1
|
Xu X, Zuo Y, Chen S, Hatami A, Gu H. Advancements in Brain Research: The In Vivo/In Vitro Electrochemical Detection of Neurochemicals. BIOSENSORS 2024; 14:125. [PMID: 38534232 DOI: 10.3390/bios14030125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024]
Abstract
Neurochemicals, crucial for nervous system function, influence vital bodily processes and their fluctuations are linked to neurodegenerative diseases and mental health conditions. Monitoring these compounds is pivotal, yet the intricate nature of the central nervous system poses challenges. Researchers have devised methods, notably electrochemical sensing with micro-nanoscale electrodes, offering high-resolution monitoring despite low concentrations and rapid changes. Implantable sensors enable precise detection in brain tissues with minimal damage, while microdialysis-coupled platforms allow in vivo sampling and subsequent in vitro analysis, addressing the selectivity issues seen in other methods. While lacking temporal resolution, techniques like HPLC and CE complement electrochemical sensing's selectivity, particularly for structurally similar neurochemicals. This review covers essential neurochemicals and explores miniaturized electrochemical sensors for brain analysis, emphasizing microdialysis integration. It discusses the pros and cons of these techniques, forecasting electrochemical sensing's future in neuroscience research. Overall, this comprehensive review outlines the evolution, strengths, and potential applications of electrochemical sensing in the study of neurochemicals, offering insights into future advancements in the field.
Collapse
Affiliation(s)
- Xiaoxuan Xu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yimei Zuo
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Shu Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Amir Hatami
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Sobouti Boulevard, P.O. Box 45195-1159, Zanjan 45137-66731, Iran
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Hui Gu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
2
|
Zhang L, Liu XA, Gillis KD, Glass TE. Synthesis of a Near-Infrared Fluorescent Probe for Imaging Catecholamines via a Tandem Nucleophilic Aromatic Substitution. Org Lett 2023; 25:9103-9107. [PMID: 38108670 DOI: 10.1021/acs.orglett.3c03343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
A near-infrared (NIR) fluorescent probe NS667 was developed using a novel synthetic strategy by integrating an electron-rich 1,2,3,4-tetrahydroquinoxaline (THQ) into the scaffold from NS510, which binds to catecholamines with high affinity. The fluorophore core was constructed with a tandem nucleophilic aromatic substitution. Upon binding to catecholamines, the fluorescence of this probe shifted, with the emission in the NIR region. Live cell imaging results demonstrate that NS667 can effectively image norepinephrine in chromaffin cells with shifted fluorescence, which highlights the potential of the probe for neuroimaging in tissues.
Collapse
Affiliation(s)
- Le Zhang
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Xin A Liu
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Kevin D Gillis
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, United States
- Department of Chemical and Biomedical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Timothy E Glass
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
3
|
Jiang X, Wang Y, Liu J. Comprehensive characterization of amino acids and water-soluble vitamins in a pentylenetetrazole-induced seizures rat model. J Sep Sci 2023; 46:e2201004. [PMID: 36841992 DOI: 10.1002/jssc.202201004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023]
Abstract
Epilepsy is a complex neurological disease characterized by spontaneous recurrent seizures that affect around 1% of the global population. Despite the significant progress in the mechanisms of epileptogenesis, there is still about 60% of cases in which the cause is unknown. Thus, revealing the molecular mechanisms of epileptogenesis will greatly improve the development of epilepsy treatment. Since the comprehensive characterization of amino acids and water-soluble vitamins is important in understanding the underlying mechanisms of epilepsy or seizures, we developed two liquid chromatography-tandem mass spectrometry methods to quantify 17 water-soluble vitamins and 46 amino acids and applied them to our pentylenetetrazole-induced kindling rat model. All water-soluble vitamins were detected with a linearity of r > 0.992 and limits of quantitation between 0.1 and 5 ng/ml except for nicotinic acid. For amino acids, the linearities obtained were good with correlation coefficients higher than 0.99, and matrix effects were between 85.3% and 110%. To handle the multidimensional data more effectively, multivariate statistical analysis approaches used in non-targeted metabolomics were creatively exploited in the visualization, interpretation, and exploration of the results.
Collapse
Affiliation(s)
- Xiaomei Jiang
- Department of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, P. R. China
| | - Yan Wang
- Department of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, P. R. China
| | - Jia Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P. R. China
| |
Collapse
|
4
|
Zhang L, Liu XA, Gillis KD, Glass TE. A High-Affinity Fluorescent Sensor for Catecholamine: Application to Monitoring Norepinephrine Exocytosis. Angew Chem Int Ed Engl 2019; 58:7611-7614. [PMID: 30791180 PMCID: PMC6534456 DOI: 10.1002/anie.201810919] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/09/2019] [Indexed: 01/15/2023]
Abstract
A fluorescent sensor for catecholamines, NS510, is presented. The sensor is based on a quinolone fluorophore incorporating a boronic acid recognition element that gives it high affinity for catecholamines and a turn-on response to norepinephrine. The sensor results in punctate staining of norepinephrine-enriched chromaffin cells visualized using confocal microscopy indicating that it stains the norepinephrine in secretory vesicles. Amperometry in conjunction with total internal reflection fluorescence (TIRF) microscopy demonstrates that the sensor can be used to observe destaining of individual chromaffin granules upon exocytosis. NS510 is the highest affinity fluorescent norepinephrine sensor currently available and can be used for measuring catecholamines in live-cell assays.
Collapse
Affiliation(s)
- Le Zhang
- Department of Chemistry, University of Missouri, Columbia, Missouri, 65211, USA
| | - Xin A Liu
- Dalton Cardiovascular Research Center, Department of Bioengineering and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, 65211, USA
| | - Kevin D Gillis
- Dalton Cardiovascular Research Center, Department of Bioengineering and Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, 65211, USA
| | - Timothy E Glass
- Department of Chemistry, University of Missouri, Columbia, Missouri, 65211, USA
| |
Collapse
|
5
|
Su CK, Ho CC. Online profiling of living rat brain extracellular pH using a pH-Dependent solid phase extraction scheme coupled with microdialysis sampling and inductively coupled plasma mass spectrometry. Anal Chim Acta 2019; 1055:36-43. [DOI: 10.1016/j.aca.2018.12.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 12/07/2018] [Accepted: 12/09/2018] [Indexed: 01/14/2023]
|
6
|
Zhang L, Liu XA, Gillis KD, Glass TE. A High‐Affinity Fluorescent Sensor for Catecholamine: Application to Monitoring Norepinephrine Exocytosis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201810919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Le Zhang
- Department of ChemistryUniversity of Missouri Columbia Missouri 65211 USA
| | - Xin A. Liu
- Dalton Cardiovascular Research CenterDepartment of Bioengineering and Department of Medical Pharmacology and PhysiologyUniversity of Missouri Columbia Missouri 65211 USA
| | - Kevin D. Gillis
- Dalton Cardiovascular Research CenterDepartment of Bioengineering and Department of Medical Pharmacology and PhysiologyUniversity of Missouri Columbia Missouri 65211 USA
| | - Timothy E. Glass
- Department of ChemistryUniversity of Missouri Columbia Missouri 65211 USA
| |
Collapse
|
7
|
|
8
|
Ngernsutivorakul T, White TS, Kennedy RT. Microfabricated Probes for Studying Brain Chemistry: A Review. Chemphyschem 2018; 19:1128-1142. [PMID: 29405568 PMCID: PMC6996029 DOI: 10.1002/cphc.201701180] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Indexed: 12/13/2022]
Abstract
Probe techniques for monitoring in vivo chemistry (e.g., electrochemical sensors and microdialysis sampling probes) have significantly contributed to a better understanding of neurotransmission in correlation to behaviors and neurological disorders. Microfabrication allows construction of neural probes with high reproducibility, scalability, design flexibility, and multiplexed features. This technology has translated well into fabricating miniaturized neurochemical probes for electrochemical detection and sampling. Microfabricated electrochemical probes provide a better control of spatial resolution with multisite detection on a single compact platform. This development allows the observation of heterogeneity of neurochemical activity precisely within the brain region. Microfabricated sampling probes are starting to emerge that enable chemical measurements at high spatial resolution and potential for reducing tissue damage. Recent advancement in analytical methods also facilitates neurochemical monitoring at high temporal resolution. Furthermore, a positive feature of microfabricated probes is that they can be feasibly built with other sensing and stimulating platforms including optogenetics. Such integrated probes will empower researchers to precisely elucidate brain function and develop novel treatments for neurological disorders.
Collapse
Affiliation(s)
| | - Thomas S. White
- Macromolecular Science and Engineering, University of Michigan, 3003E, NCRC Building 28, 2800 Plymouth Rd., Ann Arbor, MI 48109
| | - Robert T. Kennedy
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, MI 48109
- Department of Pharmacology, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI 48109
| |
Collapse
|
9
|
Farthing CA, Farthing DE, Gress RE, Sweet DH. Determination of l-glutamic acid and γ-aminobutyric acid in mouse brain tissue utilizing GC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1068-1069:64-70. [PMID: 29031110 DOI: 10.1016/j.jchromb.2017.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/05/2017] [Accepted: 10/09/2017] [Indexed: 10/18/2022]
Abstract
A rapid and selective method for the quantitation of neurotransmitters, l-Glutamic acid (GA) and γ-Aminobutyric acid (GABA), was developed and validated using gas chromatography-tandem mass spectrometry (GC-MS/MS). The novel method utilized a rapid online hot GC inlet gas phase sample derivatization and fast GC low thermal mass technology. The method calibration was linear from 0.5 to 100μg/mL, with limits of detections of 100ng/mL and 250ng/mL for GA and GABA, respectively. The method was used to investigate the effects of deletion of organic anion transporter 1 (Oat1) or Oat3 on murine CNS levels of GA and GABA at 3 and 18 mo of age, as compared to age matched wild-type (WT) animals. Whole brain concentrations of GA were comparable between WT, Oat1-/-, and Oat3-/- 18 mo at both 3 and 18 mo of age. Similarly, whole brain concentrations of GABA were not significantly altered in either knockout mouse strain at 3 or 18 mo of age, as compared to WT. These results indicate that the developed GC-MS/MS method provides sufficient sensitivity and selectivity for the quantitation of these neurotransmitters in mouse brain tissue. Furthermore, these results suggest that loss of Oat1 or Oat3 function in isolation does not result in significant alterations in brain tissue levels of GA or GABA.
Collapse
Affiliation(s)
- Christine A Farthing
- Virginia Commonwealth University, Department of Pharmaceutics, Richmond, VA 23298, USA
| | - Don E Farthing
- Virginia Commonwealth University, Department of Pharmaceutics, Richmond, VA 23298, USA; National Institutes of Health, National Cancer Institute, Experimental Transplant and Immunology Branch, Bethesda, MD 20892, USA
| | - Ronald E Gress
- National Institutes of Health, National Cancer Institute, Experimental Transplant and Immunology Branch, Bethesda, MD 20892, USA
| | - Douglas H Sweet
- Virginia Commonwealth University, Department of Pharmaceutics, Richmond, VA 23298, USA.
| |
Collapse
|
10
|
Yin C, Huo F, Cooley NP, Spencer D, Bartholomew K, Barnes CL, Glass TE. A Two-Input Fluorescent Logic Gate for Glutamate and Zinc. ACS Chem Neurosci 2017; 8:1159-1162. [PMID: 28257176 DOI: 10.1021/acschemneuro.6b00420] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The direct visualization of neurotransmitters is a continuing problem in neuroscience; however, functional fluorescent sensors for organic analytes are still rare. Herein, we describe a fluorescent sensor for glutamate and zinc ions. The sensor acts as a fluorescent logic gate, giving a turn-off response to glutamate or zinc ion alone. The combination of analytes produces a large increase in fluorescence. This type of sensor will aid in the study of neurotransmission, in this case, for neurons that copackage high concentrations of zinc and glutamate.
Collapse
Affiliation(s)
- Caixia Yin
- Key Laboratory of
Chemical Biology and Molecular Engineering of Ministry of Education,
Key Laboratory of Materials for Energy Conversion and Storage of Shanxi
Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Fangjun Huo
- Key Laboratory of
Chemical Biology and Molecular Engineering of Ministry of Education,
Key Laboratory of Materials for Energy Conversion and Storage of Shanxi
Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Nicholas P. Cooley
- Department
of Chemistry, University of Missouri, 601 South College Avenue, Columbia, Missouri 65211, United States
| | - David Spencer
- Department
of Chemistry, University of Missouri, 601 South College Avenue, Columbia, Missouri 65211, United States
| | - Kyle Bartholomew
- Department
of Chemistry, University of Missouri, 601 South College Avenue, Columbia, Missouri 65211, United States
| | - Charles L. Barnes
- Department
of Chemistry, University of Missouri, 601 South College Avenue, Columbia, Missouri 65211, United States
| | - Timothy E. Glass
- Department
of Chemistry, University of Missouri, 601 South College Avenue, Columbia, Missouri 65211, United States
| |
Collapse
|
11
|
Su CK, Chen YT, Sun YC. Using on-line solid phase extraction for in vivo speciation of diffusible ferrous and ferric iron in living rat brain extracellular fluid. Anal Chim Acta 2016; 953:87-94. [PMID: 28010747 DOI: 10.1016/j.aca.2016.11.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/18/2016] [Accepted: 11/22/2016] [Indexed: 11/26/2022]
Abstract
Exploration of brain extracellular non-protein-bound/diffusible iron species remains a critically important issue in investigations of free radical biology and neurodegenerative diseases. In this study, a facile sample pretreatment scheme, involving poly(vinyl chloride)-metal ion interactions as a selective extraction procedure, was optimized in conjunction with microdialysis (MD) sampling and inductively coupled plasma mass spectrometry (ICP-MS) in cool-plasma mode for in vivo online monitoring of rat brain extracellular Fe(II) and Fe(III) species. Optimization of the system provided detection limits in the range 0.9-6.9 μg Fe L-1, based on a 12-μL microdialysate, for the tested iron species; relative standard deviations of the signal intensities during 7.8 h of continuous measurement were less than 9.4%-sufficient to determine the basal concentrations of rat brain extracellular Fe(II) and Fe(III) species and to describe their dynamic actions. The method's applicability was verified through (i) spike analyses of offline-collected rat brain microdialysates, (ii) determination of the basal Fe(II) and Fe(III) concentrations of living rat brain extracellular fluids, and (iii) monitoring of the dynamic changes in the Fe(II) and Fe(III) concentrations in response to perfusion of a high-K+ medium. This proposed sample pretreatment scheme, based on polymer-metal ion interactions and hyphenation to an MD sampling device and an ICP-MS system, appears to have great practicality for the online monitoring of rat brain extracellular diffusible iron species.
Collapse
Affiliation(s)
- Cheng-Kuan Su
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, 20224, Taiwan.
| | - Yi-Ting Chen
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, 30013, Taiwan
| | - Yuh-Chang Sun
- Department of Biomedical Engineering and Environmental Sciences, National Tsing-Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
12
|
Lee WH, Ngernsutivorakul T, Mabrouk OS, Wong JMT, Dugan CE, Pappas SS, Yoon HJ, Kennedy RT. Microfabrication and in Vivo Performance of a Microdialysis Probe with Embedded Membrane. Anal Chem 2016; 88:1230-7. [PMID: 26727611 PMCID: PMC5111822 DOI: 10.1021/acs.analchem.5b03541] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Microdialysis sampling is an essential tool for in vivo neurochemical monitoring. Conventional dialysis probes are over 220 μm in diameter and have limited flexibility in design because they are made by assembly using preformed membranes. The probe size constrains spatial resolution and governs the amount of tissue damaged caused by probe insertion. To overcome these limitations, we have developed a method to microfabricate probes in Si that are 45 μm thick × 180 μm wide. The probes contain a buried, U-shaped channel that is 30 μm deep × 60 μm wide and terminates in ports for external connection. A 4 mm length of the probe is covered with a 5 μm thick nanoporous membrane. The membrane was microfabricated by deep reactive ion etching through a porous aluminum oxide layer. The microfabricated probe has cross-sectional area that is 79% less than that of the smallest conventional microdialysis probes. The probes yield 2-20% relative recovery at 100 nL/min perfusion rate for a variety of small molecules. The probe was successfully tested in vivo by sampling from the striatum of live rats. Fractions were collected at 20 min intervals (2 μL) before and after an intraperitoneal injection of 5 mg/kg amphetamine. Analysis of fractions by liquid chromatography-mass spectrometry revealed reliable detection of 14 neurochemicals, including dopamine and acetylcholine, at basal conditions. Amphetamine evoked a 43-fold rise in dopamine, a result nearly identical to a conventional dialysis probe in the same animal. The microfabricated probes have potential for sampling with higher spatial resolution and less tissue disruption than conventional probes. It may also be possible to add functionality to the probes by integrating other components, such as electrodes, optics, and additional channels.
Collapse
Affiliation(s)
- Woong Hee Lee
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Thitaphat Ngernsutivorakul
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Omar S Mabrouk
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Jenny-Marie T Wong
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Colleen E Dugan
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Samuel S Pappas
- Department of Neurology, University of Michigan , 1500 East Medical Center Drive, Ann Arbor, Michigan 48109-5316, United States
| | - Hyeun Joong Yoon
- Department of Chemical Engineering, University of Michigan , 2300 Hayward Street, Ann Arbor, Michigan 48109-2136, United States
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
13
|
Tang YB, Sun F, Teng L, Li WB, An SM, Zhang C, Yang XJ, Lv HY, Ding XP, Zhu L, Chen HZ. Simultaneous determination of the repertoire of classical neurotransmitters released from embryonal carcinoma stem cells using online microdialysis coupled with hydrophilic interaction chromatography–tandem mass spectrometry. Anal Chim Acta 2014; 849:70-9. [DOI: 10.1016/j.aca.2014.08.053] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 08/31/2014] [Indexed: 12/29/2022]
|
14
|
Derivatization for the simultaneous LC/MS quantification of multiple neurotransmitters in extracellular fluid from rat brain microdialysis. J Pharm Biomed Anal 2014; 100:357-364. [DOI: 10.1016/j.jpba.2014.08.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 08/08/2014] [Accepted: 08/09/2014] [Indexed: 11/24/2022]
|
15
|
Zhou XJ, Chen J, Shi YP. Determination of Amino Acids in Plasma and Nutritional Supplements by Capillary Electrophoresis with Copper(II) Coordination. ANAL LETT 2014. [DOI: 10.1080/00032719.2014.936019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
A high-throughput microdialysis–parallel solid phase extraction–inductively coupled plasma mass spectrometry hyphenated system for continuous monitoring of extracellular metal ions in living rat brain. J Chromatogr A 2014; 1326:73-9. [DOI: 10.1016/j.chroma.2013.12.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/06/2013] [Accepted: 12/14/2013] [Indexed: 02/08/2023]
|
17
|
Klockow JL, Hettie KS, Glass TE. ExoSensor 517: a dual-analyte fluorescent chemosensor for visualizing neurotransmitter exocytosis. ACS Chem Neurosci 2013; 4:1334-8. [PMID: 23926946 DOI: 10.1021/cn400128s] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A dual-analyte fluorescent chemosensor (ExoSensor 517) for the direct visualization of neurotransmitters released upon exocytosis is presented. The sensor exploits the high concentration of neurotransmitters (e.g., glutamate, norepinephrine, and dopamine) and the pH gradient between the vesicle and synaptic cleft. The cooperative recognition elements require both binding and a change in environmental pH to afford a fluorescence response which makes ExoSensor 517 one of the first integrated molecular logic gates to be used for biological applications.
Collapse
Affiliation(s)
- Jessica L. Klockow
- Department of Chemistry, University of Missouri—Columbia, 601 South College
Avenue, Columbia, Missouri 65211, United States
| | - Kenneth S. Hettie
- Department of Chemistry, University of Missouri—Columbia, 601 South College
Avenue, Columbia, Missouri 65211, United States
| | - Timothy E. Glass
- Department of Chemistry, University of Missouri—Columbia, 601 South College
Avenue, Columbia, Missouri 65211, United States
| |
Collapse
|
18
|
Zinellu A, Sotgia S, Deiana L, Carru C. Analysis of neurotransmitter amino acids by CE-LIF detection in biological fluids. Methods Mol Biol 2013; 919:35-42. [PMID: 22976088 DOI: 10.1007/978-1-62703-029-8_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neurotransmitter amino acids like Alanine (Ala), Glutamic acid (Glu), Aspartic acid (Asp), Serine (Ser), Taurine (Tau), and Glycine (Gly) are widely distributed in biological fluids and tissues and they have important physiological functions, so that the evaluation of their levels in organisms plays an essential role in physiology. We here report a new capillary electrophoresis (CE) method with laser-induced fluorescence detection by which analytes are resolved and detected in less than 12 min both in human plasma and in other samples types, such as red blood cells, urine, cultured cells, cerebrospinal fluid, saliva, and vitreous humor, thus avoiding the typical limitations of the other methods normally suitable only in one or two matrix types.
Collapse
Affiliation(s)
- Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | | | | | | |
Collapse
|
19
|
Samakashvili S, Ibáñez C, Simó C, Gil-Bea FJ, Winblad B, Cedazo-Mínguez A, Cifuentes A. Analysis of chiral amino acids in cerebrospinal fluid samples linked to different stages of Alzheimer disease. Electrophoresis 2011; 32:2757-64. [PMID: 21983823 DOI: 10.1002/elps.201100139] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/13/2011] [Accepted: 04/15/2011] [Indexed: 01/22/2023]
Abstract
Chiral micellar electrokinetic chromatography with laser-induced fluorescence detection (chiral-MEKC-LIF) was used to investigate D- and L-amino acid contents in cerebrospinal fluid (CSF) samples related to different Alzheimer disease (AD) stages. CSF samples were taken from (i) control subjects (S1 pool), (ii) subjects showing a mild cognitive impairment who remained stable (S2 pool), (iii) subjects showing an mild cognitive impairment that progressed to AD (S3 pool) and (iv) subjects diagnosed with AD (S4 pool). The optimized procedure only needed 10 μL of CSF and it included sample cleaning, derivatization with FITC and chiral-MEKC-LIF separation. Eighteen standard amino acids were baseline separated with efficiencies up to 703,000 plates/m, high sensitivity (LODs in the nM range) and good resolution (values ranging from 2.6 to 9.5). Using this method, L-Arg, L-Leu, L-Gln, γ-aminobutyric acid, L-Ser, D-Ser, L-Ala, Gly, L-Lys, L-Glu and L-Asp were detected in all the CSF samples. S3 and S4 samples (i.e. AD subjects) showed significant lower amounts of L-Arg L-Lys, L-Glu and L-Asp compared to the non-AD S1 and S2 samples, showing in the S4 group the lowest amounts of L-Arg L-Lys, L-Glu and L-Asp. Moreover, γ-aminobutyric acid was significantly higher in AD subjects with the highest amount also found for S4. No significant differences were observed for the rest of amino acids including D-Ser. Based on the obtained chiral-MEKC-LIF data, it was possible to correctly classify all the samples into the four groups. These results demonstrate that the use of enantioselective procedures as the one developed in this work can provide some new light on the investigations of AD, including the discovery of new biomarkers related to different stages of AD.
Collapse
Affiliation(s)
- Shorena Samakashvili
- Department of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Tbilisi, Georgia
| | | | | | | | | | | | | |
Collapse
|
20
|
Wang M, Hershey ND, Mabrouk OS, Kennedy RT. Collection, storage, and electrophoretic analysis of nanoliter microdialysis samples collected from awake animals in vivo. Anal Bioanal Chem 2011; 400:2013-23. [PMID: 21465093 PMCID: PMC3107505 DOI: 10.1007/s00216-011-4956-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 03/22/2011] [Accepted: 03/24/2011] [Indexed: 12/25/2022]
Abstract
Microdialysis sampling is an important tool for chemical monitoring in living systems. Temporal resolution is an important figure of merit that is determined by sampling frequency, assay sensitivity, and dispersion of chemical zones during transport from sampling device to fraction collector or analytical system. Temporal resolution has recently been improved by segmenting flow into plugs, so that nanoliter fractions are collected at intervals of 0.1-2 s, thus eliminating temporal distortion associated with dispersion in continuous flow. Such systems, however, have yet to be used with behaving subjects. Furthermore, long-term storage of nanoliter samples created by segmented flow has not been reported. In this work, we have addressed these challenges. A microdialysis probe was integrated to a plug generator that could be stably mounted onto behaving animals. Long-term storage of dialysate plugs was achieved by collecting plugs into high-purity perfluoroalkoxy tubes, placing the tube into hexane and then freezing at -80°C. Slow warming with even temperatures prevented plug coalescence during sample thawing. As a demonstration of the system, plugs were collected from the striatum of behaving rats using a 0.5-mm-long microdialysis probe. Resulting plugs were analyzed 1-4 days later by chip-based electrophoresis. To improve throughput of plug analysis over previous work, the speed of electrophoretic separation was increased by using forced air cooling and 1-butyl-2,3-dimethylimidazolium tetrafluoroborate as a separation buffer additive, allowing resolution of six neuroactive amino acids in 30 s. Concentration changes induced by K(+) microinjections were monitored with 10 s temporal resolution. The improvements reported in this work make it possible to apply segmented flow microdialysis to the study of behaving animals and enable experiments where the analytical system cannot be placed close to the animal.
Collapse
Affiliation(s)
- Meng Wang
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109, USA
| | - Neil D. Hershey
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109, USA
| | - Omar S. Mabrouk
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109, USA
| | - Robert T. Kennedy
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
21
|
Wang M, Slaney T, Mabrouk O, Kennedy RT. Collection of nanoliter microdialysate fractions in plugs for off-line in vivo chemical monitoring with up to 2 s temporal resolution. J Neurosci Methods 2010; 190:39-48. [PMID: 20447417 PMCID: PMC2885530 DOI: 10.1016/j.jneumeth.2010.04.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 04/23/2010] [Accepted: 04/23/2010] [Indexed: 10/19/2022]
Abstract
An off-line in vivo neurochemical monitoring approach was developed based on collecting nanoliter microdialysate fractions as an array of "plugs" segmented by immiscible oil in a piece of Teflon tubing. The dialysis probe was integrated with the plug generator in a polydimethlysiloxane microfluidic device that could be mounted on the subject. The microfluidic device also allowed derivatization reagents to be added to the plugs for fluorescence detection of analytes. Using the device, 2 nL fractions corresponding to 1-20 ms sampling times depending upon dialysis flow rate, were collected. Because axial dispersion was prevented between them, each plug acted as a discrete sample collection vial and temporal resolution was not lost by mixing or diffusion during transport. In vitro tests of the system revealed that the temporal resolution of the system was as good as 2 s and was limited by mass transport effects within the dialysis probe. After collection of dialysate fractions, they were pumped into a glass microfluidic chip that automatically analyzed the plugs by capillary electrophoresis with laser-induced fluorescence at 50 s intervals. By using a relatively low flow rate during transfer to the chip, the temporal resolution of the samples could be preserved despite the relatively slow analysis time. The system was used to detect rapid dynamics in neuroactive amino acids evoked by microinjecting the glutamate uptake inhibitor l-trans-pyrrolidine-2,4-dicarboxylic acid (PDC) or K(+) into the striatum of anesthetized rats. The resulted showed increases in neurotransmitter efflux that reached a peak in 20 s for PDC and 13 s for K(+).
Collapse
Affiliation(s)
- Meng Wang
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109, USA
| | - Thomas Slaney
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109, USA
| | - Omar Mabrouk
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109, USA
| | - Robert T. Kennedy
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109, USA
- Departmenat of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
22
|
Huang Y, Hu J. [Simultaneous analysis of twenty free amino acids in tobacco using liquid chromatography-electrospray ionization/ion trap tandem mass spectrometry]. Se Pu 2010; 28:615-22. [PMID: 20873584 DOI: 10.3724/sp.j.1123.2010.00615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
A method for simultaneous analysis of 20 free amino acids in tobacco was developed using liquid chromatography-electrospray ionization/ion trap tandem mass spectrometry (LC-ESI-IT-MS/MS). Tobacco samples were extracted and filtered, and analyzed without derivatization or solid phase extraction. The LC separation was carried on a reversed-phase HyPURITY C18 column (200 mm x 2.1 mm, 5 microm) with the mobile phase of 1% (v/v) acetonitrile/water solution containing 0.1% nonafluoropentanoic acid and 90% acetonitrile/water solution containing 0.1% nonafluoropentanoic acid in gradient mode. The results showed that the limits of detection (LODs) of 20 amino acids were in the range of 0.01-0.05 micromol/L (S/N = 3), the linear correlation coefficients were above 0. 997 7 in all cases, and the relative standard deviations (RSDs) of peak areas of the extracted ion chromatograms were in the range of 0.78%-4.93%. The developed method is of good efficiency, sensitivity and selectivity, and has been successfully applied to determine the free amino acids in varieties of tobacco samples.
Collapse
Affiliation(s)
- Yifei Huang
- Technology Center, China Tobacco Guangdong Industrial Co., Ltd., Guangzhou 510145, China.
| | | |
Collapse
|
23
|
Wang M, Roman GT, Perry ML, Kennedy RT. Microfluidic chip for high efficiency electrophoretic analysis of segmented flow from a microdialysis probe and in vivo chemical monitoring. Anal Chem 2009; 81:9072-8. [PMID: 19803495 PMCID: PMC2784254 DOI: 10.1021/ac901731v] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
An effective method for in vivo chemical monitoring is to couple sampling probes, such as microdialysis, to online analytical methods. A limitation of this approach is that in vivo chemical dynamics may be distorted by flow and diffusion broadening during transfer from sampling probe to analytical system. Converting a homogeneous sample stream to segmented flow can prevent such broadening. We have developed a system for coupling segmented microdialysis flow with chip-based electrophoresis. In this system, the dialysis probe is integrated with a PDMS chip that merges dialysate with fluorogenic reagent and segments the flow into 8-10 nL plugs at 0.3-0.5 Hz separated by perfluorodecalin. The plugs flow to a glass chip where they are extracted to an aqueous stream and analyzed by electrophoresis with fluorescence detection. The novel extraction system connects the segmented flow to an electrophoresis sampling channel by a shallow and hydrophilic extraction bridge that removes the entire aqueous droplet from the oil stream. With this approach, temporal resolution was 35 s and independent of distance between sampling and analysis. Electrophoretic analysis produced separation with 223,000 +/- 21,000 theoretical plates, 4.4% RSD in peak height, and detection limits of 90-180 nM for six amino acids. This performance was made possible by three key elements: (1) reliable transfer of plug flow to a glass chip; (2) efficient extraction of aqueous plugs from segmented flow; (3) electrophoretic injection suitable for high efficiency separation with minimal dilution of sample. The system was used to detect rapid concentration changes evoked by infusing glutamate uptake inhibitor into the striatum of anesthetized rats. These results demonstrate the potential of incorporating segmented flow into separations-based sensing schemes for studying chemical dynamics in vivo with improved temporal resolution.
Collapse
Affiliation(s)
- Meng Wang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
24
|
A high performance liquid chromatography method with electrochemical detection of gamma-aminobutyric acid, glutamate and glutamine in rat brain homogenates. J Neurosci Methods 2009; 183:176-81. [PMID: 19596377 DOI: 10.1016/j.jneumeth.2009.06.042] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 06/24/2009] [Accepted: 06/25/2009] [Indexed: 12/31/2022]
Abstract
Determination of gamma-aminobutyric acid (GABA), glutamate (Glu) and glutamine (Gln) in animal models has been important to understand the normal function and clinical aspects of some neurological diseases. Quantification of these amino acid transmitters has conventionally been performed by using a high performance liquid chromatography (HPLC) system. This paper describes an improved HPLC method with electrochemical detection for glutamate, glutamine and GABA determination in brain homogenates. The protocol is based on a precolumn derivatization of amino acids with o-phthalaldehyde and sodium sulfite, a separation through a C18, 5 microm particle size column and an isocratic elution. Several modifications of previous works on methanol percentage, pH, temperature, flow rate and derivatization solution concentration were done to obtain a suitable protocol for amino acid quantification in brain homogenate samples. Total elution time is 35 min approximately. Technical requirements and laboratory expenses of this new protocol are minimal. This technique showed high linearity, repeatability and accuracy.
Collapse
|
25
|
Differential changes of neuroactive amino acids in samples obtained from discrete rat brain regions after systemic administration of saxitoxin. Neurochem Int 2009; 54:308-13. [DOI: 10.1016/j.neuint.2008.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2008] [Revised: 11/25/2008] [Accepted: 12/12/2008] [Indexed: 11/22/2022]
|
26
|
Comparison of different amino acid derivatives and analysis of rat brain microdialysates by liquid chromatography tandem mass spectrometry. Anal Chim Acta 2009; 633:223-31. [DOI: 10.1016/j.aca.2008.11.055] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 11/19/2008] [Accepted: 11/24/2008] [Indexed: 11/18/2022]
|
27
|
Vanini G, Watson CJ, Lydic R, Baghdoyan HA. Gamma-aminobutyric acid-mediated neurotransmission in the pontine reticular formation modulates hypnosis, immobility, and breathing during isoflurane anesthesia. Anesthesiology 2008; 109:978-88. [PMID: 19034094 DOI: 10.1097/aln.0b013e31818e3b1b] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Many general anesthetics are thought to produce a loss of wakefulness, in part, by enhancing gamma-aminobutyric acid (GABA) neurotransmission. However, GABAergic neurotransmission in the pontine reticular formation promotes wakefulness. This study tested the hypotheses that (1) relative to wakefulness, isoflurane decreases GABA levels in the pontine reticular formation; and (2) pontine reticular formation administration of drugs that increase or decrease GABA levels increases or decreases, respectively, isoflurane induction time. METHODS To test hypothesis 1, cats (n = 5) received a craniotomy and permanent electrodes for recording the electroencephalogram and electromyogram. Dialysis samples were collected from the pontine reticular formation during isoflurane anesthesia and wakefulness. GABA levels were quantified using high-performance liquid chromatography. For hypothesis 2, rats (n = 10) were implanted with a guide cannula aimed for the pontine reticular formation. Each rat received microinjections of Ringer's (vehicle control), the GABA uptake inhibitor nipecotic acid, and the GABA synthesis inhibitor 3-mercaptopropionic acid. Rats were then anesthetized with isoflurane, and induction time was quantified as loss of righting reflex. Breathing rate was also measured. RESULTS Relative to wakefulness, GABA levels were significantly decreased by isoflurane. Increased power in the electroencephalogram and decreased activity in the electromyogram caused by isoflurane covaried with pontine reticular formation GABA levels. Nipecotic acid and 3-mercaptopropionic acid significantly increased and decreased, respectively, isoflurane induction time. Nipecotic acid also increased breathing rate. CONCLUSION Decreasing pontine reticular formation GABA levels comprises one mechanism by which isoflurane causes loss of consciousness, altered cortical excitability, muscular hypotonia, and decreased respiratory rate.
Collapse
Affiliation(s)
- Giancarlo Vanini
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
28
|
Yin D, Xie C, Zhang L, Liu B, Zhou X, Wang P, Wu M. Development of a novel capillary electrophoresis chemiluminescence system for amino acid analysis. LUMINESCENCE 2008; 23:434-8. [PMID: 18800361 DOI: 10.1002/bio.1076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dongguang Yin
- College of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
29
|
Deng YH, Wang H, Zhang HS. Determination of amino acid neurotransmitters in human cerebrospinal fluid and saliva by capillary electrophoresis with laser-induced fluorescence detection. J Sep Sci 2008; 31:3088-97. [DOI: 10.1002/jssc.200800339] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
30
|
Wang M, Roman GT, Schultz K, Jennings C, Kennedy RT. Improved temporal resolution for in vivo microdialysis by using segmented flow. Anal Chem 2008; 80:5607-15. [PMID: 18547059 PMCID: PMC2597782 DOI: 10.1021/ac800622s] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Microdialysis sampling probes were interfaced to a segmented flow system to improve temporal resolution for monitoring concentration dynamics. Aqueous dialysate was segmented into nanoliter plugs by pumping sample stream into the base of a tee channel structure microfabricated on a PDMS chip that had an immiscible carrier phase (perfluorodecalin) pumped into the cross arm of the tee. Varying the oil flow rate from 0.22 to 6.3 microL/min and sample flow rate from 42 to 328 nL/min allowed control of plug volume, interval between plugs, and frequency of plug generation between 6 and 28 nL, 0.6 and 10 s, and 0.1 and 1.7 Hz, respectively. Temporal resolution of the system, determined by measuring fluorescence in individual sample plugs following step changes of fluorescein concentration at the sampling probe surface, was as good as 15 s. Temporal resolution was independent of both sampling flow rate and distance that samples were pumped from the sampling probe. This effect is due to the prevention of Taylor dispersion of the sample as it was transported by segmented flow. In contrast, without flow segmentation, temporal resolution was worsened from 25 to 160 s as the detection point was moved from the sampling probe to 40 cm downstream. Glucose was detected by modifying the chip to allow enzyme assay reagents to be mixed with dialysate as sample plugs formed. The resulting assay had a detection limit of 50 microM and a linear range of 0.2-2 mM. This system was used to measure glucose in the brain of anesthetized rats. Basal concentration was 1.5 +/- 0.1 mM (n = 3) and was decreased 60% by infusion of high-K(+) solution through the probe. These results demonstrate the potential of microdialysis with segmented flow to be used for in vivo monitoring experiments with high temporal resolution.
Collapse
Affiliation(s)
- Meng Wang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
31
|
Schultz KN, Kennedy RT. Time-resolved microdialysis for in vivo neurochemical measurements and other applications. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2008; 1:627-661. [PMID: 20636092 DOI: 10.1146/annurev.anchem.1.031207.113047] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Monitoring changes in chemical concentrations over time in complex environments is typically performed using sensors and spectroscopic techniques. Another approach is to couple sampling methods, such as microdialysis, with chromatographic, electrophoretic, or enzymatic assays. Recent advances of such coupling have enabled improvements in temporal resolution, multianalyte capability, and automation. In a sampling and analysis method, the temporal resolution is set by the mass sensitivity of the analytical method, analysis time, and zone dispersion during sampling. Coupling methods with high speed and mass sensitivity to microdialysis sampling help to reduce some of these contributions to yield methods with temporal resolution of seconds. These advances have been primarily used in monitoring neurotransmitters in vivo. This review covers the problems associated with chemical monitoring in the brain, recent advances in using microdialysis for time-resolved in vivo measurements, sample applications, and other potential applications of the technology such as determining reaction kinetics and process monitoring.
Collapse
Affiliation(s)
- Kristin N Schultz
- Department of Chemistry, University of Michigan, Ann Arbor, 48109, USA
| | | |
Collapse
|
32
|
Rouhanizadeh M, Takabe W, Ai L, Yu H, Hsiai T. Monitoring Oxidative Stress in Vascular Endothelial Cells in Response to Fluid Shear Stress: From Biochemical Analyses to Micro- and Nanotechnologies. Methods Enzymol 2008; 441:111-50. [DOI: 10.1016/s0076-6879(08)01207-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
33
|
Ding C, Sun X, Zhao X, Zhao W, Li Y, Wang H, Suo Y, You J. CE Determination of 2-(9-Carbazole)ethyl Chloroformate-Labeled Oligopeptides. Chromatographia 2007. [DOI: 10.1365/s10337-007-0475-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
34
|
Fuentes HV, Woolley AT. Electrically actuated, pressure-driven liquid chromatography separations in microfabricated devices. LAB ON A CHIP 2007; 7:1524-31. [PMID: 17960281 PMCID: PMC3269122 DOI: 10.1039/b708865e] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Electrolysis-based micropumps integrated with microfluidic channels in micromachined glass substrates are presented. Photolithography combined with wet chemical etching and thermal bonding enabled the fabrication of multi-layer devices containing electrically actuated micropumps interfaced with sample and mobile phase reservoirs. A stationary phase was deposited on the microchannel walls by coating with 10% (w/w) chlorodimethyloctadecylsilane in toluene. Pressure-balanced injection was implemented by controlling the electrolysis time and voltage applied in the two independent micropumps. Current fluctuations in the micropumps due to the stochastic formation of bubbles on the electrode surfaces were determined to be the main cause of variation between separations. On-chip electrochemical pumping enabled the loading of pL samples with no dead volume between injection and separation. A mobile phase composed of 70% acetonitrile and 30% 50 mM acetate buffer (pH 5.45) was used for the chromatographic separation of three fluorescently labeled amino acids in <40 s with an efficiency of >3000 theoretical plates in a 2.5 cm-long channel. Our results demonstrate the potential of electrochemical micropumps integrated with microchannels to perform rapid chromatographic separations in a microfabricated platform. Importantly, these devices represent a significant step toward the development of miniaturized and fully integrated liquid chromatography systems.
Collapse
Affiliation(s)
| | - Adam T. Woolley
- Corresponding author. Phone: (801) 422-1701, Fax: (801) 422-0153,
| |
Collapse
|
35
|
Zhang X, Rauch A, Lee H, Xiao H, Rainer G, Logothetis NK. Capillary hydrophilic interaction chromatography/mass spectrometry for simultaneous determination of multiple neurotransmitters in primate cerebral cortex. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2007; 21:3621-3628. [PMID: 17939159 DOI: 10.1002/rcm.3251] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A diverse array of neurotransmitters and neuromodulators control and affect brain function. A profound understanding of the signaling pathways and the neural circuits underlying behavior is therefore likely to require the tracking of concentration changes of active neurochemicals. In the present study, we demonstrate the feasibility of a method allowing the simultaneous determination of the concentrations of six neurotransmitters: acetylcholine, serotonin, dopamine, gamma-aminobutyric acid (GABA), glutamate and aspartate, in the extracellular brain fluid (EBF). We used hydrophilic interaction chromatography (HILIC) coupled to tandem mass spectrometry (MS/MS) to analyze the EBF from the monkey brain. A push-pull sampling method was used to collect EBF from the prefrontal cortex (PFC) of conscious monkeys at flow rates in the range of low nL/min. The detection limits of acetylcholine, serotonin, dopamine, GABA, glutamate and aspartate were 0.015, 0.15, 0.3, 1.2, 6 and 15 femtomoles, respectively, allowing us to quantitatively determine the concentrations of these six neurotransmitters simultaneously from 500 nL in vivo samples. We conclude that HILIC/MS/MS combined with the push-pull sampling method represents a sensitive technique for simultaneous monitoring of neurotransmitters from EBF samples.
Collapse
Affiliation(s)
- Xiaozhe Zhang
- Max Plank Institute for Biological Cybernetics, 72076 Tubingen, Germany.
| | | | | | | | | | | |
Collapse
|
36
|
Hsieh CY, Tsai EM, Wu HL. Simple and sensitive liquid chromatographic method with fluorimetric detection for the analysis of γ-amino-n-butyric acid in human urine. Anal Chim Acta 2006; 577:201-6. [PMID: 17723672 DOI: 10.1016/j.aca.2006.06.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 06/22/2006] [Accepted: 06/22/2006] [Indexed: 11/23/2022]
Abstract
A simple and sensitive liquid chromatographic method is described for the analysis of gamma-amino-n-butyric acid (GABA) in human urine. GABA is increased in the urine of cancer patients and could be used as a biomarker in the diagnosis and treatment of related patients. The method is based on derivatizing GABA with a fluorescent reagent (naproxen acyl chloride) for transforming the non-chromophoric GABA to a derivative with chromophoric and fluorophoric properties. The resulting derivative is highly responsive to a fluorimetric detector (lambda(ex)=230 nm, lambda(em)=350 nm). The lower quantitation of the method is attainable at 100 nM GABA with a detection limit about 10nM (S/N=3 with 20 microL injected). Application of the method to the analysis of GABA in the urine of patients with ovarian and uterine cancer was demonstrated.
Collapse
Affiliation(s)
- Chun-Yu Hsieh
- Graduate Institute of Pharmaceutical Sciences, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | | | | |
Collapse
|
37
|
|
38
|
Shih CY, Chen Y, Xie J, He Q, Tai YC. On-chip temperature gradient interaction chromatography. J Chromatogr A 2006; 1111:272-8. [PMID: 16569585 DOI: 10.1016/j.chroma.2005.08.075] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2005] [Revised: 08/23/2005] [Accepted: 08/24/2005] [Indexed: 11/26/2022]
Abstract
This paper reports the first integrated microelectromechanical system (MEMS) HPLC chip that consists of a parylene high-pressure LC column, an electrochemical sensor, a resistive heater and a thermal-isolation structure for on-chip temperature gradient interaction chromatography application. The separation column was 8 mm long, 100 microm wide, 25 microm high and was packed with 5 microm sized, C18-coated beads using conventional slurry-packing technique. A novel parylene-enhanced, air-gap thermal isolation technology was used to reduce heater power consumption by 58% and to reduce temperature rise in the off-column area by 67%. The fabricated chip consumed 400 mW when operated at 100 degrees C. To test the chromatography performance of the fabricated system, a mixture of derivatized amino acids was chosen for separation. A temporal temperature gradient scanning from 25 to 65 degrees C with a ramping rate of 3.6 degrees C/min was applied to the column during separation. Successful chromatographic separation of derivatized amino acids was carried out using our chip. Compared with conventional temperature gradient HPLC system which incorporates "macro oven" to generate temporal temperature gradient on the column, our chip's thermal performance, i.e., power consumption and thermal response, is greatly improved without sacrificing chromatography quality.
Collapse
Affiliation(s)
- Chi-Yuan Shih
- Department of Electrical Engineering, California Institute of Technology, Pasadena, 91125, USA.
| | | | | | | | | |
Collapse
|
39
|
Höcht C, Opezzo JAW, Taira CA. Applicability of reverse microdialysis in pharmacological and toxicological studies. J Pharmacol Toxicol Methods 2006; 55:3-15. [PMID: 16567112 DOI: 10.1016/j.vascn.2006.02.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Accepted: 02/15/2006] [Indexed: 10/24/2022]
Abstract
A recent application of microdialysis is the introduction of a substance into the extracellular space via the microdialysis probe. The inclusion of a higher amount of a drug in the perfusate allows the drug to diffuse through the microdialysis membrane to the tissue. This technique, actually called as reverse microdialysis, not only allows the local administration of a substance but also permits the simultaneous sampling of the extracellular levels of endogenous compounds. Local effects of exogenous compounds have been studied in the central nervous system, hepatic tissue, dermis, heart and corpora luteae of experimental animals by means of reverse microdialysis. In central nervous studies, reverse microdialysis has been extensively used for the study of the effects on neurotransmission at different central nuclei of diverse pharmacological and toxicological agents, such as antidepressants, antipsychotics, antiparkinsonians, hallucinogens, drugs of abuse and experimental drugs. In the clinical setting, reverse microdialysis has been used for the study of local effects of drugs in the adipose tissue, skeletal muscle and dermis. The aim of this review is to describe the principles of the reverse microdialysis, to compare the technique with other available methods and finally to describe the applicability of reverse microdialysis in the study of drugs properties both in basic and clinical research.
Collapse
Affiliation(s)
- Christian Höcht
- Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, (C1113AAD) Buenos Aires, Argentina.
| | | | | |
Collapse
|
40
|
Mathews TA, Fedele DE, Coppelli FM, Avila AM, Murphy DL, Andrews AM. Gene dose-dependent alterations in extraneuronal serotonin but not dopamine in mice with reduced serotonin transporter expression. J Neurosci Methods 2004; 140:169-81. [PMID: 15589347 DOI: 10.1016/j.jneumeth.2004.05.017] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Accepted: 05/17/2004] [Indexed: 11/26/2022]
Abstract
Serotonin (5-HT) plays an integral regulatory role in mood, anxiety, cognition, appetite and aggressive behavior. Many therapeutic and illicit drugs that modulate these functions act at the serotonin transporter (SERT), thus a mouse model with reduced transporter expression was created to further investigate the effects of differential serotonin reuptake. In the present study, in vivo microdialysis was used to determine homeostatic alterations in extracellular 5-HT levels in unanesthetized SERT knockout mice. SERT(-/-) mice had significantly higher levels of basal dialysate 5-HT than SERT(+/+) mice in striatum and frontal cortex. In addition, although gene-specific increases in 5-HT were evident, neuroadaptive alterations in dialysate dopamine levels were not detected in striatum. Zero net flux microdialysis was utilized to further investigate alterations in extracellular 5-HT. Using this method, a gene dose-dependent increase in extraneuronal 5-HT was observed in striatum (2.8 +/- 1, 9.4 +/- 1 and 18 +/- 3 nM) and frontal cortex (1.4 +/- 0.4, 3.5 +/- 0.9 and 14 +/- 1 nM) in SERT(+/+), SERT(+/-) and SERT(-/-) mice, respectively. Potassium stimulation revealed greater depolarization-induced increases in striatal 5-HT but not dopamine in SERT(-/-) mice. Furthermore, dialysate 5-hydroxyindoleacetic acid (5-HIAA) levels were reduced in striatum in a gene dose-dependent manner, while DOPAC was unchanged in SERT knockout mice. Finally, determination of monoamine oxidase (MAO) activity revealed no significant differences in KM or Vmax of type-A or type-B isozymes indicating that alterations in SERT expression do not cause adaptive changes in the activities of these key catabolic enzymes. Overall, these results demonstrate that constitutive reductions in SERT are associated with increases in 5-HT in the extracellular signaling space in the absence of changes in dopamine neurochemistry. Furthermore, use of zero net flux microdialysis appears warranted in investigations of serotonergic synaptic function where modest changes in extracellular 5-HT are thought to occur in response to altered uptake.
Collapse
Affiliation(s)
- Tiffany A Mathews
- Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, PA 16802-6300, USA
| | | | | | | | | | | |
Collapse
|
41
|
Shou M, Smith AD, Shackman JG, Peris J, Kennedy RT. In vivo monitoring of amino acids by microdialysis sampling with on-line derivatization by naphthalene-2,3-dicarboxyaldehyde and rapid micellar electrokinetic capillary chromatography. J Neurosci Methods 2004; 138:189-97. [PMID: 15325127 DOI: 10.1016/j.jneumeth.2004.04.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Revised: 03/16/2004] [Accepted: 04/01/2004] [Indexed: 12/21/2022]
Abstract
An analytical method was developed to monitor amino acids collected by in vivo microdialysis. Microdialysate was continuously derivatized on-line by mixing 6 mM naphthalene-2,3-dicarboxyaldehyde (NDA) and 10 mM potassium cyanide with the dialysate stream in a fused silica capillary to form fluorescent products. Reaction time, determined by the flow rate and volume of reaction capillary, was 3 min. Derivatized amino acids were continuously delivered into a flow-gated interface and periodically injected onto a capillary electrophoresis unit equipped with a laser-induced fluorescence detection based on a commercial microscope. Separation was performed in the micellar electrokinetic chromatography mode using 30 mM sodium dodecyl sulfate in 15 mM phosphate buffer at pH 8.0 as the separation media. An electric field of 1.3 kV/cm was applied across a 10 cm long, 10 microm internal diameter separation capillary. These conditions allowed 17 amino acid derivatives to be resolved in less than 30 s. On-line injections could be performed at 30 s intervals for in vivo samples. Detection limits were from 10 to 30 nM for the amino acids. The method was applied to monitor the acute ethanol-induced amino acid level changes in freely moving rats. The results demonstrate the utility of the method to reveal dynamics of amino acid concentration in vivo.
Collapse
Affiliation(s)
- Minshan Shou
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
42
|
Dash AK, Elmquist WF. Separation methods that are capable of revealing blood–brain barrier permeability. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 797:241-54. [PMID: 14630153 DOI: 10.1016/s1570-0232(03)00605-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The objective of this review is to emphasize the application of separation science in evaluating the blood-brain barrier (BBB) permeability to drugs and bioactive agents. Several techniques have been utilized to quantitate the BBB permeability. These methods can be classified into two major categories: in vitro or in vivo. The in vivo methods used include brain homogenization, cerebrospinal fluid (CSF) sampling, voltametry, autoradiography, nuclear magnetic resonance (NMR) spectroscopy, positron emission tomography (PET), intracerebral microdialysis, and brain uptake index (BUI) determination. The in vitro methods include tissue culture and immobilized artificial membrane (IAM) technology. Separation methods have always played an important role as adjunct methods to the methods outlined above for the quantitation of BBB permeability and have been utilized the most with brain homogenization, in situ brain perfusion, CSF sampling, intracerebral microdialysis, in vitro tissue culture and IAM chromatography. However, the literature published to date indicates that the separation method has been used the most in conjunction with intracerebral microdialysis and CSF sampling methods. The major advantages of microdialysis sampling in BBB permeability studies is the possibility of online separation and quantitation as well as the need for only a small sample volume for such an analysis. Separation methods are preferred over non-separation methods in BBB permeability evaluation for two main reasons. First, when the selectivity of a determination method is insufficient, interfering substances must be separated from the analyte of interest prior to determination. Secondly, when large number of analytes is to be detected and quantitated by a single analytical procedure, the mixture must be separated to each individual component prior to determination. Chiral separation in particular can be essential to evaluate the stereo-selective permeation and distribution of agents into the brain. In conclusion, the usefulness of separation methods during BBB permeability evaluation is immense and more application of these methods is foreseen in the future.
Collapse
Affiliation(s)
- Alekha K Dash
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University Medical Center, 2500 California Plaza, Omaha, NE 68178, USA.
| | | |
Collapse
|
43
|
Khuhawar MY, Rajper AD. Liquid chromatographic determination of gamma-aminobutyric acid in cerebrospinal fluid using 2-hydroxynaphthaldehyde as derivatizing reagent. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 788:413-8. [PMID: 12705983 DOI: 10.1016/s1570-0232(03)00062-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
gamma Aminobutyric acid (GABA) was determined by precolumn derivatization with 2-hydroxynaphthaldehyde and elution was made using Phenomenex C(18), 5 microm column with methanol: water (62:38 v/v) and UV detection at 330 nm. In a mixture containing glycine, l-lysine and tyramine GABA separated completely. A number of amines and amino acids tested did not affect the response of GABA. A linear calibration curve was obtained for GABA in the range of 1.2-28.0 microg/ml with detection limit of 2.8 ng/injection (5 microl). The method was used for the determination of GABA in cerebral spinal fluid (CSF) samples and gave results of 19.0 to 22.4 microg/m1 with coefficient of variation 2.4%
Collapse
Affiliation(s)
- M Y Khuhawar
- Dr. M.A. Kazi Institute of Chemistry, University of Sindh Jamshoro, Sindh, Pakistan
| | | |
Collapse
|
44
|
Beisler AT, Schaefer KE, Weber SG. Simple method for the quantitative examination of extra column band broadening in microchromatographic systems. J Chromatogr A 2003; 986:247-51. [PMID: 12597631 DOI: 10.1016/s0021-9673(02)02018-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In recent years capillary chromatography has gained popularity for trace analyses. Most often UV or electrochemical detection is employed because the small peak volumes make post-column derivatization challenging. We have developed a simple method based on flow injection for determining contributions to peak broadening from post-column reactors. The only requirement for application of our methodology is that diffusion be in the Taylor regime so that radial concentration gradients are relaxed enabling mixing purely by diffusion.
Collapse
Affiliation(s)
- Amy T Beisler
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
45
|
You J, Shan Y, Zhen L, Zhang L, Zhang Y. Determination of peptides and amino acids from wool and beer with sensitive fluorescent reagent 2-(9-carbazole)-ethyl chloroformate by reverse phase high-performance liquid chromotography and liquid chromotography mass spectrometry. Anal Biochem 2003; 313:17-27. [PMID: 12576053 DOI: 10.1016/s0003-2697(02)00398-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new method for the sensitive determination of amino acids and peptides using the tagging reagent 2-(9-carbazole)-ethyl chloroformate (CEOC) with fluorescence (FL) detection has been developed. Identification of derivatives was carried out by liquid chromotography mass spectrometry. The chromophore in the 2-(9-fluorenyl)-ethyl chloroformate (FMOC) reagent was replaced by carbazole, which resulted in a sensitive fluorescence lerivatizing agent CEOC. CEOC can easily and quickly label peptides and amino acids. Derivatives are stable enough to be efficiently analyzed by high-performance liquid chromatography. Studies on derivatization demonstrate excellent derivative yields over the pH range 8.8-10.0. Maximal yields close to 100% are observed with three- to fourfold molar reagent excess. Derivatives exhibit strong fluorescence and allow direct injection of the reaction mixture with no significant disturbance from the major fluorescent reagent degradation by-products, such as 2-(9-carbazole)-ethanol and bis-(2-(9-carbazole)-ethyl) carbonate. In addition, the detection responses for CEOC derivatives are compared to those obtained with FMOC. The ratios AC(CEOC)/AC(FMOC) = 1.00-1.82 for fluorescence (FL) response and AC'(CEOC)/AC'(FMOC) = 1.00-1.21 for ultraviolet (UV) response are observed (here, AC and AC' are, respectively, FL and UV response). Separation of the derivatized peptides and amino acids has been optimized on a Hypersil BDS C18 column. Excellent linear responses are observed. This method was used successfully to analyze protein hydrolysates from wool and from direct-derivatized beer.
Collapse
Affiliation(s)
- Jinmao You
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 161 Zhongshan Road, Dalian 116011, China
| | | | | | | | | |
Collapse
|
46
|
|
47
|
McKenzie JAM, Watson CJ, Rostand RD, German I, Witowski SR, Kennedy RT. Automated capillary liquid chromatography for simultaneous determination of neuroactive amines and amino acids. J Chromatogr A 2002; 962:105-15. [PMID: 12198955 DOI: 10.1016/s0021-9673(02)00533-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A method for the separation and quantitative determination of neuroactive amino acids (aspartate, glutamate, citrulline, arginine, glycine, taurine, gamma-aminobutyric acid) and neuroactive amines (noradrenaline, dopamine and serotonin) in a single chromatographic analysis is presented. The method is based on pre-column derivatization with o-phthalaldehyde and tert.-butyl thiol, on-column preconcentration and separation using 50 microns I.D. packed capillary columns, and detection by amperometry. Mass limits of detection are 80-900 amol for all neurotransmitters with RSDs of 0.71 and 4.6% or better for retention time and peak area, respectively. The method was demonstrated by application to the determination of neurotransmitters in microdialysis samples collected from striatum of live rats and tissue samples extracted from butterfly brains.
Collapse
Affiliation(s)
- Jacinth A M McKenzie
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL 32611, USA
| | | | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- Eric Bakker
- Department of Chemistry, Auburn University, Alabama 36849, USA
| | | |
Collapse
|
49
|
Mikeladze E, Schulte A, Mosbach M, Blöchl A, Csöregi E, Solomonia R, Schuhmann W. Redox Hydrogel-Based Bienzyme Microelectrodes for Amperometric Monitoring ofL-Glutamate. ELECTROANAL 2002. [DOI: 10.1002/1521-4109(200203)14:6<393::aid-elan393>3.0.co;2-p] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Kennedy RT, Thompson JE, Vickroy TW. In vivo monitoring of amino acids by direct sampling of brain extracellular fluid at ultralow flow rates and capillary electrophoresis. J Neurosci Methods 2002; 114:39-49. [PMID: 11850038 DOI: 10.1016/s0165-0270(01)00506-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Extracellular levels of glutamate (GLU), aspartate (ASP), glycine (GLY), phosphoethanolamine (PEA), and gamma-aminobutyric acid (GABA) were measured in the striatum of anesthetized rats using a novel sampling approach in which extracellular fluid (ECF) was removed at 1-50 nl/min using a fused silica capillary tube with 18-40 microm inner diameter and a outer diameter of 90 microm. The samples of ECF were analyzed by capillary electrophoresis with laser-induced fluorescence detection. Basal levels for GABA, GLY, and GLU measured using direct sampling at 1 nl/min were 270 +/- 40, 4950 +/- 1100, and 1760 +/- 150 nM, respectively in good agreement with the values obtained using microdialysis sampling calibrated by the low-flow rate method. ASP levels were approximately four-fold higher in directly sampled fluid than in dialysate. At higher direct sampling flow rates (10-50 nl/min), detected levels of the amino acids were lower by 70-90% indicating depletion of analyte under these conditions. PEA, an indicator of membrane disruption, was 5.5-fold higher in dialysate than in directly sampled ECF indicating greater tissue damage associated with microdialysis. In addition to the basal measurements, the direct sampling technique was applied to monitoring concentration changes of GLU and ASP in the striatum with better than 90 s temporal resolution after perfusion of either 120 mM K(+) or 400 microM L-trans-pyrrolidine-2,4-dicarboxylic acid (PDC) through a microdialysis probe immediately adjacent to the direct sampling capillary. Levels of GLU and ASP increased 615 +/- 95 and 542 +/- 96%, respectively (n=4) upon addition of 120 mM K(+) to the perfusate and 622 +/- 234 and 672 +/- 218% (n=5) for PDC. It is concluded that direct sampling at low-flow rates allows determination of extracellular levels of the amino acids with spatial resolution that is at least 500-fold better than microdialysis.
Collapse
Affiliation(s)
- Robert T Kennedy
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL 32611-7200, USA.
| | | | | |
Collapse
|