1
|
Hughes E, O’Neill NS, Schweitzer-Stenner R. Ordered Aggregates of Fmoc-Diphenylalanine at Alkaline pH as a Precursor of Fibril Formation and Peptide Gelation. J Phys Chem B 2025; 129:260-272. [PMID: 39710982 PMCID: PMC11726616 DOI: 10.1021/acs.jpcb.4c06796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024]
Abstract
The ultrashort peptide N-fluorenylmethoxycarbonyl-phenylalanyl-phenylalanine (FmocFF) has been largely investigated due to its ability to self-assemble into fibrils (100 nm-μm scale) that can form a sample-spanning gel network. The initiation of the gelation process requires either a solvent switch (water added to dimethyl sulfoxide) or a pH-switch (alkaline to neutral) protocol, both of which ensure the solubility of the peptide as a necessary step preceding gelation. While the respective gel phases are well understood in structural and material characteristics terms the pregelation conditions are known to a lesser extent. The question we asked is to what extent the gel-forming fibrils are already partially formed, i.e., oligomers or protofibrils. Focusing on the pregelation conditions for the pH-switch method, we investigated the self-assembly of soluble FmocFF aggregates in alkaline pH by UV circular dichroism, IR, vibrational circular dichroism, and 1H NMR spectroscopy for different peptide concentrations and more systematically as a function of temperature. The temperature dependence of the UVCD spectra of FmocFF in H2O and D2O revealed a complicated isotope effect that affects the peptide backbone and fluorene conformations in peptide aggregates differently. Moreover, we found that the melting of formed aggregates depends on peptide concentration in a nonmonotonic way. At 20 mM the UVCD data revealed the population of at least two different thermodynamic intermediate states, which seem to differ in terms of the relative arrangement of the fluorene moiety. The IR spectrum of this sample at room temperature indicates an antiparallel β-sheet arrangement, as suggested earlier in the literature. However, we show that this interpretation can only be valid if one invokes a nondispersive redshift of the two amide I' bands in a locally crystalline environment. The respective vibrational circular dichroism spectrum of the amide I' region is consistent with a left-handed helically twisted structure of the formed aggregates. A comparison of our data with spectra of the aqueous gel phase suggests that fibrils in the latter resemble the ones at alkaline pH probed by our experiments.
Collapse
Affiliation(s)
- Emily Hughes
- Department of Chemistry, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | | | | |
Collapse
|
2
|
Williams AP, King JP, Sokolova A, Tabor RF. Small-angle scattering of complex fluids in flow. Adv Colloid Interface Sci 2024; 328:103161. [PMID: 38728771 DOI: 10.1016/j.cis.2024.103161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
Complex fluids encompass a significant proportion of the materials that we use today from feedstocks such as cellulose fibre dispersions, materials undergoing processing or formulation, through to consumer end products such as shampoo. Such systems exhibit intricate behaviour due to their composition and microstructure, particularly when analysing their texture and response to flow (rheology). In particular, these fluids when flowing may undergo transitions in their nano- to microstructure, potentially aligning with flow fields, breaking and reassembling or reforming, or entirely changing phase. This manifests as macroscopic changes in material properties, such as core-annular flow of concentrated emulsions in pipelines or the favourable texture of liquid soaps. Small-angle scattering provides a unique method for probing underlying changes in fluid nano- to microstructure, from a few angströms to several microns, of complex fluids under flow. In particular, the alignment of rigid components or shape changes of soft components can be explored, along with local inter-particle ordering and global alignment with macroscopic flow fields. This review highlights recent important developments in the study of such complex fluid systems that couple flow or shear conditions with small-angle scattering measurements, and highlights the physical insight obtained by these experiments. Recent results from neutron scattering measurements made using a simple flow cell are presented, offering a facile method to explore alignment of complex fluids in an easily accessible geometry, and contextualised within existing and potential future research questions.
Collapse
Affiliation(s)
- Ashley P Williams
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Joshua P King
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Anna Sokolova
- Australian Centre for Neutron Scattering, ANSTO, Lucas Heights, NSW 2234, Australia
| | - Rico F Tabor
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
3
|
Le Brun AP, Gilbert EP. Advances in sample environments for neutron scattering for colloid and interface science. Adv Colloid Interface Sci 2024; 327:103141. [PMID: 38631095 DOI: 10.1016/j.cis.2024.103141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Abstract
This review describes recent advances in sample environments across the full complement of applicable neutron scattering techniques to colloid and interface science. Temperature, pressure, flow, tensile testing, ultrasound, chemical reactions, IR/visible/UV light, confinement, humidity and electric and magnetic field application, as well as tandem X-ray methods, are all addressed. Consideration for material choices in sample environments and data acquisition methods are also covered as well as discussion of current and potential future use of machine learning and artificial intelligence.
Collapse
Affiliation(s)
- Anton P Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Elliot Paul Gilbert
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia.
| |
Collapse
|
4
|
Mo X, Song J, Liu X, Guo RC, Hu B, Yu Z. Redox-Regulated In Situ Seed-Induced Assembly of Peptides. Biomacromolecules 2024; 25:2497-2508. [PMID: 38478850 DOI: 10.1021/acs.biomac.3c01453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Morphology-transformational self-assembly of peptides allows for manipulation of the performance of nanostructures and thereby advancing the development of biomaterials. Acceleration of the morphological transformation process under a biological microenvironment is important to efficiently implement the tailored functions in living systems. Herein, we report redox-regulated in situ seed-induced assembly of peptides via design of two co-assembled bola-amphiphiles serving as a redox-resistant seed and a redox-responsive assembly monomer, respectively. Both of the peptides are able to independently assemble into nanoribbons, while the seed monomer exhibits stronger assembling propensity. The redox-responsive monomer undergoes morphological transformation from well-defined nanoribbons to nanoparticles. Kinetics studies validate the role of the assembled inert monomer as the seeds in accelerating the assembly of the redox-responsive monomer. Alternative addition of oxidants and reductants into the co-assembled monomers promotes the redox-regulated assembly of the peptides facilitated by the in situ-formed seeds. The reduction-induced assembly of the peptide could also be accelerated by in situ-formed seeds in cancer cells with a high level of reductants. Our findings demonstrate that through precisely manipulating the assembling propensity of co-assembled monomers, the in situ seed-induced assembly of peptides could be achieved. Combining the rapid assembly kinetics of the seed-induced assembly with the common presence of redox agents in a biological microenvironment, this strategy potentially offers a new method for developing biomedical materials in living systems.
Collapse
Affiliation(s)
- Xiaowei Mo
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Jinyan Song
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xin Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Ruo-Chen Guo
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Binbin Hu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
- Haihe Laboratory of Synthetic Biology, 21 West 15th Avenue, Tianjin 300308, China
| |
Collapse
|
5
|
Hu X, Liao M, Ding K, Wang J, Xu H, Tao K, Zhou F, Lu JR. Neutron reflection and scattering in characterising peptide assemblies. Adv Colloid Interface Sci 2023; 322:103033. [PMID: 37931380 DOI: 10.1016/j.cis.2023.103033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023]
Abstract
Self-assemblies of de novo designed short peptides at interface and in bulk solution provide potential platforms for developing applications in many medical and technological areas. However, characterising how bioinspired supramolecular nanostructures evolve with dynamic self-assembling processes and respond to different stimuli remains challenging. Neutron scattering technologies including small angle neutron scattering (SANS) and neutron reflection (NR) can be advantageous and complementary to other state-of-the-art techniques in tracing structural changes under different conditions. With more neutron sources now available, SANS and NR are becoming increasingly popular in studying self-assembling processes of diverse peptide and protein systems, but the difficulty in experimental manipulation and data analysis can deter beginners. This review will introduce the basic theory, general experimental setup and data analysis of SANS and NR, followed by provision of their applications in characterising interfacial and solution self-assemblies of representative peptides and proteins. SANS and NR are remarkably effective in determining the morphological features self-assembled short peptides, especially size and shape transitions as a result of either sequence changes or in response to environmental stimuli, demonstrating the unique capability of NR and SANS in unravelling the interactive processes. These examples highlight the potential of NR and SANS in supporting the development of novel short peptides and proteins as biopharmaceutical candidates in the fight against many diseases and infections that share common features of membrane interactive processes.
Collapse
Affiliation(s)
- Xuzhi Hu
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK.; Lanzhou Institute of Chemical Physics, Tianshui Middle Road, Lanzhou 730000, Gansu, China
| | - Mingrui Liao
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Ke Ding
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Jiqian Wang
- Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Hai Xu
- Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Kai Tao
- State Key Laboratory of Fluid Power and Mechatronic Systems, Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou 311215, China
| | - Feng Zhou
- Lanzhou Institute of Chemical Physics, Tianshui Middle Road, Lanzhou 730000, Gansu, China
| | - Jian R Lu
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK..
| |
Collapse
|
6
|
Song J, Mo X, Liu X, Hu B, Zhang Z, Yu Z. Arginine Methylation Regulates Self-Assembly of Peptides. Macromol Rapid Commun 2023; 44:e2300308. [PMID: 37462116 DOI: 10.1002/marc.202300308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Abstract
Bio-inspired design of peptides represents one facile strategy for development of supramolecular monomers for self-assembly into well-defined nanostructures. Inspired by methylation of arginine during post-translational modification for manipulating protein functions, herein, the controllable self-assembly of peptides via rational incorporation of methylated arginine residues into bola-amphiphilic peptides is reported. A series of bola-amphiphilic peptides are designed and synthesized either containing natural arginine or methylated arginine and investigate the influence of arginine methylation on peptide assembly. This study finds that incorporation of symmetrically di-methylated arginine into oppositely charged hexapeptide hex-SDMAE leads to distinct assembling performance compare to natural peptide hex-RE. The findings demonstrate that the methylation of rationally designed peptide sequences allows for regulation of self-assembly of peptides, thus implying the great potential of arginine methylation in establishing controllable peptide assembling systems and creating in situ formulation of biomedical materials in the future.
Collapse
Affiliation(s)
- Jinyan Song
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Xiaowei Mo
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Xin Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Binbin Hu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zeyu Zhang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
7
|
Hamley IW, Castelletto V. Small-angle scattering techniques for peptide and peptide hybrid nanostructures and peptide-based biomaterials. Adv Colloid Interface Sci 2023; 318:102959. [PMID: 37473606 DOI: 10.1016/j.cis.2023.102959] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/22/2023]
Abstract
The use of small-angle scattering (SAS) in the study of the self-assembly of peptides and peptide conjugates (lipopeptides, polymer-peptide conjugates and others) is reviewed, highlighting selected research that illustrates different methods and analysis techniques. Both small-angle x-ray scattering (SAXS) and small-angle neutron scattering (SANS) are considered along with examples that exploit their unique capabilities. For SAXS, this includes the ability to perform rapid measurements enabling high throughput or fast kinetic studies and measurements under dilute conditions. For SANS, contrast variation using H2O/D2O mixtures enables the study of peptides interacting with lipids and TR-SANS (time-resolved SANS) studies of exchange kinetics and/or peptide-induced structural changes. Examples are provided of studies measuring form factors of different self-assembled structures (micelles, fibrils, nanotapes, nanotubes etc) as well as structure factors from ordered phases (lyotropic mesophases), peptide gels and hybrid materials such as membranes formed by mixing peptides with polysaccharides or peptide/liposome mixtures. SAXS/WAXS (WAXS: wide-angle x-ray scattering) on peptides and peptide hybrids is also discussed, and the review concludes with a perspective on potential future directions for research in the field.
Collapse
Affiliation(s)
- Ian W Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK.
| | - Valeria Castelletto
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK
| |
Collapse
|
8
|
Mirzamani M, Dawn A, Garvey CJ, He L, Koerner H, Kumari H. Structural insights into self-assembly of a slow-evolving and mechanically robust supramolecular gel via time-resolved small-angle neutron scattering. Phys Chem Chem Phys 2022; 25:131-141. [PMID: 36475500 DOI: 10.1039/d2cp01826h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The supramolecular assembly process is a widespread phenomenon found in both synthetically engineered and naturally occurring systems, such as colloids, liquid crystals and micelles. However, a basic understanding of the evolution of self-assembly processes over time remains elusive, primarily owing to the fast kinetics involved in these processes and the complex nature of the various non-covalent interactions operating simultaneously. With the help of a slow-evolving supramolecular gel derived from a urea-based gelator, we aim to capture the different stages of the self-assembly process commencing from nucleation. In particular, we are able to study the self-assembly in real time using time-resolved small-angle neutron scattering (SANS) at length scales ranging from approximately 30 Å to 250 Å. Systems with and without sonication are compared simultaneously, to follow the different kinetic paths involved in these two cases. Time-dependent NMR, morphological and rheological studies act complementarily to the SANS data at sub-micron and bulk length scales. A hollow columnar formation comprising of gelator monomers arranged radially along the long axis of the fiber and solvent in the core is detected at the very early stage of the self-assembly process. While sonication promotes uniform growth of fibers and fiber entanglement, the absence of such a stimulus helps extensive bundle formation at a later stage and at the microscopic domain, making the gel system mechanically robust. The results of the present work provide a thorough understanding of the self-assembly process and reveal a path for fine-tuning such growth processes for applications such as the cosmetics industry, 3D printing ink development and paint industry.
Collapse
Affiliation(s)
- Marzieh Mirzamani
- James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0004, USA.
| | - Arnab Dawn
- James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0004, USA.
| | - Christopher J Garvey
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstraße 1, Garching 85748, Germany
| | - Lilin He
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN 37831, USA
| | - Hilmar Koerner
- Materials & Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Ohio 45433, USA
| | - Harshita Kumari
- James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0004, USA.
| |
Collapse
|
9
|
Shishkhanova K, Molchanov V, Baranov A, Kharitonova E, Orekhov A, Arkharova N, Philippova O. A pH-triggered reinforcement of transient network of wormlike micelles by halloysite nanotubes of different charge. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Mendanha K, Bruno Assis Oliveira L, Colherinhas G. Modeling, energetic and structural analysis of peptide membranes formed by arginine and phenylalanine (R2F4R2) using fully atomistic molecular dynamics. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Jorgensen M, Chmielewski J. Co-assembled Coiled-Coil Peptide Nanotubes with Enhanced Stability and Metal-Dependent Cargo Loading. ACS OMEGA 2022; 7:20945-20951. [PMID: 35755377 PMCID: PMC9219066 DOI: 10.1021/acsomega.2c01669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 05/30/2022] [Indexed: 05/07/2023]
Abstract
Peptide nanotube biomaterials are attractive for their range of applications. Herein, we disclose the co-assembly of coiled-coil peptides, one with ligands for metal ions that demonstrate hierarchical assembly into nanotubes, with spatial control of the metal-binding ligands. Enhanced stability of the nanotubes to phosphate-buffered saline was successfully accomplished in a metal-dependent fashion, depending on the levels and placement of the ligand-containing coiled-coil peptide. This spatial control also allowed for site-specific labeling of the nanotubes with His-tagged fluorophores through the length of the tubes or at the termini, in a metal-dependent manner.
Collapse
|
12
|
de Mello LR, Carrascosa V, Rebelato E, Juliano MA, Hamley IW, Castelletto V, Vassiliades SV, Alves WA, Nakaie CR, da Silva ER. Nanostructure Formation and Cell Spheroid Morphogenesis of a Peptide Supramolecular Hydrogel. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3434-3445. [PMID: 35274959 DOI: 10.1021/acs.langmuir.1c03215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Peptide-based hydrogels have attracted much attention due to their extraordinary applications in biomedicine and offer an excellent mimic for the 3D microenvironment of the extracellular matrix. These hydrated matrices comprise fibrous networks held together by a delicate balance of intermolecular forces. Here, we investigate the hydrogelation behavior of a designed decapeptide containing a tetraleucine self-assembling backbone and fibronectin-related tripeptides near both ends of the strand. We have observed that this synthetic peptide can produce hydrogel matrices entrapping >99% wt/vol % water. Ultrastructural analyses combining atomic force microscopy, small-angle neutron scattering, and X-ray diffraction revealed that amyloid-like fibrils form cross-linked networks endowed with remarkable thermal stability, the structure of which is not disrupted up to temperatures >80 °C. We also examined the interaction of peptide hydrogels with either NIH3T3 mouse fibroblasts or HeLa cells and discovered that the matrices sustain cell viability and induce morphogenesis into grape-like cell spheroids. The results presented here show that this decapeptide is a remarkable building block to prepare highly stable scaffolds simultaneously endowed with high water retention capacity and the ability to instruct cell growth into tumor-like spheroids even in noncarcinoma lineages.
Collapse
Affiliation(s)
- Lucas R de Mello
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Vinicius Carrascosa
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Eduardo Rebelato
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Maria A Juliano
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Ian W Hamley
- Department of Chemistry, University of Reading, Reading RGD 6AD, U.K
| | | | - Sandra V Vassiliades
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09210-580, Brazil
| | - Wendel A Alves
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André 09210-580, Brazil
| | - Clovis R Nakaie
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Emerson R da Silva
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| |
Collapse
|
13
|
Miller JG, Hughes SA, Modlin C, Conticello VP. Structures of synthetic helical filaments and tubes based on peptide and peptido-mimetic polymers. Q Rev Biophys 2022; 55:1-103. [PMID: 35307042 DOI: 10.1017/s0033583522000014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractSynthetic peptide and peptido-mimetic filaments and tubes represent a diverse class of nanomaterials with a broad range of potential applications, such as drug delivery, vaccine development, synthetic catalyst design, encapsulation, and energy transduction. The structures of these filaments comprise supramolecular polymers based on helical arrangements of subunits that can be derived from self-assembly of monomers based on diverse structural motifs. In recent years, structural analyses of these materials at near-atomic resolution (NAR) have yielded critical insights into the relationship between sequence, local conformation, and higher-order structure and morphology. This structural information offers the opportunity for development of new tools to facilitate the predictable and reproduciblede novodesign of synthetic helical filaments. However, these studies have also revealed several significant impediments to the latter process – most notably, the common occurrence of structural polymorphism due to the lability of helical symmetry in structural space. This article summarizes the current state of knowledge on the structures of designed peptide and peptido-mimetic filamentous assemblies, with a focus on structures that have been solved to NAR for which reliable atomic models are available.
Collapse
Affiliation(s)
- Jessalyn G Miller
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA30322
| | - Spencer A Hughes
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA30322
| | - Charles Modlin
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, GA30322
| | | |
Collapse
|
14
|
Tuning the shell structure of peptide nanotubes with sodium tartrate: From monolayer to bilayer. J Colloid Interface Sci 2022; 608:1685-1695. [PMID: 34742083 DOI: 10.1016/j.jcis.2021.10.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 01/21/2023]
Abstract
Though the function of peptide based nanotubes are well correlated with its shape and size, controlling the dimensions of nanotubes still remains a great challenge in the field of peptide self-assembly. Here, we demonstrated that the shell structure of nanotubes formed by a bola peptide Ac-KI3VK-NH2 (KI3VK, in which K, I, and V are abbreviations of lysine, isoleucine, and valine) can be regulated by mixing it with the salt sodium tartrate (STA). The ratio of KI3VK and STA had a great impact on shell structure of the nanotubes. Bilayer nanotubes can be constructed when the molar ratio of KI3VK and STA was less than 1:2. Both the two hydroxyls and the negative charges carried by STA were proved to play important roles in the bilayer nanotubes formation. Observations of different intermediates provided obvious evidence for the varied pathway of the bilayer nanotubes formation. Based on these experimental results, the possible mechanism for bilayer nanotubes formation was proposed. Such a study provides a simple and effective way for regulating the shell structure of the nanotubes and may expand their applications in different fields.
Collapse
|
15
|
Dawn A, Pajoubpong J, Mesmer A, Mirzamani M, He L, Kumari H. Manipulating Assemblies in Metallosupramolecular Gels, Driven by Isomeric Ligands, Metal Coordination, and Adaptive Binary Gelator Systems. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1705-1715. [PMID: 35078313 DOI: 10.1021/acs.langmuir.1c02738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metallosupramolecular gel (MSG) is a unique combination of metal-ligand coordination chemistry and supramolecular gel chemistry with extraordinary adaptivity and softness. Such materials find broad uses in industry, pharmaceutical and biomedical sectors, and in technology generation among many others. Pyridyl-appended bis(urea) gelator systems have been extensively studied as potential MSG-forming materials in the presence of various metal ions. The previous molecular engineering approaches depicted competitive intermolecular and intramolecular binding modes involving urea and pyridyl groups and further fine-tuned by the presence of various molecular spacers. In those studies, formation of intermolecular hydrogen bonding among urea moieties to form urea tape was found to be the key factor in one-dimensional assembly and gel formation. In the present study, we show how two isomeric pyridyl-appended bis(urea) ligands can be designed appropriately to essentially eliminate the interference of competitive factors, leaving the intermolecular urea assembly practically unaffected even in the presence of metal ions. We found that one of the two ligands (L2) and the mixed ligand (L1 + L2) assemblies formed gel in the presence and absence of various metal ions. A metal ion with a linear coordination geometry significantly strengthened the gels. Moreover, an inherently weak L1 + L2 assembly appears to be more adaptive in accommodating larger metal ions especially with nonlinear coordination geometry preferences. Small-angle neutron scattering and rheological, spectroscopic, and morphological characterizations, collectively, capture a detailed interplay among ligand assembly, metal-ligand coordination, and adaptivity, driven by the pure versus mixed ligand assemblies. The knowledge gathered from the present study would be highly beneficial in engineering the metallosupramolecular polymeric assemblies toward their functional applications.
Collapse
Affiliation(s)
- Arnab Dawn
- James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Medical Science Building, Cincinnati, Ohio 45267-0514, United States
| | - Jinnipha Pajoubpong
- James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Medical Science Building, Cincinnati, Ohio 45267-0514, United States
| | - Amira Mesmer
- James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Medical Science Building, Cincinnati, Ohio 45267-0514, United States
| | - Marzieh Mirzamani
- James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Medical Science Building, Cincinnati, Ohio 45267-0514, United States
| | - Lilin He
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Harshita Kumari
- James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Medical Science Building, Cincinnati, Ohio 45267-0514, United States
| |
Collapse
|
16
|
Wang S, Liu F, Ma N, Li Y, Jing Q, Zhou X, Xia Y. Mechanistic process understanding of the self-assembling behaviour of asymmetric bolaamphiphilic short-peptides and their templating for silica and titania nanomaterials. NANOSCALE 2021; 13:13318-13327. [PMID: 34477738 DOI: 10.1039/d1nr01661j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Investigation of the self-assembly of peptides is critically important to clarify certain biophysical phenomena, fulfill some biological functions, and construct functional materials. However, it is still a challenge to precisely predict the self-assembled structures of peptides because of their complicated driving forces and various assembling pathways. In this work, to elucidate the effects of noncovalent interactions including hydrogen bonding, molecular geometry, and hydrophobic and electrostatic interactions on the peptide self-assembly, a series of asymmetric bolaamphiphilic short peptides consisting of Ac-EI3K-NH2 (EI3K), Ac-EI4K-NH2 (EI4K), Ac-KI3E-NH2 (KI3E) and Ac-KI4E-NH2 (KI4E) were designed and their self-assembling behaviors at different solution pH values were investigated systematically. The peptides self-assembled into twisted nanofibers under most conditions except for EI4K in a strongly alkaline solution and KI4E under a strongly acidic condition, in which they self-assembled into nanotubes via helical monolayer nanosheet intermediates. In particular, KI4E nanotubes are formed under acidic conditions, and its diameters are ∼500 nm much greater than most of the self-assembled structures from bolaamphiphilic peptides. Moreover, reversible morphological transition between the nanotubes and twisted nanofibers was observed with the change in solution pH. Such tunable self-assembled structures and switchable surface properties of the asymmetric bolaamphiphilic short-peptides allow them to be used as templates to construct advanced materials. Silica and titania nanomaterials faithful to the peptide templates in morphology were prepared at ambient temperature. This work clearly elucidates the effects of noncovalent interactions on the peptide self-assembly and also provides new insights into the design and preparation of complicated inorganic materials from tunable organic templates.
Collapse
Affiliation(s)
- Shengjie Wang
- Centre for Bioengineering and Biotechnology, China University of Petroleum, Qingdao 266580, China.
| | | | | | | | | | | | | |
Collapse
|
17
|
Mello LR, Aguiar RB, Yamada RY, Moraes JZ, Hamley IW, Alves WA, Reza M, Ruokolainen J, Silva ER. Amphipathic design dictates self-assembly, cytotoxicity and cell uptake of arginine-rich surfactant-like peptides. J Mater Chem B 2021; 8:2495-2507. [PMID: 32108843 DOI: 10.1039/c9tb02219h] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amphiphilicity is the most critical parameter in the self-assembly of surfactant-like peptides (SLPs), regulating the way by which hydrophobic attraction holds peptides together. Its effects go beyond supramolecular assembly and may also trigger different cell responses of bioactive peptide-based nanostructures. Herein, we investigate the self-assembly and cellular effects of nanostructures based on isomeric SLPs composed by arginine (R) and phenylalanine (F). Two amphipathic designs were studied: a diblock construct F4R4 and its bolaamphiphile analog R2F4R2. A strong sequence-dependent polymorphism emerges with appearance of globules and vesicle-like assemblies, or flat nanotapes and cylindrical micelles. The diblock construct possesses good cell penetrating capabilities and effectiveness to kill SK-MEL-28 melanoma tumor cells, in contrast to reduced intracellular uptake and low cytotoxicity exhibited by the bolaamphiphilic form. Our findings demonstrate that amphipathic design is a relevant variable for self-assembling SLPs to modulate different cellular responses and may assist in optimizing the production of nanostructures based on arginine-enriched sequences in cell penetrating and antimicrobial peptides.
Collapse
Affiliation(s)
- Lucas R Mello
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04044-020, Brazil.
| | - Rodrigo B Aguiar
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04044-020, Brazil.
| | - Renata Y Yamada
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04044-020, Brazil.
| | - Jane Z Moraes
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04044-020, Brazil.
| | - Ian W Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK
| | - Wendel A Alves
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, 09210-580, Brazil
| | - Mehedi Reza
- Nanomicroscopy Center, Aalto University, Puumiehenkuja 2, FIN-02150 Espoo, Finland
| | - Janne Ruokolainen
- Nanomicroscopy Center, Aalto University, Puumiehenkuja 2, FIN-02150 Espoo, Finland
| | - Emerson R Silva
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo 04044-020, Brazil.
| |
Collapse
|
18
|
Zhao Y, Hu X, Zhang L, Wang D, King SM, Rogers SE, Wang J, Lu JR, Xu H. Monolayer wall nanotubes self-assembled from short peptide bolaamphiphiles. J Colloid Interface Sci 2021; 583:553-562. [DOI: 10.1016/j.jcis.2020.09.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 12/29/2022]
|
19
|
Surfactant-like peptides: From molecular design to controllable self-assembly with applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213418] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Narayanan T, Dattani R, Möller J, Kwaśniewski P. A microvolume shear cell for combined rheology and x-ray scattering experiments. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:085102. [PMID: 32872916 DOI: 10.1063/5.0012905] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
An experimental setup is presented for x-ray scattering studies of soft matter under shear flow that employs a low-background coaxial capillary cell coupled to a high-resolution commercial rheometer. The rotor of the Searle type cell is attached to the rheometer shaft, which allows the application of either steady or oscillatory shear of controlled stress or rate on the sample confined in the annular space between the stator and the rotor. The shearing device facilitates ultrasmall-angle x-ray scattering and ultrasmall-angle x-ray photon correlation spectroscopy measurements with relatively low scattering backgrounds. This enables the elucidation of weak structural features otherwise submerged in the background and probes the underlying dynamics. The performance of the setup is demonstrated by means of a variety of colloidal systems subjected to different rheological protocols. Examples include shear deformation of a short-range attractive colloidal gel, dynamics of dilute colloids in shear flow, distortion of the structure factor of a dense repulsive colloidal suspension, shear induced ordering of colloidal crystals, and alignment of multilamellar microtubes formed by a surfactant-polysaccharide mixture. Finally, the new possibilities offered by this setup for investigating soft matter subjected to shear flow by x-ray scattering are discussed.
Collapse
|
21
|
McAulay K, Wang H, Fuentes-Caparrós AM, Thomson L, Khunti N, Cowieson N, Cui H, Seddon A, Adams DJ. Isotopic Control over Self-Assembly in Supramolecular Gels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8626-8631. [PMID: 32614592 PMCID: PMC7467762 DOI: 10.1021/acs.langmuir.0c01552] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
It is common to switch between H2O and D2O when examining peptide-based systems, with the assumption being that there are no effects from this change. Here, we describe the effect of changing from H2O to D2O in a number of low-molecular-weight dipeptide-based gels. Gels are formed by decreasing the pH. In most cases, there is little difference in the structures formed at high pH, but this is not universally true. On lowering the pH, the kinetics of gelation are affected and, in some cases, the structures underpinning the gel network are different. Where there are differences in the self-assembled structures, the resulting gel properties are different. We, therefore, show that isotopic control over gel properties is possible.
Collapse
Affiliation(s)
- Kate McAulay
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Han Wang
- Department of Chemical and Biomolecular Engineering,
Whiting School of Engineering, Johns Hopkins
University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | | | - Lisa Thomson
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Nikul Khunti
- Diamond Light Source Ltd., Harwell Science
and Innovation Campus, Didcot OX11 0QX, U.K.
| | - Nathan Cowieson
- Diamond Light Source Ltd., Harwell Science
and Innovation Campus, Didcot OX11 0QX, U.K.
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering,
Whiting School of Engineering, Johns Hopkins
University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Annela Seddon
- School
of Physics, HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, U.K.
- Bristol Centre for
Functional Nanomaterials, HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL, U.K.
| | - Dave J. Adams
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K.
| |
Collapse
|
22
|
Bioprintable tough hydrogels for tissue engineering applications. Adv Colloid Interface Sci 2020; 281:102163. [PMID: 32388202 DOI: 10.1016/j.cis.2020.102163] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/31/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023]
Abstract
Bioprinting is an advanced fabrication approach to engineer complex living structures as the conventional fabrication methods are incapable of integrating structural and biological complexities. It offers the versatility of printing different cell incorporated hydrogels (bioink) layer by layer; offering control over spatial resolution and cell distribution to mimic native tissue architectures. However, the bioprinting of tough hydrogels involve additional complexities, such as employing complex crosslinking or reinforcing mechanisms during printing and pre/post printing cellular activities. Solving this complexity requires attention from engineering, material science and cell biology perspectives. In this review, we discuss different types of bioprinting techniques with focus on current state-of-the-art in bioink formulations and pivotal characteristics of bioinks for tough hydrogel printing. We discuss the scope of transition from 3D to 4D bioprinting and some of the advanced characterization techniques for in-depth understanding of the 3D printing process from the microstructural perspective, along with few specific applications and conclude with the future perspectives in biofabrication of hydrogels for tissue engineering applications.
Collapse
|
23
|
Wychowaniec J, Smith AM, Ligorio C, Mykhaylyk OO, Miller AF, Saiani A. Role of Sheet-Edge Interactions in β-sheet Self-Assembling Peptide Hydrogels. Biomacromolecules 2020; 21:2285-2297. [PMID: 32275138 PMCID: PMC7304824 DOI: 10.1021/acs.biomac.0c00229] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/08/2020] [Indexed: 12/11/2022]
Abstract
Hydrogels' hydrated fibrillar nature makes them the material of choice for the design and engineering of 3D scaffolds for cell culture, tissue engineering, and drug-delivery applications. One particular class of hydrogels which has been the focus of significant research is self-assembling peptide hydrogels. In the present work, we were interested in exploring how fiber-fiber edge interactions affect the self-assembly and gelation properties of amphipathic peptides. For this purpose, we investigated two β-sheet-forming peptides, FEFKFEFK (F8) and KFEFKFEFKK (KF8K), the latter one having the fiber edges covered by lysine residues. Our results showed that the addition of the two lysine residues did not affect the ability of the peptides to form β-sheet-rich fibers, provided that the overall charge carried by the two peptides was kept constant. However, it did significantly reduce edge-driven hydrophobic fiber-fiber associative interactions, resulting in reduced tendency for KF8K fibers to associate/aggregate laterally and form large fiber bundles and consequently network cross-links. This effect resulted in the formation of hydrogels with lower moduli but faster dynamics. As a result, KF8K fibers could be aligned only under high shear and at high concentration while F8 hydrogel fibers were found to align readily at low shear and low concentration. In addition, F8 hydrogels were found to fragment at high concentration because of the high aggregation state stabilizing the fiber bundles, resulting in fiber breakage rather than disentanglement and alignment.
Collapse
Affiliation(s)
- Jacek
K. Wychowaniec
- School
of Materials, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.
- Manchester
Institute of Biotechnology, The University
of Manchester, Oxford
Road, M13 9PL Manchester, U.K.
| | - Andrew M. Smith
- School
of Materials, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.
- Manchester
Institute of Biotechnology, The University
of Manchester, Oxford
Road, M13 9PL Manchester, U.K.
| | - Cosimo Ligorio
- School
of Materials, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.
- Manchester
Institute of Biotechnology, The University
of Manchester, Oxford
Road, M13 9PL Manchester, U.K.
| | - Oleksandr O. Mykhaylyk
- Soft
Matter Analytical Laboratory, Dainton Building, Department of Chemistry, The University of Sheffield, Sheffield S3 7HF, U.K.
| | - Aline F. Miller
- Manchester
Institute of Biotechnology, The University
of Manchester, Oxford
Road, M13 9PL Manchester, U.K.
- School
of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.
| | - Alberto Saiani
- School
of Materials, The University of Manchester, Oxford Road, M13 9PL Manchester, U.K.
- Manchester
Institute of Biotechnology, The University
of Manchester, Oxford
Road, M13 9PL Manchester, U.K.
| |
Collapse
|
24
|
Kajiyama S, Iwase H, Nakayama M, Ichikawa R, Yamaguchi D, Seto H, Kato T. Shear-induced liquid-crystalline phase transition behaviour of colloidal solutions of hydroxyapatite nanorod composites. NANOSCALE 2020; 12:11468-11479. [PMID: 32227008 DOI: 10.1039/c9nr10996j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Liquid-crystalline (LC) bio-inspired materials based on colloidal nanoparticles with anisotropic morphologies such as sheets, plates, rods and fibers were used as functional materials. They show stimuli-responsive behaviour under mechanical force and in electric and magnetic fields. Understanding the effects of external stimuli on the structures of anisotropic colloidal particles is important for the development of highly ordered structures. Recently, we have developed stimuli-responsive hydroxyapatite (HAP)-based colloidal LC nanorods that are environmentally-friendly functional materials. In the present study, the ordering behaviour of HAP nanorod dispersions, which show LC states, has been examined using in situ small-angle neutron scattering and rheological measurements (Rheo-SANS) under shearing force. The structural analyses and dynamic viscosity observations provided detailed information about the effects of shear force on the structural changes of HAP nanorods in D2O dispersion. The present Rheo-SANS measurements unraveled three kinds of main effects of the shear force: the enhancement of interactions between the HAP nanorods, the alignment of HAP nanorods to the shear flow direction, and the formation and disruption of HAP nanorod assemblies. Simultaneous analyses of dynamic viscosity and structural changes revealed that the HAP nanorod dispersions exhibited distinctive rheological properties accompanied by their ordered structural changes.
Collapse
Affiliation(s)
- Satoshi Kajiyama
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | | | | | | | | | | | | |
Collapse
|
25
|
Jiang N, Yu T, Darvish OA, Qian S, Mkam Tsengam IK, John V, Zhang D. Crystallization-Driven Self-Assembly of Coil–Comb-Shaped Polypeptoid Block Copolymers: Solution Morphology and Self-Assembly Pathways. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01546] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Naisheng Jiang
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Tianyi Yu
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Omead A. Darvish
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Shuo Qian
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Igor Kevin Mkam Tsengam
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Vijay John
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Donghui Zhang
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
26
|
Huang GR, Wang Y, Do C, Shinohara Y, Egami T, Porcar L, Liu Y, Chen WR. Orientational Distribution Function of Aligned Elongated Molecules and Particulates Determined from Their Scattering Signature. ACS Macro Lett 2019; 8:1257-1262. [PMID: 35651160 DOI: 10.1021/acsmacrolett.9b00496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a strategy for quantitatively evaluating the field-induced alignment of nonspherical particles using small-angle scattering techniques. The orientational distribution function (ODF) is determined from the anisotropic scattering intensity via the scheme of real spherical harmonic expansion. Our developed approach is simple and analytical and does not require a presumptive hypothesis of the ODF as an input in data analysis. A model study of aligned rigid rods demonstrates the validity of this proposed approach to facilitate the quantitative structural characterization of materials with preferred orientational states.
Collapse
Affiliation(s)
- Guan-Rong Huang
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Yangyang Wang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Changwoo Do
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Yuya Shinohara
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Takeshi Egami
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.,Department of Materials Science and Engineering and Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Lionel Porcar
- Institut Laue-Langevin, B.P. 156, F-38042 Cedex 9 Grenoble, France
| | - Yun Liu
- The NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6100, United States.,Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Wei-Ren Chen
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
27
|
Yuan C, Ji W, Xing R, Li J, Gazit E, Yan X. Hierarchically oriented organization in supramolecular peptide crystals. Protein Pept Lett 2019; 3:567-588. [PMID: 39649433 PMCID: PMC7617026 DOI: 10.1038/s41570-019-0129-8] [Citation(s) in RCA: 277] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2019] [Indexed: 12/18/2022]
Abstract
Hierarchical self-assembly and crystallization with long-range ordered spatial arrangement is ubiquitous in nature and plays an essential role in the regulation of structures and biological functions. Inspired by the multiscale hierarchical structures in biology, tremendous efforts have been devoted to the understanding of hierarchical self-assembly and crystallization of biomolecules such as peptides and amino acids. Understanding the fundamental mechanisms underlying the construction and organization of multiscale architectures is crucial for the design and fabrication of complex functional systems with long-range alignment of molecules. This Review summarizes the typical examples for hierarchically oriented organization of peptide self-assembly and discusses the thermodynamic and kinetic mechanisms that are responsible for this specific hierarchical organization. Most importantly, we propose the concept of hierarchically oriented organization for self-assembling peptide crystals, distinct from the traditional growth mechanism of supramolecular polymerization and crystallization based on the Ostwald ripening rule. Finally, we assess critical challenges and highlight future directions towards the mechanistic understanding and versatile application of the hierarchically oriented organization mechanism.
Collapse
Affiliation(s)
- Chengqian Yuan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Wei Ji
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ruirui Xing
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering Tel Aviv University, Tel Aviv, Israel
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences Beijing, China
| |
Collapse
|
28
|
Jaksch S, Gutberlet T, Müller-Buschbaum P. Grazing-incidence scattering—status and perspectives in soft matter and biophysics. Curr Opin Colloid Interface Sci 2019. [DOI: 10.1016/j.cocis.2019.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Draper ER, Adams DJ. Controlling the Assembly and Properties of Low-Molecular-Weight Hydrogelators. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6506-6521. [PMID: 31038973 DOI: 10.1021/acs.langmuir.9b00716] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Low-molecular-weight gels are formed by the self-assembly of small molecules into fibrous networks that can immobilize a significant amount of solvent. Here, we focus on our work with a specific class of gelator, the functionalized dipeptide. We discuss the current state of the art in the area, focusing on how these materials can be controlled. We also highlight interesting and unusual observations and unanswered questions in the field.
Collapse
Affiliation(s)
- Emily R Draper
- School of Chemistry , University of Glasgow , Glasgow G12 9AB , U.K
| | - Dave J Adams
- School of Chemistry , University of Glasgow , Glasgow G12 9AB , U.K
| |
Collapse
|
30
|
Castelletto V, Edwards-Gayle CJC, Hamley IW, Barrett G, Seitsonen J, Ruokolainen J. Peptide-Stabilized Emulsions and Gels from an Arginine-Rich Surfactant-like Peptide with Antimicrobial Activity. ACS APPLIED MATERIALS & INTERFACES 2019; 11:9893-9903. [PMID: 30785266 PMCID: PMC7005944 DOI: 10.1021/acsami.9b00581] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/20/2019] [Indexed: 05/05/2023]
Abstract
The preparation of hydrogels and stable emulsions is important in the formulation of many functional nanostructured soft materials. We investigate the multifunctional self-assembly and bioactivity properties of a novel surfactant-like peptide (SLP) that shows antimicrobial activity, is able to form hydrogels without pH adjustment, and is able to stabilize oil-in-water emulsions. Furthermore, we demonstrate on-demand de-emulsification in response to the protease enzyme elastase. We show that SLP (Ala)9-Arg (A9R) forms β-sheet fibers above a critical aggregation concentration and that water-in-oil emulsions are stabilized by a coating of β-sheet fibers around the emulsion droplets. Furthermore, we demonstrate enzyme-responsive de-emulsification, which has potential in the development of responsive release systems. The peptide shows selective antimicrobial activity against Gram-negative pathogens including Pseudomonas aeruginosa, which causes serious infections. Our results highlight the utility of SLPs in the stabilization of oil/water emulsions and the potential for these to be used to formulate antimicrobial peptide emulsions which are additionally responsive to protease. The peptide A9R has pronounced antibacterial activity against clinically challenging pathogens, and its ability to form β-sheet fibers plays a key role in its diverse structural properties, ranging from hydrogel formation to emulsion stabilization.
Collapse
Affiliation(s)
- Valeria Castelletto
- Department of Chemistry and School of Biological
Sciences, University of Reading, Reading RG6 6AD, United Kingdom
| | | | - Ian W. Hamley
- Department of Chemistry and School of Biological
Sciences, University of Reading, Reading RG6 6AD, United Kingdom
| | - Glyn Barrett
- Department of Chemistry and School of Biological
Sciences, University of Reading, Reading RG6 6AD, United Kingdom
| | - Jani Seitsonen
- Nanomicroscopy Center, Aalto University, Puumiehenkuja
2, FIN-02150 Espoo, Finland
| | - Janne Ruokolainen
- Nanomicroscopy Center, Aalto University, Puumiehenkuja
2, FIN-02150 Espoo, Finland
| |
Collapse
|
31
|
Dawn A, Mirzamani M, Jones CD, Yufit DS, Qian S, Steed JW, Kumari H. Investigating the effect of supramolecular gel phase crystallization on gel nucleation. SOFT MATTER 2018; 14:9489-9497. [PMID: 30431638 DOI: 10.1039/c8sm01916a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Supramolecular gel phase crystallization offers a new strategy for drug polymorph screening and discovery. In this method, the crystallization outcome depends on the interaction between solute and gel fibre. While supramolecular gels have shown success in producing new polymorphs and crystals with novel morphologies, role of the gel and nature of gel-solute interaction remains largely unexplored. The present study aims to provide a comprehensive picture of the structural evolution of a supramolecular gel produced from a bis(urea) based gelator (G) in the presence of a polymorphic drug carbamazepine (CBZ). The structural aspects of the gel have been assessed by single crystal X-ray analysis, X-ray powder diffraction (XRPD) and solid state NMR spectroscopy. Small Angle Neutron Scattering (SANS) has been used to follow the changes in gel structure in the presence of CBZ. Visual evidence from morphological study and structural evolution observed at a macroscopic level from rheological measurements, shows good agreement with the SANS results. The concentration of the gelator and the relative proportion of G to CBZ were found to be crucial factors in determining the competitive nucleation events involving gelation and crystallization. At a critical G to CBZ ratio the effect of CBZ on gel structure was maximum and fiber bundling in the gel was found to be critically affected. This study offers important information about how the interplay of gelator assembly and gel-solute interactions can fine-tune the nucleation events in a supramolecular gel phase crystallization.
Collapse
Affiliation(s)
- Arnab Dawn
- College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267-0004, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Cross ER, Sproules S, Schweins R, Draper ER, Adams DJ. Controlled Tuning of the Properties in Optoelectronic Self-Sorted Gels. J Am Chem Soc 2018; 140:8667-8670. [PMID: 29944359 DOI: 10.1021/jacs.8b05359] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Multicomponent supramolecular gels have great potential for optoelectronics. Ideally, we could control the self-assembly of multiple components across many length scales, from the primary assembled structures to how these are arranged in space. This would allow energy transfer between p-type and n-type fibers to be controlled. Usually, a single network is formed and analyzed. It is not clear how most networks could be modified, and certainly not how these might be differentiated. Here, we address both of these issues. We show how the different components in a multicomponent gel can be differentiated by small-angle neutron scattering using contrast-matching experiments. The rate of self-assembly can be used to vary the networks that are formed, leading directly to changes in the efficiency of electron transfer. The assembly kinetics can therefore be used to prepare different networks from the same primary building blocks and primary self-assembled structures. We expect that these advances will allow multicomponent systems to become effective electronic materials.
Collapse
Affiliation(s)
- Emily R Cross
- School of Chemistry , University of Glasgow , Glasgow G12 8QQ , U.K
| | - Stephen Sproules
- School of Chemistry , University of Glasgow , Glasgow G12 8QQ , U.K
| | - Ralf Schweins
- Large Scale Structures Group , Institut Laue-Langevin , 71 Avenue des Martyrs, CS 20156 , F-38042 Grenoble Cedex 9 , France
| | - Emily R Draper
- School of Chemistry , University of Glasgow , Glasgow G12 8QQ , U.K
| | - Dave J Adams
- School of Chemistry , University of Glasgow , Glasgow G12 8QQ , U.K
| |
Collapse
|
33
|
Sequence length dependence in arginine/phenylalanine oligopeptides: Implications for self-assembly and cytotoxicity. Biophys Chem 2018; 233:1-12. [DOI: 10.1016/j.bpc.2017.11.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 11/28/2017] [Accepted: 11/28/2017] [Indexed: 12/13/2022]
|
34
|
Zhou T, Zhang Z, Zhang X, Wang C, Xu G, Yang Y. Self-assembled chiral nanostructures of amphiphilic peptide: from single molecule to aggregate. J Pept Sci 2017; 23:803-809. [DOI: 10.1002/psc.3032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/19/2017] [Accepted: 07/19/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Ting Zhou
- College of Science; China University of Petroleum (East China); Qingdao 266580 China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology; National Center for Nanoscience and Technology; Beijing 100190 China
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education; Shandong University; Jinan 250100 China
| | - Zhiqing Zhang
- College of Science; China University of Petroleum (East China); Qingdao 266580 China
| | - Xuemei Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology; National Center for Nanoscience and Technology; Beijing 100190 China
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology; National Center for Nanoscience and Technology; Beijing 100190 China
| | - Guiying Xu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education; Shandong University; Jinan 250100 China
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology; National Center for Nanoscience and Technology; Beijing 100190 China
| |
Collapse
|
35
|
Malaspina T, Fileti EE, Colherinhas G. Elucidating the stability of bolaamphiphilic polypeptide nanosheets using atomistic molecular dynamics. Phys Chem Chem Phys 2017; 19:31921-31928. [DOI: 10.1039/c7cp06284b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Atomistic molecular dynamics was employed to characterize bolaamphiphilic polypeptides nanosheets.
Collapse
Affiliation(s)
- T. Malaspina
- Instituto de Ciência e Tecnologia
- Universidade Federal de São Paulo
- São José dos Campos
- Brazil
| | - E. E. Fileti
- Instituto de Ciência e Tecnologia
- Universidade Federal de São Paulo
- São José dos Campos
- Brazil
| | - G. Colherinhas
- Departamento de Física
- CEPAE
- Universidade Federal de Goiás
- Goiânia
- Brazil
| |
Collapse
|