain, thus improved the growth performance of broiler chickens.
Collapse
Affiliation(s)
- Muhammad Abdul Basit
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Biosciences, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Abdul Kadir Arifah
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Teck Chwen Loh
- Department of Animal Sciences, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Abdul Aziz Saleha
- Department of Veterinary Pathology & Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Annas Salleh
- Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Ubedullah Kaka
- Department of Companion Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Sherifat Banke Idris
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine Usmanu Danfodiyo University, Nigeria
| |
Collapse
|
44
|
Barbe A, Mellouk N, Ramé C, Grandhaye J, Staub C, Venturi E, Cirot M, Petit A, Anger K, Chahnamian M, Ganier P, Callut O, Cailleau-Audouin E, Metayer-Coustard S, Riva A, Froment P, Dupont J. A grape seed extract maternal dietary supplementation in reproductive hens reduces oxidative stress associated to modulation of plasma and tissue adipokines expression and improves viability of offsprings. PLoS One 2020; 15:e0231131. [PMID: 32282838 PMCID: PMC7153862 DOI: 10.1371/journal.pone.0231131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/18/2020] [Accepted: 03/17/2020] [Indexed: 01/06/2023] Open
Abstract
In reproductive hens, a feed restriction is an usual practice to improve metabolic and reproductive disorders. However, it acts a stressor on the animal. In mammals, grape seed extracts (GSE) reduces oxidative stress. However, their effect on endocrine and tissue response need to be deepened in reproductive hens. Here, we evaluated the effects of time and level of GSE dietary supplementation on growth performance, viability, oxidative stress and metabolic parameters in plasma and metabolic tissues in reproductive hens and their offsprings. We designed an in vivo trial using 4 groups of feed restricted hens: A (control), B and C (supplemented with 0.5% and 1% of the total diet composition in GSE since week 4, respectively) and D (supplemented with 1% of GSE since the hatch). In hens from hatch to week 40, GSE supplementation did not affect food intake and fattening whatever the time and dose of supplementation. Body weight was significantly reduced in D group as compared to control. In all hen groups, GSE supplementation decreased plasma oxidative stress index associated to a decrease in the mRNA expression of the NOX4 and 5 oxidant genes in liver and muscle and an increase in SOD mRNA expression. This was also associated to decreased plasma chemerin and increased plasma adiponectin and visfatin levels. Interestingly, maternal GSE supplementation increased the live body weight and viability of chicks at hatching and 10 days of age. This was associated to a decrease in plasma and liver oxidative stress parameters. Taken together, GSE maternal dietary supplementation reduces plasma and tissue oxidative stress associated to modulation of adipokines without affecting fattening in reproductive hens. A 1% GSE maternal dietary supplementation increased offspring viability and reduced oxidative stress suggesting a beneficial transgenerational effect and a potential use to improve the quality of the progeny in reproductive hens.
Collapse
Affiliation(s)
- Alix Barbe
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,Université François Rabelais de Tours, Tours, France.,IFCE, Nouzilly, France
| | - Namya Mellouk
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,Université François Rabelais de Tours, Tours, France.,IFCE, Nouzilly, France
| | - Christelle Ramé
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,Université François Rabelais de Tours, Tours, France.,IFCE, Nouzilly, France
| | - Jérémy Grandhaye
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,Université François Rabelais de Tours, Tours, France.,IFCE, Nouzilly, France
| | - Christophe Staub
- INRAE - Unité Expérimentale de Physiologie Animale de l'Orfrasière UEPAO 1297, Nouzilly, France
| | - Eric Venturi
- INRAE - Unité Expérimentale de Physiologie Animale de l'Orfrasière UEPAO 1297, Nouzilly, France
| | - Marine Cirot
- INRAE - Unité Expérimentale de Physiologie Animale de l'Orfrasière UEPAO 1297, Nouzilly, France
| | - Angélique Petit
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,Université François Rabelais de Tours, Tours, France.,IFCE, Nouzilly, France
| | - Karine Anger
- INRAE - Unité Expérimentale du Pôle d'Expérimentation Avicole de Tours UEPEAT, 1295, Nouzilly, France
| | - Marine Chahnamian
- INRAE - Unité Expérimentale du Pôle d'Expérimentation Avicole de Tours UEPEAT, 1295, Nouzilly, France
| | - Patrice Ganier
- INRAE - Unité Expérimentale du Pôle d'Expérimentation Avicole de Tours UEPEAT, 1295, Nouzilly, France
| | - Olivier Callut
- INRAE - Unité Expérimentale du Pôle d'Expérimentation Avicole de Tours UEPEAT, 1295, Nouzilly, France
| | | | | | | | - Pascal Froment
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,Université François Rabelais de Tours, Tours, France.,IFCE, Nouzilly, France
| | - Joëlle Dupont
- INRAE UMR85 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,CNRS UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,Université François Rabelais de Tours, Tours, France.,IFCE, Nouzilly, France
| |
Collapse
|
45
|
KARADAĞOĞLU Ö, ŞAHİN T, ÖLMEZ M, YAKAN A, ÖZSOY B. Changes in serum biochemical and lipid profile, and fatty acid composition of breast meat of broiler chickens fed supplemental grape seed extract. ACTA ACUST UNITED AC 2020. [DOI: 10.3906/vet-1906-37] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/03/2022]
|
46
|
Fang L, Li M, Zhao L, Han S, Li Y, Xiong B, Jiang L. Dietary grape seed procyanidins suppressed weaning stress by improving antioxidant enzyme activity and mRNA expression in weanling piglets. J Anim Physiol Anim Nutr (Berl) 2020; 104:1178-1185. [PMID: 32189416 DOI: 10.1111/jpn.13335] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/31/2019] [Revised: 12/12/2019] [Accepted: 01/20/2020] [Indexed: 12/18/2022]
Abstract
This study was conducted to investigate the effect of grape seed procyanidins (GSP) on growth performance, digestive enzyme activity, antioxidant enzyme activity and mRNA expression in weanling piglets. A total of 96 piglets (Pietrain × Large White) with an average initial body weight (BW) of 8.4 ± 1.7 kg were weaned at 28 days, and randomly divided into 4 groups. Four groups of animals were fed with a basic diet supplemented with various doses of GSP (0, 40, 70 and 100 mg/kg respectively) during the 28-day treatment period. The results showed that the group receiving 40 mg/kg GSP significantly increased the average daily gain (ADG, p < .05) and decrease the feed/gain ratio (F/G, p < .05). Interestingly, the incidence of diarrhoea was significantly reduced in the groups of 40 and 70 mg/kg GSP, but it was increased in the group of 100 mg/kg GSP. Subsequent biochemical studies indicated that dietary GSP significantly increased the activities of digestive enzymes and antioxidant enzymes, including amylase (Amy), lipase(LPS, p < .05), glutathione peroxidase activity (GSH-Px, p < .05), superoxide dismutase activity (SOD, p < .05) and total antioxidant capacity (T-AOC, p < .05) in serum, liver and muscle, increased the expression of GSH-Px, SOD and CAT genes (p < .05) in the liver, and decreased the level of malondialdehyde (MDA, p < .05) in serum, liver and muscle. Taken together, these studies revealed that low GSP supplement in diets can improve growth performance of weaned piglets, which is associated with increased digestive and antioxidant enzyme activities and enhanced resistance to weanling stress.
Collapse
Affiliation(s)
- Luoyun Fang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Mingyue Li
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Luyv Zhao
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Siyv Han
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yi Li
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Benhai Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Linshu Jiang
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
47
|
Hosseini-Vashan SJ, Safdari-Rostamabad M, Piray AH, Sarir H. The growth performance, plasma biochemistry indices, immune system, antioxidant status, and intestinal morphology of heat-stressed broiler chickens fed grape (Vitis vinifera) pomace. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2019.114343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/21/2023]
|
48
|
Zhou Y, Mao S, Zhou M. Effect of the flavonoid baicalein as a feed additive on the growth performance, immunity, and antioxidant capacity of broiler chickens. Poult Sci 2019; 98:2790-2799. [PMID: 30778569 DOI: 10.3382/ps/pez071] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/30/2018] [Accepted: 01/30/2019] [Indexed: 12/21/2022] Open
Abstract
Baicalein, the main flavonoid extracted from the root of Scutellaria baicalensis Georgi, has been demonstrated to exert multiple pharmacological effects, and thus could be utilized as a potential feed additive in broiler chickens. This study evaluated the effects of broiler chicken diet supplementation with baicalein on growth performance, immunity, and antioxidant activity at levels of 100 and 200 mg/kg. No significant effect on average daily feed intake (P > 0.05) of broilers with diets supplemented with baicalein was found compared to those on the basal diet or butylated hydroxytoluene (BHT) during the 35-d feeding trial. The addition of baicalein to the basal diet significantly increased average body weight, body weight gain, average weight gain, and the feed conversion ratio of birds during 21 to 42 d and 7 to 42 d of age, respectively. The best numerical values for the overall growth performance were observed in broilers fed on diets containing 200 mg/kg of baicalein. Baicalein supplementation significantly increased the ratio of CD3+/CD4+ and CD3±/CD8+, the concentration of IFN-γ, anti-IB antibody titer, and the spleen index compared with the control group (P < 0.05). Total cholesterol, the ratio of non-HDL-C/HDL-C, LDL-C/HDL-C, TC/HDL-C, triglycerides, and low-density lipoprotein cholesterol were significantly decreased after intake of baicalein compared with both the basal diet and the BHT-supplemented diet, whereas the SOD, GSH-Px, and CAT activity in the serum increased with the supplementation of baicalein. The T-AOC activity, T-SOD, and GSH-Px level in liver tissues was significantly increased by inclusion of baicalein, and intake of baicalein or BHT significantly decreased the malondialdehyde level found both in serum and meat tissue. Thus, the results obtained here indicate that the baicalein can be used as an effective natural feed additive in broiler chicken diets, and that 100 to 200 mg/kg can be considered as the optimum dosage.
Collapse
Affiliation(s)
- Yefei Zhou
- Department of Life Science, Nanjing Xiaozhuang University, Nanjing 211171, Jiangsu province, China
| | - Shanguo Mao
- Department of Life Science, Nanjing Xiaozhuang University, Nanjing 211171, Jiangsu province, China
| | - Meixian Zhou
- Department of Life Science, Nanjing Xiaozhuang University, Nanjing 211171, Jiangsu province, China
| |
Collapse
|
49
|
Turcu RP, Olteanu M, Criste RD, Panaite TD, Ropotă M, Vlaicu PA, Drăgotoiu D. Grapeseed Meal Used as Natural Antioxidant in High Fatty Acid Diets for Hubbard Broilers. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2019. [DOI: 10.1590/1806-9061-2018-0886] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Affiliation(s)
- RP Turcu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Romania; National Research-Development Institute for Animal Biology and Nutrition, Romania
| | - M Olteanu
- National Research-Development Institute for Animal Biology and Nutrition, Romania
| | - RD Criste
- National Research-Development Institute for Animal Biology and Nutrition, Romania
| | - TD Panaite
- National Research-Development Institute for Animal Biology and Nutrition, Romania
| | - M Ropotă
- National Research-Development Institute for Animal Biology and Nutrition, Romania
| | - PA Vlaicu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Romania; National Research-Development Institute for Animal Biology and Nutrition, Romania
| | - D Drăgotoiu
- University of Agronomic Sciences and Veterinary Medicine of Bucharest, Romania
| |
Collapse
|
50
|
Effect of l-theanine on the growth performance, immune function, and jejunum morphology and antioxidant status of ducks. Animal 2018; 13:1145-1153. [PMID: 30376911 DOI: 10.1017/s1751731118002884] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023] Open
Abstract
l-theanine is a unique nonproteinogenic amino acid found in tea, and has recently received considerable attention because of its various biological activities. However, there is no available research report on the use of l-theanine as a feed additive in ducks. This study was conducted to investigate the potential benefits and appropriate dosages of l-theanine on the growth performance, immune function, serum biochemical parameters, and jejunum morphology and antioxidant capacity of ducks. A total of 600 1-day-old Chaohu ducks were randomly allocated into five dietary treatment groups supplemented with 0 (control group), 300, 600, 900 and 1500 mg/kg of l-theanine. Each group included five replicates of 24 birds each. Body weight at day 28 was increased (P<0.05) by l-theanine. From days 15 to 28, l-theanine elevated cumulative BW gain (BWG) and cumulative feed intake (FI), and decreased feed to gain ratio. From days 1 to 28, l-theanine elevated (P<0.05) cumulative BWG and cumulative FI. l-theanine elevated (P<0.05) the relative weight of bursa of Fabricus (day 14), thymus (day 14), spleen (day 28) and liver (day 28). On day 28, l-theanine decreased (P<0.05) serum glucose, uric acid, triacylglycerol, total cholesterol, low-density lipoprotein cholesterol, insulin, interleukin-2 (IL-2) and IL-6 contents, and elevated (P<0.05) serum total protein, globulin (GLB), immune globulin A (IgA) and IgG contents, but only serum insulin, interferon-γ, tumor necrosis factor-α and IL-6 contents was decreased (P<0.05) and serum GLB and IgM content was elevated (P<0.05) by l-theanine on day 14. On day 14, l-theanine decreased (P<0.05) jejunum crypt depth, and elevated (P<0.05) jejunum villus height, villus height to crypt depth ratio (V/C), goblet cell number and total superoxide dismutase (T-SOD) activity. On day 28, l-theanine decreased (P<0.05) jejunum malondialdehyde content, and elevated (P<0.05) jejunum villus height, V/C, goblet cell number, and T-SOD, catalase and glutathione peroxidase activities. l-theanine levels caused quadratic effect on the growth performance, relative organ weight, serum parameters, jejunum morphology and antioxidant capacity. In conclusion, l-theanine can be used as a promising feed additive for ducks, and its optimal supplementation level was 600 to 900 mg/kg based on the current experimental condition.
Collapse
|