1
|
Xu P, Jetmore HD, Chen R, Shen M. Enzyme-modified Pt nanoelectrodes for glutamate detection. Faraday Discuss 2025; 257:165-181. [PMID: 39465674 DOI: 10.1039/d4fd00138a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
We present here a glutamate oxidase (GluOx)-modified platinum (Pt) nanoelectrode with a planar geometry for glutamate detection. The Pt nanoelectrode was characterized using electrochemistry and scanning electron microscopy (SEM). The radius of the Pt nanoelectrode measured using SEM is ∼210 nm. GluOx-modified Pt nanoelectrodes were generated by dip coating GluOx on the Pt nanoelectrode in a solution of 0.9% (wt%) bovine serum albumin (BSA), 0.126% (wt%) glutaraldehyde, and 100 U mL-1 GluOx. An increase in current was observed at +0.7 V vs. Ag/AgCl/1 M KCl with adding increasing concentrations of glutamate. Two-sample t-test results showed that there is a significant difference for current at +0.7 V between the blank and the added lowest glutamate concentration, as well as between adjacent glutamate concentrations, confirming that the increase in current is related to the increased glutamate concentration. The experimental current-concentration curve of glutamate detection fitted well to the theoretical Michaelis-Menten curve. At the low concentration range (50 μM to 200 μM), a linear relationship between the current and glutamate concentration was observed. The Michaelis-Menten constants of Imax and Km were calculated to be 1.093 pA and 0.227 mM, respectively. Biosensor efficiency (the ratio of glutamate sensitivity to H2O2 sensitivity) is calculated to be 57.9%. Enzact (Imax/H2O2 sensitivity, an indicator of the amount of enzyme loaded on the electrode) of the GluOx-modified Pt nanoelectrode is 0.243 mM. We further compared the sensitivity of a GluOx-modified Pt nanoelectrode with a GluOx-modified carbon fiber microelectrode (7 μm diameter and a sensing length of ∼350 μm). Glutamate detection on the GluOx-modified carbon fiber microelectrode fitted well to a Michaelis-Menten like response. Based on the fitting, the GluOx-modified carbon fiber microelectrode exhibited an Imax of 0.689 nA and a Km of 301.2 μM towards glutamate detection. The best linear range of glutamate detection on the GluOx-modified carbon fiber microelectrode is from 50 μM to 150 μM glutamate. The GluOx-modified carbon fiber microelectrode exhibited a higher potential requirement for glutamate detection compared to the GluOx-modified Pt nanoelectrode.
Collapse
Affiliation(s)
- Peibo Xu
- Chan Zuckerberg Biohub Chicago, USA
| | - Henry David Jetmore
- Department of Chemistry, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA.
| | - Ran Chen
- Department of Chemistry, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA.
| | - Mei Shen
- Chan Zuckerberg Biohub Chicago, USA
| |
Collapse
|
2
|
Bo T, Ghoshal D, Wilder LM, Miller EM, Mirkin MV. High-Resolution Mapping of Photocatalytic Activity by Diffusion-Based and Tunneling Modes of Photo-Scanning Electrochemical Microscopy. ACS NANO 2025; 19:3490-3499. [PMID: 39792635 PMCID: PMC11781031 DOI: 10.1021/acsnano.4c13276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025]
Abstract
Semiconductor nanomaterials and nanostructured interfaces have important technological applications, ranging from fuel production to electrosynthesis. Their photocatalytic activity is known to be highly heterogeneous, both in an ensemble of nanomaterials and within a single entity. Photoelectrochemical imaging techniques are potentially useful for high-resolution mapping of photo(electro)catalytic active sites; however, the nanoscale spatial resolution required for such experiments has not yet been attained. In this article, we report photoreactivity imaging of two-dimensional MoS2 photocatalysts by two modes of photoscanning electrochemical microscopy (photo-SECM): diffusion and tunneling-based modes. Diffusion-based (feedback mode) photo-SECM is used to map the electron transfer and hydrogen evolution rates on mixed-phase MoS2 nanosheets and MoS2 chemical vapor deposition (CVD)-grown triangles. An extremely high resolution of photoelectrochemical imaging (about 1-2 nm) by the tunneling mode of the photo-SECM is demonstrated.
Collapse
Affiliation(s)
- Tianyu Bo
- Department
of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States
- The
Graduate Center of CUNY, New York, New York 10016, United States
| | - Debjit Ghoshal
- Materials,
Chemistry, and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Logan M. Wilder
- Materials,
Chemistry, and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Elisa M. Miller
- Materials,
Chemistry, and Computational Science Directorate, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Michael V. Mirkin
- Department
of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States
- Advanced
Science Research Center at The Graduate Center, CUNY, New York, New York 10031, United States
| |
Collapse
|
3
|
Anupriya ES, Chen R, Kalski D, Palmer J, Shen M. Dual-channel nano-carbon-liquid/liquid junction electrodes for multi-modal analysis: redox-active (dopamine) and non-redox-active (acetylcholine). Analyst 2025; 150:414-424. [PMID: 39688537 DOI: 10.1039/d4an01153h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
We present here a dual-channel nanoelectrode to detect both redox-active and non-redox-active analytes. The dual-channel nanoelectrode was developed from theta nanopipette. We developed one channel of the theta nanopipette to be a carbon nanoelectrode and the other channel to be a nano interface between two immiscible electrolyte solutions (nanoITIES) electrode, producing a nano-carbon-ITIES platform. The carbon nanoelectrode channel was developed by carbon deposition via pyrolysis followed by focused ion beam milling to measure redox-active analytes. The nanoITIES electrode channel was developed to detect non-redox-active analytes. The nano-carbon-ITIES electrodes were characterized using electrochemistry, scanning electron microscopy and transmission electron microscopy. Dopamine (a redox-active analyte) and acetylcholine (a non-redox-active analyte) were measured on the dual-channel nano-carbon-ITIES platform using the carbon nanoelectrode and the nanoITIES electrode, respectively. Using cyclic voltammetry, the diffusion-limited current of dopamine and acetylcholine detection on the nano-carbon-ITIES electrode increased linearly with increasing their concentrations. Using chronoamperometry (current versus time), we showed that the nano-carbon-ITIES electrode detected acetylcholine and dopamine at the same time. The introduced first-ever dual-functional nano-carbon-ITIES electrodes expand the current literature in multi-channel electrodes for multi-purpose analysis, which is an emerging area of research. Developing the analytical capability for the simultaneous detection of acetylcholine and dopamine is a critical step towards understanding diseases and disorders where both dopamine and acetylcholine are involved.
Collapse
Affiliation(s)
- Edappalil Satheesan Anupriya
- Department of Chemistry, The Beckman Institute for Advanced Science and Technology, University of Illinois Urbana Champaign, Urbana, IL 61801, USA.
- Chan Zuckerberg Biohub Chicago, Chicago, Illinois
| | - Ran Chen
- Department of Chemistry, The Beckman Institute for Advanced Science and Technology, University of Illinois Urbana Champaign, Urbana, IL 61801, USA.
| | - Daniel Kalski
- Department of Chemistry, The Beckman Institute for Advanced Science and Technology, University of Illinois Urbana Champaign, Urbana, IL 61801, USA.
| | - Jordynn Palmer
- Department of Chemistry, The Beckman Institute for Advanced Science and Technology, University of Illinois Urbana Champaign, Urbana, IL 61801, USA.
| | - Mei Shen
- Department of Chemistry, The Beckman Institute for Advanced Science and Technology, University of Illinois Urbana Champaign, Urbana, IL 61801, USA.
- Chan Zuckerberg Biohub Chicago, Chicago, Illinois
| |
Collapse
|
4
|
Barman K, Askarova G, Somni R, Hu G, Mirkin MV. Voltage-Driven Molecular Photoelectrocatalysis of Water Oxidation. J Am Chem Soc 2024. [PMID: 39361953 DOI: 10.1021/jacs.4c10896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Molecular photocatalysis and photoelectrocatalysis have been widely used to conduct oxidation-reduction processes ranging from fuel generation to electroorganic synthesis. We recently showed that an electrostatic potential drop across the double layer contributes to the driving force for electron transfer (ET) between a dissolved reactant and a molecular catalyst immobilized directly on the electrode surface. In this article, we report voltage-driven molecular photoelectrocatalysis with a prevalent homogeneous water oxidation catalyst, (bpy)Cu (II), which was covalently attached to the carbon surface and exhibited photocatalytic activity. The strong potential dependence of the photooxidation current suggests that the electrostatic potential drop across the double layer contributes to the driving force for ET between a water molecule and the excited state of surface-bound (bpy)Cu (II). Scanning electrochemical microscopy (SECM) was used to analyze the products and determine the faradaic efficiencies for the generation of oxygen and hydrogen peroxide. Unlike electrocatalytic water oxidation by (bpy)Cu (II) in the dark, which produces only O2, the voltage-driven photooxidation includes an additional 2e- pathway generating H2O2. DFT calculations show that the applied voltage and the presence of light can alter the activation energy for the rate-determining water nucleophilic attack steps, thereby increasing the reaction rate of photo-oxidation of water and opening the 2e- pathway. These results suggest a new route for designing next-generation hybrid molecular photo(electro)catalysts for water oxidation and other processes.
Collapse
Affiliation(s)
- Koushik Barman
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States
| | - Gaukhar Askarova
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States
- The Graduate Center of CUNY, New York, New York 10016, United States
| | - Rahul Somni
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Guoxiang Hu
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Michael V Mirkin
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States
- Advanced Science Research Center at The Graduate Center, CUNY, New York, New York 10031, United States
| |
Collapse
|
5
|
Chen R, Pathirathna P, Balla RJ, Kim J, Amemiya S. Nanoscale Quantitative Imaging of Single Nuclear Pore Complexes by Scanning Electrochemical Microscopy. Anal Chem 2024; 96:10765-10771. [PMID: 38904303 PMCID: PMC11223102 DOI: 10.1021/acs.analchem.4c01890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024]
Abstract
The nuclear pore complex (NPC) is a proteinaceous nanopore that solely and selectively regulates the molecular transport between the cytoplasm and nucleus of a eukaryotic cell. The ∼50 nm-diameter pore of the NPC perforates the double-membrane nuclear envelope to mediate both passive and facilitated molecular transport, thereby playing paramount biological and biomedical roles. Herein, we visualize single NPCs by scanning electrochemical microscopy (SECM). The high spatial resolution is accomplished by employing ∼25 nm-diameter ion-selective nanopipets to monitor the passive transport of tetrabutylammonium at individual NPCs. SECM images are quantitatively analyzed by employing the finite element method to confirm that this work represents the highest-resolution nanoscale SECM imaging of biological samples. Significantly, we apply the powerful imaging technique to address the long-debated origin of the central plug of the NPC. Nanoscale SECM imaging demonstrates that unplugged NPCs are more permeable to the small probe ion than are plugged NPCs. This result supports the hypothesis that the central plug is not an intrinsic transporter, but is an impermeable macromolecule, e.g., a ribonucleoprotein, trapped in the nanopore. Moreover, this result also supports the transport mechanism where the NPC is divided into the central pathway for RNA export and the peripheral pathway for protein import to efficiently mediate the bidirectional traffic.
Collapse
Affiliation(s)
- Ran Chen
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- School
of Chemistry and Chemical Engineering, Southeast
University, Nanjing 211189, China
| | - Pavithra Pathirathna
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemistry and Chemical Engineering, Florida
Institute of Technology, Melbourne, Florida 32901, United States
| | - Ryan J. Balla
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jiyeon Kim
- Department
of Chemistry, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Shigeru Amemiya
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
6
|
Askarova G, Barman K, Mirkin MV. Quantitative Measurements of Electrocatalytic Reaction Rates with NanoSECM. Anal Chem 2024; 96:6089-6095. [PMID: 38574269 DOI: 10.1021/acs.analchem.4c01019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Scanning electrochemical microscopy (SECM) has been extensively used for mapping electrocatalytic surface reactivity; however, most of the studies were carried out using micrometer-sized tips, and no quantitative kinetic experiments on the nanoscale have yet been reported to date. As the diffusion-limited current density at a nanometer-sized electrode is very high, an inner-sphere electron-transfer process occurring at a nanotip typically produces a kinetic current at any attainable overpotential. Here, we develop a theory for substrate generation/tip collection (SG/TC) and feedback modes of SECM with a kinetic tip current and use it to evaluate the rates of hydrogen and oxygen evolution reactions in a neutral aqueous solution from the current-distance curves. The possibility of using chemically modified nanotips for kinetic measurements is also demonstrated. The effect of the substrate size on the shape of the current-distance curves in SG/TC mode SECM experiments is discussed.
Collapse
Affiliation(s)
- Gaukhar Askarova
- Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States
- The Graduate Center of CUNY, New York, New York 10016, United States
| | - Koushik Barman
- Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States
| | - Michael V Mirkin
- Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States
- Advanced Science Research Center at The Graduate Center, CUNY, New York, New York 10031, United States
| |
Collapse
|
7
|
Mishra A, Zorigt M, Kim DO, Rodríguez-López J. Voltammetric Detection of Singlet Oxygen Enabled by Nanogap Scanning Electrochemical Microscopy. J Am Chem Soc 2024; 146:8847-8851. [PMID: 38511940 DOI: 10.1021/jacs.4c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Despite the significance of singlet oxygen (1O2) in several biological, chemical, and energy storage systems, its voltammetric reduction at an electrode remains unreported. We address this issue using nanogap scanning electrochemical microscopy (SECM) in substrate-generation/tip-collection mode. Our investigation reveals a reductive process on the SECM tip at -1.0 V (vs Fc+/Fc) during the breakdown of the Li2CO3 substrate in deuterated acetonitrile. Notably, this value is approximately 0.9 V more positive than the reduction potential of triplet oxygen (3O2), consistent with thermodynamic estimates for the energy of the formation of 1O2. This finding holds significant implications for understanding the reaction mechanisms involving 1O2 in nonaqueous media.
Collapse
Affiliation(s)
- Abhiroop Mishra
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Michelle Zorigt
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Dong Ok Kim
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Joaquín Rodríguez-López
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Krushinski LE, Kauffmann PJ, Wang AK, Dick JE. Considerations for dual barrel electrode fabrication and experimentation. Analyst 2024; 149:2180-2189. [PMID: 38426542 PMCID: PMC10962018 DOI: 10.1039/d3an01969a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
New electrochemical probes offer the opportunity to investigate new systems. A dual barrel electrode can be laser pulled to produce micron-sized platinum disk electrodes. Here, we detail several important considerations for both the fabrication process and for experimental implimentation of the probe. We provide parameters for a Sutter P-2000 laser puller, methods for optical and electrochemical characterization, tips for how to successfully bevel the microelectrodes, and how salt concentrations and electrostatic discharge affect the voltammetry. This paper serves as a guide for how to successfully implement dual barrel electrodes from fabrication to experimentation.
Collapse
Affiliation(s)
- Lynn E Krushinski
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| | - Philip J Kauffmann
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| | - Amber K Wang
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
9
|
Zhang X, Su Z, Zhao Y, Wu D, Wu Y, Li G. Recent advances of nanopore technique in single cell analysis. Analyst 2024; 149:1350-1363. [PMID: 38312056 DOI: 10.1039/d3an01973j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Single cells and their dynamic behavior are closely related to biological research. Monitoring their dynamic behavior is of great significance for disease prevention. How to achieve rapid and non-destructive monitoring of single cells is a major issue that needs to be solved urgently. As an emerging technology, nanopores have been proven to enable non-destructive and label-free detection of single cells. The structural properties of nanopores enable a high degree of sensitivity and accuracy during analysis. In this article, we summarize and classify the different types of solid-state nanopores that can be used for single-cell detection and illustrate their specific applications depending on the size of the analyte. In addition, their research progress in material transport and microenvironment monitoring is also highlighted. Finally, a brief summary of existing research challenges and future trends in nanopore single-cell analysis is tentatively provided.
Collapse
Affiliation(s)
- Xue Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Zhuoqun Su
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Yan Zhao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Yongning Wu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
10
|
Zhang J, He S, Fang T, Xiang Z, Sun X, Yu J, Ouyang G, Huang X, Deng H. Observing Discrete Blocking Events at a Polarized Micro- or Submicro-Liquid/Liquid Interface. J Phys Chem B 2023; 127:8974-8981. [PMID: 37796864 DOI: 10.1021/acs.jpcb.3c05216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Single-entity collisional electrochemistry (SECE), a subfield of single-entity electrochemistry, enables directly characterizing entities and particles in the electrolyte solution at the single-entity resolution. Blockade SECE at the traditional solid ultramicroelectrode (UME)/electrolyte interface suffers from a limitation: only redox-inactive particles can be studied. The wide application of the classical Coulter counter is restricted by the rapid translocation of entities through the orifice, which results in a remarkable proportion of undetected signals. In response, the blocking effect of single charged conductive or insulating nanoparticles (NPs) at low concentrations for ion transfer (IT) at a miniaturized polarized liquid/liquid interface was successfully observed. Since the particles are adsorbed at the liquid/liquid interface, our method also solves the problem of the Coulter counter having a too-fast orifice translocation rate. The decreasing quantal staircase/step current transients are from landings (controlled by electromigration) of either conductive or insulating NPs onto the interface. This interfacial NP assembly shields the IT flux. The size of each NP can be calculated by the step height. The particle size measured by dynamic light scattering (DLS) is used for comparison with that calculated from electrochemical blocking events, which is in fairly good agreement. In short, the blocking effect of IT by single entities at micro- or submicro-liquid/liquid interface has been proven experimentally and is of great reference in single-entity detection.
Collapse
Affiliation(s)
- Jingyan Zhang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Sijia He
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Taoxiong Fang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Zhipeng Xiang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xiaohang Sun
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Juezhi Yu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Gangfeng Ouyang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Xinjian Huang
- Institute of Intelligent Perception, Midea Corporate Research Center, Foshan 528311, China
| | - Haiqiang Deng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| |
Collapse
|
11
|
Askarova G, Hesari M, Barman K, Mirkin MV. Visualizing Overall Water Splitting on Single Microcrystals of Phosphorus-Doped BiVO 4 by Photo-SECM. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47168-47176. [PMID: 37754848 DOI: 10.1021/acsami.3c13099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Particulate bismuth vanadate (BiVO4) has attracted considerable interest as a promising photo(electro)catalyst for visible-light-driven water oxidation; however, overall water splitting (OWS) has been difficult to attain because its conduction band is too positive for efficient hydrogen evolution. Using photoscanning electrochemical microscopy (photo-SECM) with a chemically modified nanotip, we visualized for the first time the OWS at a single truncated bipyramidal microcrystal of phosphorus-doped BiVO4. The tip simultaneously served as a light guide to illuminate the photocatalyst and an electrochemical nanoprobe to observe and quantitatively measure local oxygen and hydrogen fluxes. The obtained current patterns for both O2 and H2 agree well with the accumulation of photogenerated electrons and holes on {010} basal and {110} lateral facets, respectively. The developed experimental approach is an important step toward nanoelectrochemical mapping of the activity of photocatalyst particles at the subfacet level.
Collapse
Affiliation(s)
- Gaukhar Askarova
- Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States
- The Graduate Center of CUNY, New York, New York 10016, United States
| | - Mahdi Hesari
- Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States
| | - Koushik Barman
- Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States
| | - Michael V Mirkin
- Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States
- Advanced Science Research Center at The Graduate Center, CUNY, New York, New York 10031, United States
| |
Collapse
|
12
|
Huang SH, Parandhaman M, Farnia S, Kim J, Amemiya S. Nanoelectrochemistry at liquid/liquid interfaces for analytical, biological, and material applications. Chem Commun (Camb) 2023; 59:9575-9590. [PMID: 37458703 PMCID: PMC10416082 DOI: 10.1039/d3cc01982a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Herein, we feature our recent efforts toward the development and application of nanoelectrochemistry at liquid/liquid interfaces, which are also known as interfaces between two immiscible electrolyte solutions (ITIES). Nanopipets, nanopores, and nanoemulsions are developed to create the nanoscale ITIES for the quantitative electrochemical measurement of ion transfer, electron transfer, and molecular transport across the interface. The nanoscale ITIES serves as an electrochemical nanosensor to enable the selective detection of various ions and molecules as well as high-resolution chemical imaging based on scanning electrochemical microscopy. The powerful nanoelectroanalytical methods will be useful for biological and material applications as illustrated by in situ studies of solid-state nanopores, nuclear pore complexes, living bacteria, and advanced nanoemulsions. These studies provide unprecedented insights into the chemical reactivity of important biological and material systems even at the single nanostructure level.
Collapse
Affiliation(s)
- Siao-Han Huang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| | | | - Solaleh Farnia
- Department of Chemistry, University of Rhode Island, Kingston, RI, 02881, USA.
| | - Jiyeon Kim
- Department of Chemistry, University of Rhode Island, Kingston, RI, 02881, USA.
| | - Shigeru Amemiya
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
13
|
Lim K, Goines S, Deng M, McCormick H, Kauffmann PJ, Dick JE. A troubleshooting guide for laser pulling platinum nanoelectrodes. Analyst 2023. [PMID: 37313574 DOI: 10.1039/d3an00268c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
While there are numerous publications on laser-assisted fabrication and characterization of Pt nanoelectrodes, the exact replication of those procedures is not as straightforward as following a single recipe across laboratories. Often, the working procedures vary by day, by laser puller, or by person. Only a handful of nanoelectrode fabrication papers record their parameters, and even fewer offer troubleshooting advice. Here, we provide a step-by-step guide for laser-assisted Pt nanoelectrode fabrication using low-cost equipment including a laser puller, voltammetry, and simple microscope images captured via cell phone. We also offer solutions for common failures experienced throughout the process to guide beginners as they troubleshoot their own fabrication procedures.
Collapse
Affiliation(s)
- Koun Lim
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Sondrica Goines
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Mingchu Deng
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Hadley McCormick
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Philip J Kauffmann
- Department of Chemistry, Purdue University, West Lafayette, IN 47906, USA
| | - Jeffrey E Dick
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Chemistry, Purdue University, West Lafayette, IN 47906, USA
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47906, USA
| |
Collapse
|
14
|
Askarova G, Xiao C, Barman K, Wang X, Zhang L, Osterloh FE, Mirkin MV. Photo-scanning Electrochemical Microscopy Observation of Overall Water Splitting at a Single Aluminum-Doped Strontium Titanium Oxide Microcrystal. J Am Chem Soc 2023; 145:6526-6534. [PMID: 36892623 DOI: 10.1021/jacs.3c00663] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Particulate photocatalysts for the overall water splitting (OWS) reaction offer promise as devices for hydrogen fuel generation. Even though such photocatalysts have been studied for nearly 5 decades, much of the understanding of their function is derived from observations of catalyst ensembles and macroscopic photoelectrodes. This is because the sub-micrometer size of most OWS photocatalysts makes spatially resolved measurements of their local reactivity very difficult. Here, we employ photo-scanning electrochemical microscopy (photo-SECM) to quantitatively measure hydrogen and oxygen evolution at individual OWS photocatalyst particles for the first time. Micrometer-sized Al-doped SrTiO3/Rh2-yCryO3 photocatalyst particles were immobilized on a glass substrate and interrogated with a chemically modified SECM nanotip. The tip simultaneously served as a light guide to illuminate the photocatalyst and as an electrochemical nanoprobe to observe oxygen and hydrogen fluxes from the OWS. Local O2 and H2 fluxes obtained from chopped light experiments and photo-SECM approach curves using a COMSOL Multiphysics finite-element model confirmed stoichiometric H2/O2 evolution of 9.3/4.6 μmol cm-2 h-1 with no observable lag during chopped illumination cycles. Additionally, photoelectrochemical experiments on a single microcrystal attached to a nanoelectrode tip revealed a strong light intensity dependence of the OWS reaction. These results provide the first confirmation of OWS at single micrometer-sized photocatalyst particles. The developed experimental approach is an important step toward assessing the activity of photocatalyst particles at the nanometer scale.
Collapse
Affiliation(s)
- Gaukhar Askarova
- Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States
- The Graduate Center of CUNY, New York, New York 10016, United States
| | - Chengcan Xiao
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Koushik Barman
- Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States
| | - Xiang Wang
- Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States
- The Graduate Center of CUNY, New York, New York 10016, United States
| | - Lihua Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Frank E Osterloh
- Department of Chemistry, University of California Davis, Davis, California 95616, United States
| | - Michael V Mirkin
- Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States
- Advanced Science Research Center at The Graduate Center, CUNY, New York, New York 10031, United States
| |
Collapse
|
15
|
Barman K, Askarova G, Jia R, Hu G, Mirkin MV. Efficient Voltage-Driven Oxidation of Water and Alcohols by an Organic Molecular Catalyst Directly Attached to a Carbon Electrode. J Am Chem Soc 2023; 145:5786-5794. [PMID: 36862809 DOI: 10.1021/jacs.2c12775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
The integration of heterogeneous electrocatalysis and molecular catalysis is a promising approach to designing new catalysts for the oxygen evolution reaction (OER) and other processes. We recently showed that the electrostatic potential drop across the double layer contributes to the driving force for electron transfer between a dissolved reactant and a molecular catalyst immobilized directly on the electrode surface. Here, we report high current densities and low onset potentials for water oxidation attained using a metal-free voltage-assisted molecular catalyst (TEMPO). Scanning electrochemical microscopy (SECM) was used to analyze the products and determine faradic efficiencies for the generation of H2O2 and O2. The same catalyst was employed for efficient oxidations of butanol, ethanol, glycerol, and H2O2. DFT calculations show that the applied voltage alters the electrostatic potential drop between TEMPO and the reactant as well as chemical bonding between them, thereby increasing the reaction rate. These results suggest a new route for designing next-generation hybrid molecular/electrocatalysts for OER and alcohol oxidations.
Collapse
Affiliation(s)
- Koushik Barman
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States
| | - Gaukhar Askarova
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States.,The Graduate Center of CUNY, New York, New York 10016, United States
| | - Rui Jia
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States.,The Graduate Center of CUNY, New York, New York 10016, United States
| | - Guoxiang Hu
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States.,The Graduate Center of CUNY, New York, New York 10016, United States
| | - Michael V Mirkin
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States.,Advanced Science Research Center at The Graduate Center, CUNY, New York, New York 10031, United States
| |
Collapse
|
16
|
Vitti NJ, Majumdar P, White HS. Critical Nucleus Size and Activation Energy of Ag Nucleation by Electrochemical Observation of Isolated Nucleation Events. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1173-1180. [PMID: 36623256 DOI: 10.1021/acs.langmuir.2c02946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The induction times for electrodeposition of individual Ag nanoparticles on Pt nanodisk electrodes in acetonitrile were used to determine the critical nucleus size and activation energy barrier associated with the formation of Ag nuclei. Induction times for the nucleation and growth of a single Ag nanoparticle were determined following the application of a potential step to reduce Ag+ at overpotentials, η, ranging from -130 to -70 mV. Sufficiently small Pt electrodes (5.1 × 10-10-2.6 × 10-11 cm2) were used to ensure that the detection of a single Ag nucleation event occurred during the experimental observation time (150 ms-1000 s). Multiple measurements of Ag nucleation induction times were recorded to determine nucleation rates as a function of η using cumulative probability theory. Both classical nucleation theory (CNT) and the atomistic theory of electrochemical nucleation were employed to analyze experimental nucleation rates, without a requisite knowledge of the nucleus geometry or surface free energy. Using the CNT, the number of atoms comprising the critical size nucleus, Nc, was estimated to be 1-9 atoms for η ranging from -130 to -70 mV, in good agreement with 1-5 atoms obtained using atomistic theory. The experimental nucleation rates were also used to determine the activation energy barriers for nucleation from the CNT, which varied from 3.31 ± 0.05 to 13 ± 1 kT over the same range of η.
Collapse
Affiliation(s)
- Nicholas J Vitti
- Department of Chemistry, University of Utah, Salt Lake City, Utah84112, United States
| | - Pavel Majumdar
- Department of Chemistry, University of Utah, Salt Lake City, Utah84112, United States
| | - Henry S White
- Department of Chemistry, University of Utah, Salt Lake City, Utah84112, United States
| |
Collapse
|
17
|
Radziewicz M, Nogala W, Kot Ł, Hyk W. Voltammetric examination of carbon and platinum nanoelectrodes under mixed diffusion – migration mass transport conditions. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
18
|
Kurapati N, Janda DC, Balla RJ, Huang SH, Leonard KC, Amemiya S. Nanogap-Resolved Adsorption-Coupled Electron Transfer by Scanning Electrochemical Microscopy: Implications for Electrocatalysis. Anal Chem 2022; 94:17956-17963. [PMID: 36512745 DOI: 10.1021/acs.analchem.2c04008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Here, we demonstrate for the first time that the mechanism of adsorption-coupled electron-transfer (ACET) reactions can be identified experimentally. The electron transfer (ET) and specific adsorption of redox-active molecules are coupled in many electrode reactions with practical importance and fundamental interest. ACET reactions are often represented by a concerted mechanism. In reductive adsorption, an oxidant is simultaneously reduced and adsorbed as a reductant on the electrode surface through the ACET step. Alternatively, the non-concerted mechanism mediates outer-sphere reduction and adsorption separately when the reductant adsorption is reversible. In electrocatalysis, reversibly adsorbed reductants are ubiquitous and crucial intermediates. Moreover, electrocatalysis is complicated by the mixed mechanism based on simultaneous ACET and outer-sphere ET steps. In this work, we reveal the non-concerted mechanism for ferrocene derivatives adsorbed at highly oriented pyrolytic graphite as simple models. We enable the transient voltammetric mode of nanoscale scanning electrochemical microscopy (SECM) to kinetically control the adsorption step, which is required for the discrimination of non-concerted, concerted, and mixed mechanisms. Experimental voltammograms are compared with each mechanism by employing finite element simulation. The non-concerted mechanism is supported to indicate that the ACET step is intrinsically slower than its outer-sphere counterpart by at least four orders of magnitude. This finding implies that an ACET step is facilitated thermodynamically but may not be necessarily accelerated or catalyzed by the adsorption of the reductant. SECM-based transient voltammetry will become a powerful tool to resolve and understand electrocatalytic ACET reactions at the elementary level.
Collapse
Affiliation(s)
- Niraja Kurapati
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Donald C Janda
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Ryan J Balla
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Siao-Han Huang
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Kevin C Leonard
- Center for Environmentally Beneficial Catalysis, Department of Chemical and Petroleum Engineering, University of Kansas, 1501 Wakarusa Drive, Lawrence, Kansas 66047, United States
| | - Shigeru Amemiya
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
19
|
Gao H, Xu J, Liu C, Wang F, Sun H, Wang Q, Zhou M. Precise Polishing and Electrochemical Applications of Quartz Nanopipette-Based Carbon Nanoelectrodes. Anal Chem 2022; 94:14092-14098. [PMID: 36191159 DOI: 10.1021/acs.analchem.2c02296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Quartz nanopipette-based carbon nanoelectrodes (CNEs) have attracted extensive attention in nanoscale electrochemistry due to their simple and efficient fabrication, chemically inert materials, flexible size (down to a few nanometers), and ultrathin insulating encapsulation. However, these pristine CNEs usually have significantly irregular morphology on the surface, which greatly limits the applications where inlaid nanodisks are urgently needed. To address this critical issue, we have developed a new precise polishing strategy using paraffin coating protection (i.e., avoiding breakage of quartz materials) and real-time monitoring with a high impedance meter (i.e., indicating electrode exposure) to produce flat carbon nanodisk electrodes. The surface flatness of polished CNEs has been confirmed by a combination of scanning electron microscopy, fast-scan cyclic voltammetry, and scanning electrochemical microscopy. As compared to the expensive focused ion beam processing, this strategy is competitive in terms of the low cost and availability of the equipment and enables the preparation of polished CNEs with sufficiently small size. The flattened CNEs have been exemplified for grafting molecular catalysts to achieve the durable catalysis of reactive molecules or for immobilizing single-particle electrocatalysts to measure the intrinsic activity under sufficient mass-transfer rates.
Collapse
Affiliation(s)
- Han Gao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jianan Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Chen Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Fei Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Haotian Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Qian Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Innovation Academy for Green Manufacture, CAS, Beijing 100190, China
| | - Min Zhou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
20
|
Han L, Ou P, Liu W, Wang X, Wang HT, Zhang R, Pao CW, Liu X, Pong WF, Song J, Zhuang Z, Mirkin MV, Luo J, Xin HL. Design of Ru-Ni diatomic sites for efficient alkaline hydrogen oxidation. SCIENCE ADVANCES 2022; 8:eabm3779. [PMID: 35648856 PMCID: PMC9159574 DOI: 10.1126/sciadv.abm3779] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Anion exchange membrane fuel cells are limited by the slow kinetics of alkaline hydrogen oxidation reaction (HOR). Here, we establish HOR catalytic activities of single-atom and diatomic sites as a function of *H and *OH binding energies to screen the optimal active sites for the HOR. As a result, the Ru-Ni diatomic one is identified as the best active center. Guided by the theoretical finding, we subsequently synthesize a catalyst with Ru-Ni diatomic sites supported on N-doped porous carbon, which exhibits excellent catalytic activity, CO tolerance, and stability for alkaline HOR and is also superior to single-site counterparts. In situ scanning electrochemical microscopy study validates the HOR activity resulting from the Ru-Ni diatomic sites. Furthermore, in situ x-ray absorption spectroscopy and computational studies unveil a synergistic interaction between Ru and Ni to promote the molecular H2 dissociation and strengthen OH adsorption at the diatomic sites, and thus enhance the kinetics of HOR.
Collapse
Affiliation(s)
- Lili Han
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697, USA
| | - Pengfei Ou
- Department of Mining and Materials Engineering, McGill University, Montreal H3A 0C5, Canada
| | - Wei Liu
- Institute for New Energy Materials and Low-Carbon Technologies and Tianjin Key Laboratory of Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xiang Wang
- Department of Chemistry and Biochemistry, Queens College–CUNY, Flushing, Queens, NY 11367, USA
| | - Hsiao-Tsu Wang
- Department of Physics, Tamkang University, New Taipei City 25137, Taiwan
| | - Rui Zhang
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697, USA
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Xijun Liu
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, and Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resource, Environments and Materials, Guangxi University, Nanning 530004, China
- Corresponding author. (X.L.); (H.L.X.)
| | - Way-Faung Pong
- Department of Physics, Tamkang University, New Taipei City 25137, Taiwan
| | - Jun Song
- Department of Mining and Materials Engineering, McGill University, Montreal H3A 0C5, Canada
| | - Zhongbin Zhuang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Michael V. Mirkin
- Department of Chemistry and Biochemistry, Queens College–CUNY, Flushing, Queens, NY 11367, USA
| | - Jun Luo
- Institute for New Energy Materials and Low-Carbon Technologies and Tianjin Key Laboratory of Photoelectric Materials and Devices, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Huolin L. Xin
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA 92697, USA
- Corresponding author. (X.L.); (H.L.X.)
| |
Collapse
|
21
|
Hesari M, Jia R, Mirkin MV. Metal Organic Framework (MOF) Based Electrochemical Nanosensor for Hydrogen Peroxide. ChemElectroChem 2022. [DOI: 10.1002/celc.202200373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mahdi Hesari
- CUNY Queens College: Queens College Chemistry & Biochemistry UNITED STATES
| | - Rui Jia
- CUNY Queens College: Queens College Chemistry & Biochemistry UNITED STATES
| | - Michael V. Mirkin
- Queens College Department of Chemistry and Biochemistry 65-30 Kissena Blvd 11367 Flushing UNITED STATES
| |
Collapse
|
22
|
Askarova G, Hesari M, Wang C, Mirkin MV. Decoupling Through-Tip Illumination from Scanning in Nanoscale Photo-SECM. Anal Chem 2022; 94:7169-7173. [PMID: 35532734 DOI: 10.1021/acs.analchem.2c00753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The use of scanning electrochemical microscopy (SECM) for nanoscale imaging of photoelectrochemical processes at semiconductor surfaces has recently been demonstrated. To illuminate a microscopic portion of the substrate surface facing the SECM probe, a glass-sealed, polished tip simultaneously served as a nanoelectrode and a light guide. One issue affecting nanoscale photo-SECM experiments is mechanical interactions of the rigid optical fiber with the tip motion controlled by the piezo-positioner. Here we report an improved experimental setup in which the tip is mechanically decoupled from the fiber and light is delivered to the back of the tip capillary using a complex lens system. The advantages of this approach are evident from the improved quality of the approach curves and photo-SECM images. The light intensity delivered from the optical fiber to the tip is not changed significantly by their decoupling.
Collapse
Affiliation(s)
- Gaukhar Askarova
- Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States.,The Graduate Center of CUNY, New York, New York 10016, United States
| | - Mahdi Hesari
- Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States
| | - Chen Wang
- Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States.,The Graduate Center of CUNY, New York, New York 10016, United States
| | - Michael V Mirkin
- Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States.,Advanced Science Research Center at The Graduate Center, CUNY, New York, New York 10031, United States
| |
Collapse
|
23
|
Meng Y, Du M, Yang Y, Cheng Q, Cao F. Electrochemical observation of individual collision-blocking events of TX-100 nanomicelles: An accurate and universal approach for the critical micelle concentration determination of surfactants. Anal Chim Acta 2021; 1188:339179. [PMID: 34794567 DOI: 10.1016/j.aca.2021.339179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/18/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022]
Abstract
The electrochemical collision-blocking technique, equipped with the nanoelectrode of Pt was proposed for determination of the critical micelle concentration (CMC) of non-ionic surfactant TX-100. The approach was found on detection of individual collided nanomicelles in amperometric measurements of the oxidation of K4Fe(CN)6 varying the titrated concentration of TX-100 whereas the formed micelles above the CMC stick on the electrode surface during collision to locally block the flux of electroactive species and further to change the faradaic current. The step-like current transients observed in i-t curves have been demonstrated corresponding to electrochemical collision events of individual TX-100 micelles and micelle aggregates by 3D COMSOL simulations. The logarithm relations between the collision frequency of micelle(s) and the concentration of TX-100 were derived by regression analysis to give the corresponding values of CMC in salt solutions. Further, an 'ideal' CMC of TX-100 without influence of additional salts was estimated to be 0.194 mM using the McDevit-Long theory. The more accurate CMC determined in this work has shown less than the previously reported, mainly due to the detection limit for micelle as low as 0.41 fM. Also, we determined the second CMC of 1.21 mM as the first observation of the collision response of micelle aggregates during TX-100 titration. Owing to its analytical characteristics in single-particle tracking and material insensitivity, the approach we proposed is potentially to be a universal tool for accurate determination of CMC of surfactants, and also for studying the formation of polymer particles at a single-particle level, which is not easily accessible using conventional ensemble measurements.
Collapse
Affiliation(s)
- Yao Meng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China.
| | - Minshu Du
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China; Yangtze River Delta Research Institute of NPU, Taicang, 215400, Jiangsu, PR China
| | - Yiqing Yang
- Queen Mary University of London Engineering School, NPU, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Qianni Cheng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Fahe Cao
- School of Materials, Sun Yat-sen University, Guangzhou, 510006, PR China
| |
Collapse
|
24
|
Sarkar S, Wang X, Hesari M, Chen P, Mirkin MV. Scanning Electrochemical and Photoelectrochemical Microscopy on Finder Grids: Toward Correlative Multitechnique Imaging of Surfaces. Anal Chem 2021; 93:5377-5382. [PMID: 33769032 DOI: 10.1021/acs.analchem.1c00358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Scanning electrochemical microscopy (SECM) is a powerful technique for mapping surface reactivity and investigating heterogeneous processes on the nanoscale. Despite significant advances in high-resolution SECM and photo-SECM imaging, they cannot provide atomic scale structural information about surfaces. By correlating the SECM images with atomic scale structural and bonding information obtained by transmission electron microscopy (TEM) techniques with one-to-one correspondence, one can elucidate the nature of the active sites and understand the origins of heterogeneous surface reactivity. To enable multitechnique imaging of the same nanoscale portion of the electrode surface, we develop a methodology for using a TEM finder grid as a conductive support in SECM and photo-SECM experiments. In this paper, we present the results of our first nanoscale SECM and photo-SECM experiments on carbon TEM grids, including imaging of semiconductor nanorods.
Collapse
Affiliation(s)
- Sujoy Sarkar
- Department of Chemistry, Queens College, City University of New York, 6530 Kissena Boulevard Flushing, New York 11367, United States
| | - Xiang Wang
- Department of Chemistry, Queens College, City University of New York, 6530 Kissena Boulevard Flushing, New York 11367, United States.,The Graduate Center of CUNY, New York, New York 10016, United States
| | - Mahdi Hesari
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Peng Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Michael V Mirkin
- Department of Chemistry, Queens College, City University of New York, 6530 Kissena Boulevard Flushing, New York 11367, United States
| |
Collapse
|
25
|
Dieckhöfer S, Öhl D, Junqueira JRC, Quast T, Turek T, Schuhmann W. Probing the Local Reaction Environment During High Turnover Carbon Dioxide Reduction with Ag-Based Gas Diffusion Electrodes. Chemistry 2021; 27:5906-5912. [PMID: 33527522 PMCID: PMC8048634 DOI: 10.1002/chem.202100387] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Indexed: 01/03/2023]
Abstract
Discerning the influence of electrochemical reactions on the electrode microenvironment is an unavoidable topic for electrochemical reactions that involve the production of OH− and the consumption of water. That is particularly true for the carbon dioxide reduction reaction (CO2RR), which together with the competing hydrogen evolution reaction (HER) exert changes in the local OH− and H2O activity that in turn can possibly affect activity, stability, and selectivity of the CO2RR. We determine the local OH− and H2O activity in close proximity to a CO2‐converting Ag‐based gas diffusion electrode (GDE) with product analysis using gas chromatography. A Pt nanosensor is positioned in the vicinity of the working GDE using shear‐force‐based scanning electrochemical microscopy (SECM) approach curves, which allows monitoring changes invoked by reactions proceeding within an otherwise inaccessible porous GDE by potentiodynamic measurements at the Pt‐tip nanosensor. We show that high turnover HER/CO2RR at a GDE lead to modulations of the alkalinity of the local electrolyte, that resemble a 16 m KOH solution, variations that are in turn linked to the reaction selectivity.
Collapse
Affiliation(s)
- Stefan Dieckhöfer
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Denis Öhl
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - João R C Junqueira
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Thomas Quast
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| | - Thomas Turek
- Institute of Chemical and Electrochemical Process Engineering, Clausthal University of Technology, Leibnizstr 17, 38678, Clausthal-Zellerfeld, Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry-Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44780, Bochum, Germany
| |
Collapse
|
26
|
Pendergast AD, Renault C, Dick JE. Correlated Optical-Electrochemical Measurements Reveal Bidirectional Current Steps for Graphene Nanoplatelet Collisions at Ultramicroelectrodes. Anal Chem 2021; 93:2898-2906. [PMID: 33491447 DOI: 10.1021/acs.analchem.0c04409] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Single-entity electrochemistry has emerged as a powerful tool to study the adsorption behavior of single nanoscale entities one-at-a-time on an ultramicroelectrode surface. Classical single-entity collision studies have focused on the behavior of spherical nanoparticles or entities where the orientation of the colliding entity does not impact the electrochemical response. Here, we report a detailed study of the collision of asymmetric single graphene nanoplatelets onto ultramicroelectrodes. The collision of conductive graphene nanoplatelets on biased ultramicroelectrode surfaces can be observed in an amperometric i-t trace, revealing a variety of current transients (both positive and negative steps). To elucidate the dynamics of nanoplatelet adsorption processes and probe response heterogeneity, we correlated the collision events with optical microscopy. We show that positive steps are due to nanoplatelets coming into contact with the ultramicroelectrode, making an electrical connection, and adsorbing partly on the glass surrounding the ultramicroelectrode. Negative steps occur when nanoplatelets adsorb onto the glass without an electrical connection, effectively blocking flux of ferrocenemethanol to the ultramicroelectrode surface. These measurements allow rigorous quantification of current transients and detailed insights into the adsorption dynamics of asymmetric objects at the nanoscale.
Collapse
Affiliation(s)
- Andrew D Pendergast
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Christophe Renault
- Physique de la Matière Condensée, CNRS, Ecole Polytechnique, 91128 Palaiseau, France
| | - Jeffrey E Dick
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
27
|
Helú MAB, Liu L. Fused deposition modeling (FDM) based 3D printing of microelectrodes and multi-electrode probes. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Ying YL, Wang J, Leach AR, Jiang Y, Gao R, Xu C, Edwards MA, Pendergast AD, Ren H, Weatherly CKT, Wang W, Actis P, Mao L, White HS, Long YT. Single-entity electrochemistry at confined sensing interfaces. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9716-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Pan R, Hu K, Jia R, Rotenberg SA, Jiang D, Mirkin MV. Resistive-Pulse Sensing Inside Single Living Cells. J Am Chem Soc 2020; 142:5778-5784. [DOI: 10.1021/jacs.9b13796] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rongrong Pan
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States
- State Key Laboratory of Analytical Chemistry for Life and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Keke Hu
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States
- The Graduate Center of CUNY, New York, New York 10016, United States
| | - Rui Jia
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States
- The Graduate Center of CUNY, New York, New York 10016, United States
| | - Susan A. Rotenberg
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States
- The Graduate Center of CUNY, New York, New York 10016, United States
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Michael V. Mirkin
- Department of Chemistry and Biochemistry, Queens College-CUNY, Flushing, New York 11367, United States
- The Graduate Center of CUNY, New York, New York 10016, United States
| |
Collapse
|
30
|
Chang M, Morgan G, Bedier F, Chieng A, Gomez P, Raminani S, Wang Y. Review-Recent Advances in Nanosensors Built with Pre-Pulled Glass Nanopipettes and Their Applications in Chemical and Biological Sensing. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2020; 167:037533. [PMID: 34326553 PMCID: PMC8317590 DOI: 10.1149/1945-7111/ab64be] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Nanosensors built with pre-pulled glass nanopipettes, including bare or chemically modified nanopipettes and fully or partially filled solid nanoelectrodes, have found applications in chemical and biological sensing via resistive-pulse, current rectification, and electrochemical sensing. These nanosensors are easily fabricated and provide advantages through their needle-like geometry with nanometer-sized tips, making them highly sensitive and suitable for local measurements in extremely small samples. The variety in the geometry and layout have extended sensing capabilities. In this review, we will outline the fundamentals in fabrication, modification, and characterization of those pre-pulled glass nanopipette based nanosensors and highlight the most recent progress in their development and applications in real-time monitoring of biological processes, chemical ion sensing, and single entity analysis.
Collapse
|
31
|
Röhe M, Botz A, Franzen D, Kubannek F, Ellendorff B, Öhl D, Schuhmann W, Turek T, Krewer U. The Key Role of Water Activity for the Operating Behavior and Dynamics of Oxygen Depolarized Cathodes. ChemElectroChem 2019. [DOI: 10.1002/celc.201901224] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Maximilian Röhe
- Institute of Energy and Process Systems EngineeringTechnische Universität Braunschweig Franz-Liszt-Str. 35 38106 Braunschweig Germany
| | - Alexander Botz
- Analytical Chemistry – Center for Electrochemical SciencesFaculty of Chemistry and BiochemistryRuhr University Bochum Universitätsstr. 150 44780 Bochum Germany
| | - David Franzen
- Institute of Chemical and Electrochemical Process EngineeringTechnische Universität Clausthal Leibnizstr. 17 38678 Clausthal-Zellerfeld Germany
| | - Fabian Kubannek
- Institute of Energy and Process Systems EngineeringTechnische Universität Braunschweig Franz-Liszt-Str. 35 38106 Braunschweig Germany
| | - Barbara Ellendorff
- Institute of Chemical and Electrochemical Process EngineeringTechnische Universität Clausthal Leibnizstr. 17 38678 Clausthal-Zellerfeld Germany
| | - Denis Öhl
- Analytical Chemistry – Center for Electrochemical SciencesFaculty of Chemistry and BiochemistryRuhr University Bochum Universitätsstr. 150 44780 Bochum Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry – Center for Electrochemical SciencesFaculty of Chemistry and BiochemistryRuhr University Bochum Universitätsstr. 150 44780 Bochum Germany
| | - Thomas Turek
- Institute of Chemical and Electrochemical Process EngineeringTechnische Universität Clausthal Leibnizstr. 17 38678 Clausthal-Zellerfeld Germany
| | - Ulrike Krewer
- Institute of Energy and Process Systems EngineeringTechnische Universität Braunschweig Franz-Liszt-Str. 35 38106 Braunschweig Germany
| |
Collapse
|
32
|
Wang X, Han L, Xin H, Mirkin MV. TEM-Assisted Fabrication of Sub-10 nm Scanning Electrochemical Microscopy Tips. Anal Chem 2019; 91:15355-15359. [DOI: 10.1021/acs.analchem.9b04316] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiang Wang
- Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States
- The Graduate Center of CUNY, New York, New York 10016, United States
| | - Lili Han
- Department of Physics & Astronomy, University of California, Irvine, California 92697, United States
| | - Huolin Xin
- Department of Physics & Astronomy, University of California, Irvine, California 92697, United States
| | - Michael V. Mirkin
- Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States
- The Graduate Center of CUNY, New York, New York 10016, United States
| |
Collapse
|
33
|
Hu K, Wang D, Zhou M, Bae JH, Yu Y, Xin H, Mirkin MV. Ultrasensitive Detection of Dopamine with Carbon Nanopipets. Anal Chem 2019; 91:12935-12941. [PMID: 31503470 DOI: 10.1021/acs.analchem.9b02994] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Carbon fiber micro- and nanoelectrodes have been extensively used to measure dopamine and other neurotransmitters in biological systems. Although the radii of some reported probes were ≪1 μm, the lengths of the exposed carbon were typically on the micrometer scale, thus limiting the spatial resolution of electroanalytical measurements. Recent attempts to determine neurotransmitters in single cells and vesicles have provided additional impetus for decreasing the probe dimensions. Here, we report two types of dopamine sensors based on carbon nanopipets (CNP) prepared by chemical vapor deposition of carbon into prepulled quartz capillaries. These include 10-200 nm radius CNPs with a cavity near the orifice and CNPs with an open path in the middle, in which the volume of sampled solution can be controlled by the applied pressure. Because of the relatively large surface area of carbon exposed to solution inside the pipet, both types of sensors yielded well-shaped voltammograms of dopamine down to ca. 1 nM concentrations, and the unprecedented voltammetric response to 100 pM dopamine was obtained with open CNPs. TEM tomography and numerical simulations were used to model CNP responses. The effect of dopamine adsorption on the CNP detection limit is discussed along with the possibilities of measuring other physiologically important analytes (e.g., serotonin) and eliminating anionic and electrochemically irreversible interferences (e.g., ascorbic acid).
Collapse
Affiliation(s)
- Keke Hu
- Department of Chemistry and Biochemistry , Queens College , Flushing , New York 11367 , United States.,The Graduate Center of CUNY , New York , New York 10016 , United States
| | - Dengchao Wang
- Department of Chemistry and Biochemistry , Queens College , Flushing , New York 11367 , United States
| | - Min Zhou
- Department of Chemistry and Biochemistry , Queens College , Flushing , New York 11367 , United States
| | - Je Hyun Bae
- Department of Chemistry and Biochemistry , Queens College , Flushing , New York 11367 , United States
| | - Yun Yu
- Department of Chemistry and Biochemistry , Queens College , Flushing , New York 11367 , United States
| | - Huolin Xin
- Department of Physics & Astronomy , University of California , Irvine , California 92697 , United States
| | - Michael V Mirkin
- Department of Chemistry and Biochemistry , Queens College , Flushing , New York 11367 , United States.,The Graduate Center of CUNY , New York , New York 10016 , United States
| |
Collapse
|
34
|
Balla RJ, Jantz DT, Kurapati N, Chen R, Leonard KC, Amemiya S. Nanoscale Intelligent Imaging Based on Real-Time Analysis of Approach Curve by Scanning Electrochemical Microscopy. Anal Chem 2019; 91:10227-10235. [PMID: 31310104 DOI: 10.1021/acs.analchem.9b02361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Scanning electrochemical microscopy (SECM) enables high-resolution imaging by examining the amperometric response of an ultramicroelectrode tip near a substrate. Spatial resolution, however, is compromised for nonflat substrates, where distances from a tip far exceed the tip size to avoid artifacts caused by the tip-substrate contact. Herein, we propose a new imaging mode of SECM based on real-time analysis of the approach curve to actively control nanoscale tip-substrate distances without contact. The power of this software-based method is demonstrated by imaging an insulating substrate with step edges using standard instrumentation without combination of another method for distance measurement, e.g., atomic force microscopy. An ∼500 nm diameter Pt tip approaches down to ∼50 nm from upper and lower terraces of a 500 nm height step edge, which are located by real-time theoretical fitting of an experimental approach curve to ensure the lack of electrochemical reactivity. The tip approach to the step edge can be terminated at <20 nm prior to the tip-substrate contact as soon as the theory deviates from the tip current, which is analyzed numerically afterward to locate the inert edge. The advantageous local adjustment of tip height and tip current at the final point of tip approach distinguishes the proposed imaging mode from other modes based on standard instrumentation. In addition, the glass sheath of the Pt tip is thinned to ∼150 nm to rarely contact the step edge, which is unavoidable and instantaneously detected as an abrupt change in the slope of approach curve to prevent damage of the fragile nanotip.
Collapse
Affiliation(s)
- Ryan J Balla
- Department of Chemistry , University of Pittsburgh , 219 Parkman Avenue , Pittsburgh , Pennsylvania 15260 , United States
| | - Dylan T Jantz
- Center for Environmentally Beneficial Catalysis, Department of Chemical and Petroleum Engineering , University of Kansas , 1501 Wakarusa Drive , Lawrence , Kansas 66047 , United States
| | - Niraja Kurapati
- Department of Chemistry , University of Pittsburgh , 219 Parkman Avenue , Pittsburgh , Pennsylvania 15260 , United States
| | - Ran Chen
- Department of Chemistry , University of Pittsburgh , 219 Parkman Avenue , Pittsburgh , Pennsylvania 15260 , United States
| | - Kevin C Leonard
- Center for Environmentally Beneficial Catalysis, Department of Chemical and Petroleum Engineering , University of Kansas , 1501 Wakarusa Drive , Lawrence , Kansas 66047 , United States
| | - Shigeru Amemiya
- Department of Chemistry , University of Pittsburgh , 219 Parkman Avenue , Pittsburgh , Pennsylvania 15260 , United States
| |
Collapse
|
35
|
Gao R, Lin Y, Ying YL, Hu YX, Xu SW, Ruan LQ, Yu RJ, Li YJ, Li HW, Cui LF, Long YT. Wireless nanopore electrodes for analysis of single entities. Nat Protoc 2019; 14:2015-2035. [PMID: 31168087 DOI: 10.1038/s41596-019-0171-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 04/02/2019] [Indexed: 11/09/2022]
Abstract
Measurements of a single entity underpin knowledge of the heterogeneity and stochastics in the behavior of molecules, nanoparticles, and cells. Electrochemistry provides a direct and fast method to analyze single entities as it probes electron/charge-transfer processes. However, a highly reproducible electrochemical-sensing nanointerface is often hard to fabricate because of a lack of control of the fabrication processes at the nanoscale. In comparison with conventional micro/nanoelectrodes with a metal wire inside, we present a general and easily implemented protocol that describes how to fabricate and use a wireless nanopore electrode (WNE). Nanoscale metal deposition occurs at the tip of the nanopipette, providing an electroactive sensing interface. The WNEs utilize a dynamic ionic flow instead of a metal wire to sense the interfacial redox process. WNEs provide a highly controllable interface with a 30- to 200-nm diameter. This protocol presents the construction and characterization of two types of WNEs-the open-type WNE and closed-type WNE-which can be used to achieve reproducible electrochemical measurements of single entities. Combined with the related signal amplification mechanisms, we also describe how WNEs can be used to detect single redox molecules/ions, analyze the metabolism of single cells, and discriminate single nanoparticles in a mixture. This protocol is broadly applicable to studies of living cells, nanomaterials, and sensors at the single-entity level. The total time required to complete the protocol is ~10-18 h. Each WNE costs ~$1-$3.
Collapse
Affiliation(s)
- Rui Gao
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Yao Lin
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Yi-Lun Ying
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China. .,School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| | - Yong-Xu Hu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Su-Wen Xu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Lin-Qi Ruan
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Ru-Jia Yu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Yuan-Jie Li
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Hao-Wen Li
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Ling-Fei Cui
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Yi-Tao Long
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China.,School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| |
Collapse
|
36
|
Bae JH, Wang D, Hu K, Mirkin MV. Surface-Charge Effects on Voltammetry in Carbon Nanocavities. Anal Chem 2019; 91:5530-5536. [PMID: 30977642 DOI: 10.1021/acs.analchem.9b00426] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ion transport controlled by electrostatic interactions is an important phenomenon in biological and artificial membranes, channels, and nanopores. Here, we employ carbon-coated nanopipets (CNPs) for studying permselective electrochemistry in a conductive nanopore. A significant accumulation (up to 2000-fold) of cationic redox species and anion depletion inside a CNP by diffuse-layer and surface-charge effects in a solution of low ionic strength were observed as well as the shift of the voltammetric midpeak potential. Finite-element simulations of electrostatic effects on CNP voltammograms show permselective ion transport in a single conducting nanopore and semiquantitatively explain our experimental data. The reported results are potentially useful for improving sensitivity and selectivity of CNP sensors for ionic analytes.
Collapse
Affiliation(s)
- Je Hyun Bae
- Department of Chemistry and Biochemistry , Queens College , Flushing , New York 11367 , United States
| | - Dengchao Wang
- Department of Chemistry and Biochemistry , Queens College , Flushing , New York 11367 , United States
| | - Keke Hu
- Department of Chemistry and Biochemistry , Queens College , Flushing , New York 11367 , United States.,The Graduate Center of CUNY , New York , New York 10016 , United States
| | - Michael V Mirkin
- Department of Chemistry and Biochemistry , Queens College , Flushing , New York 11367 , United States.,The Graduate Center of CUNY , New York , New York 10016 , United States
| |
Collapse
|
37
|
Pathirathna P, Balla RJ, Jantz DT, Kurapati N, Gramm ER, Leonard KC, Amemiya S. Probing High Permeability of Nuclear Pore Complexes by Scanning Electrochemical Microscopy: Ca 2+ Effects on Transport Barriers. Anal Chem 2019; 91:5446-5454. [PMID: 30907572 PMCID: PMC6535230 DOI: 10.1021/acs.analchem.9b00796] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The nuclear pore complex (NPC) solely mediates molecular transport between the nucleus and cytoplasm of a eukaryotic cell to play important biological and biomedical roles. However, it is not well-understood chemically how this biological nanopore selectively and efficiently transports various substances, including small molecules, proteins, and RNAs by using transport barriers that are rich in highly disordered repeats of hydrophobic phenylalanine and glycine intermingled with charged amino acids. Herein, we employ scanning electrochemical microscopy to image and measure the high permeability of NPCs to small redox molecules. The effective medium theory demonstrates that the measured permeability is controlled by diffusional translocation of probe molecules through water-filled nanopores without steric or electrostatic hindrance from hydrophobic or charged regions of transport barriers, respectively. However, the permeability of NPCs is reduced by a low millimolar concentration of Ca2+, which can interact with anionic regions of transport barriers to alter their spatial distributions within the nanopore. We employ atomic force microscopy to confirm that transport barriers of NPCs are dominantly recessed (∼80%) or entangled (∼20%) at the high Ca2+ level in contrast to authentic populations of entangled (∼50%), recessed (∼25%), and "plugged" (∼25%) conformations at a physiological Ca2+ level of submicromolar. We propose a model for synchronized Ca2+ effects on the conformation and permeability of NPCs, where transport barriers are viscosified to lower permeability. Significantly, this result supports a hypothesis that the functional structure of transport barriers is maintained not only by their hydrophobic regions, but also by charged regions.
Collapse
Affiliation(s)
- Pavithra Pathirathna
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania, 15260, United States
| | - Ryan J. Balla
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania, 15260, United States
| | - Dylan T. Jantz
- Center for Environmentally Beneficial Catalysis, Department of Chemical and Petroleum Engineering, University of Kansas, 1501 Wakarusa Drive, Lawrence, Kansas 66047, United States
| | - Niraja Kurapati
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania, 15260, United States
| | - Erin R. Gramm
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania, 15260, United States
| | - Kevin C. Leonard
- Center for Environmentally Beneficial Catalysis, Department of Chemical and Petroleum Engineering, University of Kansas, 1501 Wakarusa Drive, Lawrence, Kansas 66047, United States
| | - Shigeru Amemiya
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania, 15260, United States
| |
Collapse
|
38
|
Puri SR, Kim J. Kinetics of Antimicrobial Drug Ion Transfer at a Water/Oil Interface Studied by Nanopipet Voltammetry. Anal Chem 2019; 91:1873-1879. [DOI: 10.1021/acs.analchem.8b03593] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Surendra Raj Puri
- Department of Chemistry, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Jiyeon Kim
- Department of Chemistry, The University of Rhode Island, Kingston, Rhode Island 02881, United States
| |
Collapse
|
39
|
Bentley CL, Edmondson J, Meloni GN, Perry D, Shkirskiy V, Unwin PR. Nanoscale Electrochemical Mapping. Anal Chem 2018; 91:84-108. [PMID: 30500157 DOI: 10.1021/acs.analchem.8b05235] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Ortiz-Ledón CA, Zoski CG. Fabrication of Glass-Insulated Ultramicrometer to Submicrometer Carbon Fiber Electrodes to Support a Single Nanoparticle and Nanoparticle Ensembles in Electrocatalytic Investigations. Anal Chem 2018; 90:12616-12624. [DOI: 10.1021/acs.analchem.8b02785] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- César A. Ortiz-Ledón
- Center for Electrochemistry, Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Cynthia G. Zoski
- Center for Electrochemistry, Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
41
|
Chen R, Najarian AM, Kurapati N, Balla RJ, Oleinick A, Svir I, Amatore C, McCreery RL, Amemiya S. Self-Inhibitory Electron Transfer of the Co(III)/Co(II)-Complex Redox Couple at Pristine Carbon Electrode. Anal Chem 2018; 90:11115-11123. [PMID: 30118206 DOI: 10.1021/acs.analchem.8b03023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Applications of conducting carbon materials for highly efficient electrochemical energy devices require a greater fundamental understanding of heterogeneous electron-transfer (ET) mechanisms. This task, however, is highly challenging experimentally, because an adsorbing carbon surface may easily conceal its intrinsic reactivity through adventitious contamination. Herein, we employ nanoscale scanning electrochemical microscopy (SECM) and cyclic voltammetry to gain new insights into the interplay between heterogeneous ET and adsorption of a Co(III)/Co(II)-complex redox couple at the contamination-free surface of electron-beam-deposited carbon (eC). Specifically, we investigate the redox couple of tris(1,10-phenanthroline)cobalt(II), Co(phen)32+, as a promising mediator for dye-sensitized solar cells and redox flow batteries. A pristine eC surface overlaid with KCl is prepared in vacuum, protected from contamination in air, and exposed to an ultrapure aqueous solution of Co(phen)32+ by the dissolution of the protective KCl layer. We employ SECM-based nanogap voltammetry to quantitatively demonstrate that Co(phen)32+ is adsorbed on the pristine eC surface to electrostatically self-inhibit outer-sphere ET of nonadsorbed Co(phen)33+ and Co(phen)32+. Strong electrostatic repulsion among Co(phen)32+ adsorbates is also demonstrated by SECM-based nanogap voltammetry and cyclic voltammetry. Quantitatively, self-inhibitory ET is characterized by a linear decrease in the standard rate constant of Co(phen)32+ oxidation with a higher surface concentration of Co(phen)32+ at the formal potential. This unique relationship is consistent not with the Frumkin model of double layer effects, but with the Amatore model of partially blocked electrodes as extended for self-inhibitory ET. Significantly, the complicated coupling of electron transfer and surface adsorption is resolved by combining nanoscale and macroscale voltammetric methods.
Collapse
Affiliation(s)
- Ran Chen
- Department of Chemistry , University of Pittsburgh , 219 Parkman Avenue , Pittsburgh , Pennsylvania 15260 , United States
| | - Amin Morteza Najarian
- Department of Chemistry , University of Alberta , Edmonton , Alberta T6G 2R3 , Canada
| | - Niraja Kurapati
- Department of Chemistry , University of Pittsburgh , 219 Parkman Avenue , Pittsburgh , Pennsylvania 15260 , United States
| | - Ryan J Balla
- Department of Chemistry , University of Pittsburgh , 219 Parkman Avenue , Pittsburgh , Pennsylvania 15260 , United States
| | - Alexander Oleinick
- PASTEUR, Département de Chimie , École Normale Supérieure, PSL Université, Sorbonne Université , CNRS, 75005 Paris , France
| | - Irina Svir
- PASTEUR, Département de Chimie , École Normale Supérieure, PSL Université, Sorbonne Université , CNRS, 75005 Paris , France
| | - Christian Amatore
- PASTEUR, Département de Chimie , École Normale Supérieure, PSL Université, Sorbonne Université , CNRS, 75005 Paris , France.,State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen , 361005 , China
| | - Richard L McCreery
- Department of Chemistry , University of Alberta , Edmonton , Alberta T6G 2R3 , Canada
| | - Shigeru Amemiya
- Department of Chemistry , University of Pittsburgh , 219 Parkman Avenue , Pittsburgh , Pennsylvania 15260 , United States
| |
Collapse
|
42
|
Wilde P, Quast T, Aiyappa HB, Chen Y, Botz A, Tarnev T, Marquitan M, Feldhege S, Lindner A, Andronescu C, Schuhmann W. Towards Reproducible Fabrication of Nanometre‐Sized Carbon Electrodes: Optimisation of Automated Nanoelectrode Fabrication by Means of Transmission Electron Microscopy. ChemElectroChem 2018. [DOI: 10.1002/celc.201800600] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Patrick Wilde
- Analytical Chemistry – Center for Electrochemical Sciences (CES)Ruhr-Universität Bochum Universitätsstraße 150 D-44780 Bochum Germany
| | - Thomas Quast
- Analytical Chemistry – Center for Electrochemical Sciences (CES)Ruhr-Universität Bochum Universitätsstraße 150 D-44780 Bochum Germany
| | - Harshitha B. Aiyappa
- Analytical Chemistry – Center for Electrochemical Sciences (CES)Ruhr-Universität Bochum Universitätsstraße 150 D-44780 Bochum Germany
| | - Yen‐Ting Chen
- Analytical Chemistry – Center for Electrochemical Sciences (CES)Ruhr-Universität Bochum Universitätsstraße 150 D-44780 Bochum Germany
| | - Alexander Botz
- Analytical Chemistry – Center for Electrochemical Sciences (CES)Ruhr-Universität Bochum Universitätsstraße 150 D-44780 Bochum Germany
| | - Tsvetan Tarnev
- Analytical Chemistry – Center for Electrochemical Sciences (CES)Ruhr-Universität Bochum Universitätsstraße 150 D-44780 Bochum Germany
| | - Miriam Marquitan
- Analytical Chemistry – Center for Electrochemical Sciences (CES)Ruhr-Universität Bochum Universitätsstraße 150 D-44780 Bochum Germany
| | - Stephan Feldhege
- Mechanical Workshop of the Faculty of Chemistry and BiochemistryRuhr-Universität Bochum Universitätsstraße 150 D-44780 Bochum Germany
| | - Armin Lindner
- Mechanical Workshop of the Faculty of Chemistry and BiochemistryRuhr-Universität Bochum Universitätsstraße 150 D-44780 Bochum Germany
| | - Corina Andronescu
- Analytical Chemistry – Center for Electrochemical Sciences (CES)Ruhr-Universität Bochum Universitätsstraße 150 D-44780 Bochum Germany
| | - Wolfgang Schuhmann
- Analytical Chemistry – Center for Electrochemical Sciences (CES)Ruhr-Universität Bochum Universitätsstraße 150 D-44780 Bochum Germany
| |
Collapse
|
43
|
Advances and Perspectives in Chemical Imaging in Cellular Environments Using Electrochemical Methods. CHEMOSENSORS 2018. [DOI: 10.3390/chemosensors6020024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
44
|
Jedraszko J, Michalak M, Jönsson-Niedziolka M, Nogala W. Hopping mode SECM imaging of redox activity in ionic liquid with glass-coated inlaid platinum nanoelectrodes prepared using a heating coil puller. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.03.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
45
|
Ying YL, Hu YX, Gao R, Yu RJ, Gu Z, Lee LP, Long YT. Asymmetric Nanopore Electrode-Based Amplification for Electron Transfer Imaging in Live Cells. J Am Chem Soc 2018. [PMID: 29529376 DOI: 10.1021/jacs.7b12106] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Capturing real-time electron transfer, enzyme activity, molecular dynamics, and biochemical messengers in living cells is essential for understanding the signaling pathways and cellular communications. However, there is no generalizable method for characterizing a broad range of redox-active species in a single living cell at the resolution of cellular compartments. Although nanoelectrodes have been applied in the intracellular detection of redox-active species, the fabrication of nanoelectrodes to maximize the signal-to-noise ratio of the probe remains challenging because of the stringent requirements of 3D fabrication. Here, we report an asymmetric nanopore electrode-based amplification mechanism for the real-time monitoring of NADH in a living cell. We used a two-step 3D fabrication process to develop a modified asymmetric nanopore electrode with a diameter down to 90 nm, which allowed for the detection of redox metabolism in living cells. Taking advantage of the asymmetric geometry, the above 90% potential drop at the two terminals of the nanopore electrode converts the faradaic current response into an easily distinguishable bubble-induced transient ionic current pattern. Therefore, the current signal was amplified by at least 3 orders of magnitude, which was dynamically linked to the presence of trace redox-active species. Compared to traditional wire electrodes, this wireless asymmetric nanopore electrode exhibits a high signal-to-noise ratio by increasing the current resolution from nanoamperes to picoamperes. The asymmetric nanopore electrode achieves the highly sensitive and selective probing of NADH concentrations as low as 1 pM. Moreover, it enables the real-time nanopore monitoring of the respiration chain (i.e., NADH) in a living cell and the evaluation of the effects of anticancer drugs in an MCF-7 cell. We believe that this integrated wireless asymmetric nanopore electrode provides promising building blocks for the future imaging of electron transfer dynamics in live cells.
Collapse
Affiliation(s)
- Yi-Lun Ying
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
| | - Yong-Xu Hu
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
| | - Rui Gao
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
| | - Ru-Jia Yu
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
| | - Zhen Gu
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
| | - Luke P Lee
- Biomedical Institute for Global Health Research and Technology , National University of Singapore , 117599 Singapore.,Departments of Bioengineering, Electrical Engineering, and Computer Sciences , ∥Berkeley Sensor and Actuator Center , and ⊥Biophysics Graduate Program , University of California , Berkeley , California 94720 , United States
| | - Yi-Tao Long
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , PR China
| |
Collapse
|
46
|
Kai T, Zoski CG, Bard AJ. Scanning electrochemical microscopy at the nanometer level. Chem Commun (Camb) 2018; 54:1934-1947. [DOI: 10.1039/c7cc09777h] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chemical and electrochemical reactions at high temporal and spatial resolution can be studied using nanoscale SECM.
Collapse
Affiliation(s)
- Tianhan Kai
- Center for Electrochemistry
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| | - Cynthia G. Zoski
- Center for Electrochemistry
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| | - Allen J. Bard
- Center for Electrochemistry
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| |
Collapse
|
47
|
Izquierdo J, Knittel P, Kranz C. Scanning electrochemical microscopy: an analytical perspective. Anal Bioanal Chem 2017; 410:307-324. [PMID: 29214533 DOI: 10.1007/s00216-017-0742-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/16/2017] [Accepted: 11/02/2017] [Indexed: 10/18/2022]
Abstract
Scanning electrochemical microscopy (SECM) has evolved from an electrochemical specialist tool to a broadly used electroanalytical surface technique, which has experienced exciting developments for nanoscale electrochemical studies in recent years. Several companies now offer commercial instruments, and SECM has been used in a broad range of applications. SECM research is frequently interdisciplinary, bridging areas ranging from electrochemistry, nanotechnology, and materials science to biomedical research. Although SECM is considered a modern electroanalytical technique, it appears that less attention is paid to so-called analytical figures of merit, which are essential also in electroanalytical chemistry. Besides instrumental developments, this review focuses on aspects such as reliability, repeatability, and reproducibility of SECM data. The review is intended to spark discussion within the community on this topic, but also to raise awareness of the challenges faced during the evaluation of quantitative SECM data.
Collapse
Affiliation(s)
- Javier Izquierdo
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Peter Knittel
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
- Fraunhofer Institute for Applied Solid State Physics, Tullastraße 72, 79108, Freiburg, Germany
| | - Christine Kranz
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
48
|
Morteza Najarian A, Chen R, Balla RJ, Amemiya S, McCreery RL. Ultraflat, Pristine, and Robust Carbon Electrode for Fast Electron-Transfer Kinetics. Anal Chem 2017; 89:13532-13540. [PMID: 29132207 DOI: 10.1021/acs.analchem.7b03903] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electron-beam (e-beam) deposition of carbon on a gold substrate yields a very flat (0.43 nm of root-mean-square roughness), amorphous carbon film consisting of a mixture of sp2- and sp3-hybridized carbon with sufficient conductivity to avoid ohmic potential error. E-beam carbon (eC) has attractive properties for conventional electrochemistry, including low background current and sufficient transparency for optical spectroscopy. A layer of KCl deposited by e-beam to the eC surface without breaking vacuum protects the surface from the environment after fabrication until dissolved by an ultrapure electrolyte solution. Nanogap voltammetry using scanning electrochemical microscopy (SECM) permits measurement of heterogeneous standard electron-transfer rate constants (k°) in a clean environment without exposure of the electrode surface to ambient air. The ultraflat eC surface permitted nanogap voltammetry with very thin electrode-to-substrate gaps, thus increasing the diffusion limit for k° measurement to >14 cm/s for a gap of 44 nm. Ferrocene trimethylammonium as the redox mediator exhibited a diffusion-limited k° for the previously KCl-protected eC surface, while k° was 1.45 cm/s for unprotected eC. The k° for Ru(NH3)63+/2+ increased from 1.7 cm/s for unprotected eC to above the measurable limit of 6.9 cm/s for a KCl-protected eC electrode.
Collapse
Affiliation(s)
- Amin Morteza Najarian
- Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2R3, Canada.,National Institute for Nanotechnology, National Research Council Canada , Edmonton, Alberta T6G 2G2, Canada
| | - Ran Chen
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - Ryan J Balla
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - Shigeru Amemiya
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - Richard L McCreery
- Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2R3, Canada.,National Institute for Nanotechnology, National Research Council Canada , Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
49
|
Bae JH, Brocenschi RF, Kisslinger K, Xin HL, Mirkin MV. Dissolution of Pt during Oxygen Reduction Reaction Produces Pt Nanoparticles. Anal Chem 2017; 89:12618-12621. [PMID: 29139288 DOI: 10.1021/acs.analchem.7b03121] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The loss of Pt during the oxygen reduction reaction (ORR) affects the performance and economic viability of fuel cells and sensors. Our group previously observed the dissolution of Pt nanoelectrodes at moderately negative potentials during the ORR. Here we report a more detailed study of this process and identify its product. The nanoporous Pt surface formed during the ORR was visualized by AFM and high-resolution SEM, which also showed ∼5 nm sized Pt particles on the glass surface surrounding the electrode. The release of these nanoparticles into the solution was confirmed by monitoring their catalytically amplified collisions with a Hg-coated microelectrode used as the tip in the scanning electrochemical microscope (SECM).
Collapse
Affiliation(s)
- Je Hyun Bae
- Department of Chemistry and Biochemistry, Queens College-CUNY , Flushing, New York 11367, United States
| | - Ricardo F Brocenschi
- Department of Chemistry and Biochemistry, Queens College-CUNY , Flushing, New York 11367, United States
| | - Kim Kisslinger
- Center for Functional Nanomaterials, Brookhaven National Laboratory , Upton, New York 11973, United States
| | - Huolin L Xin
- Center for Functional Nanomaterials, Brookhaven National Laboratory , Upton, New York 11973, United States
| | - Michael V Mirkin
- Department of Chemistry and Biochemistry, Queens College-CUNY , Flushing, New York 11367, United States.,The Graduate Center, CUNY , New York, New York 10016, United States
| |
Collapse
|
50
|
Chen R, Balla RJ, Lima A, Amemiya S. Characterization of Nanopipet-Supported ITIES Tips for Scanning Electrochemical Microscopy of Single Solid-State Nanopores. Anal Chem 2017; 89:9946-9952. [PMID: 28819966 PMCID: PMC5683184 DOI: 10.1021/acs.analchem.7b02269] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nanoscale scanning electrochemical microscopy (SECM) is a powerful scanning probe technique that enables high-resolution imaging of chemical processes at single nanometer-sized objects. However, it has been a challenging task to quantitatively understand nanoscale SECM images, which requires accurate characterization of the size and geometry of nanoelectrode tips. Herein, we address this challenge through transmission electron microscopy (TEM) of quartz nanopipets for SECM imaging of single solid-state nanopores by using nanopipet-supported interfaces between two immiscible electrolyte solutions (ITIES) as tips. We take advantage of the high resolution of TEM to demonstrate that laser-pulled quartz nanopipets reproducibly yield not only an extremely small tip diameter of ∼30 nm, but also a substantial tip roughness of ∼5 nm. The size and roughness of a nanopipet can be reliably determined by optimizing the intensity of the electron beam not to melt or deform the quartz nanotip without a metal coating. Electrochemically, the nanoscale ITIES supported by a rough nanotip gives higher amperometric responses to tetrabutylammonium than expected for a 30 nm diameter disc tip. The finite element simulation of sphere-cap ITIES tips accounts for the high current responses and also reveals that the SECM images of 100 nm diameter Si3N4 nanopores are enlarged along the direction of the tip scan. Nevertheless, spatial resolution is not significantly compromised by a sphere-cap tip, which can be scanned in closer proximity to the substrate. This finding augments the utility of a protruded tip, which can be fabricated and miniaturized more readily to facilitate nanoscale SECM imaging.
Collapse
Affiliation(s)
- Ran Chen
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania, 15260, United States
| | - Ryan J. Balla
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania, 15260, United States
| | - Alex Lima
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania, 15260, United States
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000, São Paulo, SP, Brazil
| | - Shigeru Amemiya
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania, 15260, United States
| |
Collapse
|