1
|
Sun X, Xie Z, He Z, He Y, Zhao Z, Yan X, Song X, Chen Z, Wang T, Yue Q, Chen Y, Ye H, Lin G, Wang H, Guo Y. Association between pyrrolizidine alkaloids exposure and risk of abnormal serum indices-Insights from a descriptive cross-sectional study in Yunnan Province. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136352. [PMID: 39522219 DOI: 10.1016/j.jhazmat.2024.136352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The hazard of pyrrolizidine alkaloids (PAs) has been widely reported in animal studies but rarely in population-based research, especially reports about daily exposure. A single-centre descriptive cross-sectional study was conducted on 552 Lahu Autonomous County residents recruited in 2021. Blood PAs exposure biomarker (pyrrole- protein adduct, PPA) and serum biochemical indices were measured. The prevalence of abnormal serum indices and PAs exposure in this region were elucidated using descriptive analyses. 75 % of Lahu Autonomous County participants were exposed to PAs. PAs exposure risk in males was lower than in females (OR=0.357, 95 % CI: 0.222-0.574), and varied with the ethnicity of Lahu Autonomous County. PPA concentration was positively correlated with serum alanine transaminase (ALT) activity (r=0.6263, P < 0.01) and triglyceride level (r=0.2327, P < 0.01); PAs exposure was positively associated with anbormal serum ALT activity (x2=99.629, P < 0.001; OR=1.428, 95 % CI: 1.293-2.319) and hypertriglyceridemia (x2=15.376, P < 0.001; OR=1.629, 95 % CI: 1.229-2.251). These results suggest that PAs exposure might be a risk factor for serum ALT abnormality and hypertriglyceridemia in the local population. This study conducted the first epidemiological study on PAs exposure in China and established the etiological hypotheses for health issues in Lahu Autonomous County.
Collapse
Affiliation(s)
- Xiaoxiang Sun
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| | - Zhengyuan Xie
- Yunnan Institute of Population and Family Planning Science and Technology, Kunming 650021, China; NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, Kunming 650021, China.
| | - Zheng He
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yisheng He
- School of Medicine, The Chinese University of Hong Kong-Shenzhen, Shenzhen 518100, China.
| | - Zigao Zhao
- Yunnan Institute of Population and Family Planning Science and Technology, Kunming 650021, China.
| | - Xuerong Yan
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| | - Xiangjing Song
- Yunnan Institute of Population and Family Planning Science and Technology, Kunming 650021, China.
| | - Zijie Chen
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| | - Tao Wang
- Yunnan Institute of Population and Family Planning Science and Technology, Kunming 650021, China; NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, Kunming 650021, China.
| | - Quanrui Yue
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| | - Yiming Chen
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| | - Hanfeng Ye
- Yunnan Institute of Population and Family Planning Science and Technology, Kunming 650021, China.
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, 999077, Hong Kong.
| | - Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| | - Yu Guo
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
2
|
Tan Y, Zheng S. Clinicopathological characteristics and diagnosis of hepatic sinusoidal obstruction syndrome caused by Tusanqi - Case report and literature review. Open Med (Wars) 2023; 18:20230737. [PMID: 37333448 PMCID: PMC10276616 DOI: 10.1515/med-2023-0737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/05/2023] [Accepted: 05/25/2023] [Indexed: 06/20/2023] Open
Abstract
Tusanqi-induced hepatic sinusoidal obstruction syndrome (HSOS) is caused by exposure to pyrrolizidine alkaloids (PAs) and manifests as abdominal distension, liver pain, ascites, jaundice, and hepatomegaly. Pathologically, hepatic congestion and sinusoidal occlusion are observed in HSOS. We summarized the clinical characteristics of 124 patients with HSOS caused by Tusanqi in China between 1980 and 2019, along with those of 831 patients from seven English case series. The main clinical manifestations of PA-HSOS included abdominal pain, ascites, and jaundice. Common imaging features included characteristic heterogeneous density, slender hepatic veins, and other nonspecific changes. The acute stage is primarily manifested as hepatic sinus congestion and necrosis. Meanwhile, the persistence of hepatic sinus congestion and the onset of perisinusoidal fibrosis were observed during the repair stage. Finally, the persistence of hepatic sinusoidal fibrosis and resultant central hepatic vein occlusion were observed in the chronic stage. The new Nanjing standard for PA-HSOS incorporates the history of PA consumption and imaging features and eliminates weight gain and the serum total bilirubin value. Preliminary clinical validation of the Nanjing standard for PA-HSOS diagnosis revealed a sensitivity and specificity of 95.35 and 100%, respectively.
Collapse
Affiliation(s)
- Youwen Tan
- Department of Hepatology, Third Hospital of the Zhenjiang Affiliated Jiangsu University, No. 300, Daijiamen, Runzhou Distinct, Zhenjiang212003, China
| | - Sainan Zheng
- Department of Hepatology, Third Hospital of the Zhenjiang Affiliated Jiangsu University, No. 300, Daijiamen, Runzhou Distinct, Zhenjiang212003, China
| |
Collapse
|
3
|
Current Trends in Toxicity Assessment of Herbal Medicines: A Narrative Review. Processes (Basel) 2022. [DOI: 10.3390/pr11010083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Even in modern times, the popularity level of medicinal plants and herbal medicines in therapy is still high. The World Health Organization estimates that 80% of the population in developing countries uses these types of remedies. Even though herbal medicine products are usually perceived as low risk, their potential health risks should be carefully assessed. Several factors can cause the toxicity of herbal medicine products: plant components or metabolites with a toxic potential, adulteration, environmental pollutants (heavy metals, pesticides), or contamination of microorganisms (toxigenic fungi). Their correct evaluation is essential for the patient’s safety. The toxicity assessment of herbal medicine combines in vitro and in vivo methods, but in the past decades, several new techniques emerged besides conventional methods. The use of omics has become a valuable research tool for prediction and toxicity evaluation, while DNA sequencing can be used successfully to detect contaminants and adulteration. The use of invertebrate models (Danio renio or Galleria mellonella) became popular due to the ethical issues associated with vertebrate models. The aim of the present article is to provide an overview of the current trends and methods used to investigate the toxic potential of herbal medicinal products and the challenges in this research field.
Collapse
|
4
|
Kurimoto M, Chang T, Nishiyama Y, Suzuki T, Dohmae N, Tanaka K, Yokoshima S. Anticancer Approach Inspired by the Hepatotoxic Mechanism of Pyrrolizidine Alkaloids with Glycosylated Artificial Metalloenzymes. Angew Chem Int Ed Engl 2022; 61:e202205541. [DOI: 10.1002/anie.202205541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Michitaka Kurimoto
- Graduate School of Pharmaceutical Sciences Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8601 Japan
| | - Tsung‐che Chang
- Biofunctional Synthetic Chemistry Laboratory RIKEN Cluster for Pioneering Research RIKEN 2-1 Hirosawa Wako-shi, Saitama 351-0198 Japan
| | - Yoshitake Nishiyama
- Graduate School of Pharmaceutical Sciences Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8601 Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako, Saitama 351-0198 Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako, Saitama 351-0198 Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory RIKEN Cluster for Pioneering Research RIKEN 2-1 Hirosawa Wako-shi, Saitama 351-0198 Japan
- Department of Chemical Science and Engineering School of Materials and Chemical Technology Tokyo Institute of Technology 2-12-1 Ookayama Meguro-ku, Tokyo 152-8552 Japan
| | - Satoshi Yokoshima
- Graduate School of Pharmaceutical Sciences Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8601 Japan
| |
Collapse
|
5
|
Kurimoto M, Chang TC, Nishiyama Y, Suzuki T, Dohmae N, Tanaka K, Yokoshima S. Anticancer Approach Inspired by the Hepatotoxic Mechanism of Pyrrolizidine Alkaloids with Glycosylated Artificial Metalloenzymes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Tsung-che Chang
- Rikagaku Kenkyujo RIKEN Cluster for Pioneering Research JAPAN
| | | | | | - Naoshi Dohmae
- Rikagaku Kenkyujo Biomolecular Characterization Unit JAPAN
| | | | - Satoshi Yokoshima
- Nagoya Daigaku Graduate School of Pharmaceutical Sciences Furo-cho, Chikusa-ku 464-8601 Nagoya JAPAN
| |
Collapse
|
6
|
He Y, Zhu L, Ma J, Lin G. Metabolism-mediated cytotoxicity and genotoxicity of pyrrolizidine alkaloids. Arch Toxicol 2021; 95:1917-1942. [PMID: 34003343 DOI: 10.1007/s00204-021-03060-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
Pyrrolizidine alkaloids (PAs) and PA N-oxides are common phytotoxins produced by over 6000 plant species. Humans are frequently exposed to PAs via ingestion of PA-containing herbal products or PA-contaminated foods. PAs require metabolic activation to form pyrrole-protein adducts and pyrrole-DNA adducts which lead to cytotoxicity and genotoxicity. Individual PAs differ in their metabolic activation patterns, which may cause significant difference in toxic potency of different PAs. This review discusses the current knowledge and recent advances of metabolic pathways of different PAs, especially the metabolic activation and metabolism-mediated cytotoxicity and genotoxicity, and the risk evaluation methods of PA exposure. In addition, this review provides perspectives of precision toxicity assessment strategies and biomarker development for the risk control and translational investigations of human intoxication by PAs.
Collapse
Affiliation(s)
- Yisheng He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Lin Zhu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Jiang Ma
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| |
Collapse
|
7
|
Female-specific activation of pregnane X receptor mediates sex difference in fetal hepatotoxicity by prenatal monocrotaline exposure. Toxicol Appl Pharmacol 2020; 406:115137. [PMID: 32682830 DOI: 10.1016/j.taap.2020.115137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/21/2020] [Accepted: 07/10/2020] [Indexed: 01/06/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are a group of hepatic toxicant widely present in plants. Cytochrome P450 (CYP) 3A plays a key role in metabolic activation of PAs to generate electrophilic metabolites, which is the main cause of hepatotoxicity. We have previously demonstrated the sex difference in developmental toxicity and hepatotoxicity in fetal rats exposed to monocrotaline (MCT), a representative toxic PA. The aim of this study was to explore the underlying mechanism. 20 mg·kg-1·d-1 MCT was intragastrically given to pregnant Wistar rats from gestation day 9 to 20. CYP3As expression and pregnane X receptor (PXR) activation were specifically enhanced in female fetal liver. After MCT treatment, we also observed a significant increase of CYP3As expression in LO2 cells (high PXR level) or hPXR-transfected HepG2 cells (low PXR level). Employing hPXR and CYP3A4 dual-luciferase reporter gene assay, we confirmed the agonism effect of MCT on PXR-dependent transcriptional activity of CYP3A4. Agonism and antagonism of the androgen receptor (AR) either induced or blocked MCT-induced PXR activation, respectively. This study was the first report identifying that MCT served as PXR agonist to induce CYP3A expression. CYP3A induction may increase self-metabolic activation of MCT and subsequently lead to more severe hepatotoxicity in female fetus. While in male, during the intrauterine period, activated AR by testosterone secretion from developing testes represses MCT-induced PXR activation and CYP3A induction, which may partially protect male fetus from MCT-induced hepatotoxicity.
Collapse
|
8
|
Liu C, Yang S, Wang K, Bao X, Liu Y, Zhou S, Liu H, Qiu Y, Wang T, Yu H. Alkaloids from Traditional Chinese Medicine against hepatocellular carcinoma. Biomed Pharmacother 2019; 120:109543. [PMID: 31655311 DOI: 10.1016/j.biopha.2019.109543] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has become one of the major diseases that are threatening human health in the 21st century. Currently there are many approaches to treat liver cancer, but each has its own advantages and disadvantages. Among various methods of treating liver cancer, natural medicine treatment has achieved promising results because of their superiorities of high efficiency and availability, as well as low side effects. Alkaloids, as a class of natural ingredients derived from traditional Chinese medicines, have previously been shown to exert prominent anti-hepatocarcinogenic effects, through various mechanisms including inhibition of proliferation, metastasis and angiogenesis, changing cell morphology, promoting apoptosis and autophagy, triggering cell cycle arrest, regulating various cancer-related genes as well as pathways and so on. As a consequence, alkaloids suppress the development and progression of liver cancer. In this study, the mechanisms of representative alkaloids against hepatocarcinoma in each class are described systematically according to the structure classification, which mainly divides alkaloids into piperidine alkaloids, isoquinoline alkaloids, indole alkaloids, terpenoids alkaloids, steroidal alkaloids and other alkaloids. Besides using them alone, synergistic effects created together with other chemotherapy drugs and some special preparation methods also have been demonstrated. In this review, we have summarized the potential roles of several common alkaloids in the prevention and treatment of HCC, by revising the preclinical studies, highlighting the potential applications of alkaloids when they function as a therapeutic choice for HCC treatment, and integrating them into clinical practices.
Collapse
Affiliation(s)
- Caiyan Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Shenshen Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Kailong Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Xiaomei Bao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yiman Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Shiyue Zhou
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Hongwei Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yuling Qiu
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Tao Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Haiyang Yu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
9
|
Czekaj P, Król M, Limanówka Ł, Michalik M, Lorek K, Gramignoli R. Assessment of animal experimental models of toxic liver injury in the context of their potential application as preclinical models for cell therapy. Eur J Pharmacol 2019; 861:172597. [PMID: 31408648 DOI: 10.1016/j.ejphar.2019.172597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/04/2019] [Accepted: 08/08/2019] [Indexed: 02/06/2023]
Abstract
Preclinical animal models allow to study development and progression of several diseases, including liver disorders. These studies, for ethical reasons and medical limits, are impossible to carry out in human patients. At the same time, such experimental models constitute an important source of knowledge on pathomechanisms for drug- and virus-induced hepatotoxicity, both acute and chronic. Carbon tetrachloride, D-Galactosamine, and retrorsine are xenobiotics that can be used in immunocompetent animal models of hepatotoxicity, where chemical-intoxicated livers present histological features representative of human viruses-related infection. A prolonged derangement into liver architecture and functions commonly lead to cirrhosis, eventually resulting in hepatocellular carcinoma. In human, orthotopic liver transplantation commonly resolve most the problems related to cirrhosis. However, the shortage of donors does not allow all the patients in the waiting list to receive an organ on time. A promising alternative treatment for acute and chronic liver disease has been advised in liver cell transplantation, but the limited availability of hepatocytes for clinical approaches, in addition to the immunosuppressant regiment required to sustain cellular long-term engraftment have been encouraging the use of alternative cell sources. A recent effective source of stem cells have been recently identified in the human amnion membrane. Human amnion epithelial cells (hAEC) have been preclinically tested and proven sufficient to rescue immunocompetent rodents lethally intoxicated with drugs. The adoption of therapeutic procedures based on hAEC transplant in immunocompetent recipients affected by liver diseases, as well as patients with immune-related disorders, may constitute a successful new alternative therapy in regenerative medicine.
Collapse
Affiliation(s)
- Piotr Czekaj
- Department of Cytophysiology, Chair of Histology and Embryology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland, Medyków 18 str., 40-752, Katowice, Poland.
| | - Mateusz Król
- Students Scientific Society, Department of Cytophysiology, Chair of Histology and Embryology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland, Medyków 18 str., 40-752, Katowice, Poland.
| | - Łukasz Limanówka
- Students Scientific Society, Department of Cytophysiology, Chair of Histology and Embryology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland, Medyków 18 str., 40-752, Katowice, Poland
| | - Marcin Michalik
- Students Scientific Society, Department of Cytophysiology, Chair of Histology and Embryology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland, Medyków 18 str., 40-752, Katowice, Poland
| | - Katarzyna Lorek
- Students Scientific Society, Department of Cytophysiology, Chair of Histology and Embryology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland, Medyków 18 str., 40-752, Katowice, Poland
| | - Roberto Gramignoli
- Department of Laboratory Medicine (LABMED), H5, Division of Pathology, Karolinska Institutet, Alfred Nobels Allé 8, 14152, Huddinge, Sweden.
| |
Collapse
|
10
|
Luo J, Yang X, Qiu S, Li X, Xiang E, Fang Y, Wang Y, Zhang L, Wang H, Zheng J, Guo Y. Sex difference in monocrotaline-induced developmental toxicity and fetal hepatotoxicity in rats. Toxicology 2019; 418:32-40. [PMID: 30825512 DOI: 10.1016/j.tox.2019.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/20/2019] [Accepted: 02/25/2019] [Indexed: 12/15/2022]
Abstract
Pyrrolizidine alkaloids (PAs) are a class of hepatic toxins widely existing in plants. Cytochromes P450 (CYP) mediates PA bioactivation and toxicities in mammals. It has been reported that PAs can induce developmental toxicity, but systematic research is lacking. In this study, we investigated developmental toxicity of monocrotaline (MCT) in rats. Pregnant rats were administered with MCT (20 mg/kg) intragastrically from gestation day 9 to 20, followed by determination of changes in fetal growth, hepatic morphology, serum biochemical indices, and indicators of hepatocytes apoptosis. MCT was found to induce developmental toxicity and fetal hepatotoxicity, particularly in female fetuses. Metabolic activation was also studied by examination of bioactivation efficiency of MCT in fetal liver microsomes, serum MCT, pyrrole-protein adduction derived from MCT, and hepatic CYP3 A expression of fetuses in vivo. Male fetuses showed greater basal MCT bioactivation than that of female fetuses, but continuous exposure to MCT caused a selective CYP3 A induction in female fetuses, which may contribute to the sex difference in MCT-induced developmental toxicity.
Collapse
Affiliation(s)
- Jinyuan Luo
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan 430071, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, People's Republic of China.
| | - Xiaojing Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, People's Republic of China.
| | - Shuaikai Qiu
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan 430071, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, People's Republic of China.
| | - Xia Li
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan 430071, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, People's Republic of China.
| | - E Xiang
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan 430071, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, People's Republic of China.
| | - Yan Fang
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan 430071, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, People's Republic of China.
| | - Yanqing Wang
- Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China.
| | - Li Zhang
- Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan 430071, People's Republic of China.
| | - Hui Wang
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan 430071, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, People's Republic of China.
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, People's Republic of China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, 550004, People's Republic of China; Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou, 550004, People's Republic of China.
| | - Yu Guo
- Department of Pharmacology, School of Basic Medical Science, Wuhan University, Wuhan 430071, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, People's Republic of China.
| |
Collapse
|
11
|
Lu Y, Ma J, Song Z, Ye Y, Fu PP, Lin G. The role of formation of pyrrole-ATP synthase subunit beta adduct in pyrrolizidine alkaloid-induced hepatotoxicity. Arch Toxicol 2018; 92:3403-3414. [PMID: 30244272 DOI: 10.1007/s00204-018-2309-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 09/13/2018] [Indexed: 01/28/2023]
Abstract
Pyrrolizidine alkaloids (PAs) are one of the most significant groups of hepatotoxic phytotoxins. It is well-studied that metabolic activation of PAs generates reactive pyrrolic metabolites that rapidly bind to cellular proteins to form pyrrole-protein adducts leading to hepatotoxicity. Pyrrole-protein adducts all contain an identical core pyrrole moiety regardless of structures of the different PAs; however, the proteins forming pyrrole-protein adducts are largely unknown. The present study revealed that ATP synthase subunit beta (ATP5B), a critical subunit of mitochondrial ATP synthase, was a protein bound to the reactive pyrrolic metabolites forming pyrrole-ATP5B adduct. Using both anti-ATP5B antibody and our prepared anti-pyrrole-protein antibody, pyrrole-ATP5B adduct was identified in the liver of rats, hepatic sinusoidal endothelial cells, and HepaRG hepatocytes treated with retrorsine, a well-studied representative hepatotoxic PA. HepaRG cells were then used to further explore the consequence of pyrrole-ATP5B adduct formation. After treatment with retrorsine, significant amounts of pyrrole-ATP5B adduct were formed in HepaRG cells, resulting in remarkably reduced ATP synthase activity and intracellular ATP level. Subsequently, mitochondrial membrane potential and respiration were reduced, leading to mitochondria-mediated apoptotic cell death. Moreover, pre-treatment of HepaRG cells with a mitochondrial membrane permeability transition pore inhibitor significantly reduced retrorsine-induced toxicity, further revealing that mitochondrial dysfunction caused by pyrrole-ATP5B adduct formation significantly contributed to PA intoxication. Our findings for the first time identified ATP5B as a protein covalently bound to the reactive pyrrolic metabolites of PAs to form pyrrole-ATP5B adduct, which impairs mitochondrial function and significantly contributes to PA-induced hepatotoxicity.
Collapse
Affiliation(s)
- Yao Lu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.,Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines between The Chinese University of Hong Kong, Hong Kong SAR and Shanghai Institute of Materia Medica, China Academy of Sciences, Shanghai, China
| | - Jiang Ma
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.,Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines between The Chinese University of Hong Kong, Hong Kong SAR and Shanghai Institute of Materia Medica, China Academy of Sciences, Shanghai, China
| | - Zijing Song
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.,Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines between The Chinese University of Hong Kong, Hong Kong SAR and Shanghai Institute of Materia Medica, China Academy of Sciences, Shanghai, China
| | - Yang Ye
- Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines between The Chinese University of Hong Kong, Hong Kong SAR and Shanghai Institute of Materia Medica, China Academy of Sciences, Shanghai, China.,Shanghai Institute of Materia Medica, China Academy of Sciences, Shanghai, China
| | - Peter P Fu
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, USA
| | - Ge Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China. .,Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines between The Chinese University of Hong Kong, Hong Kong SAR and Shanghai Institute of Materia Medica, China Academy of Sciences, Shanghai, China.
| |
Collapse
|
12
|
Ma C, Liu Y, Zhu L, Ji H, Song X, Guo H, Yi T. Determination and regulation of hepatotoxic pyrrolizidine alkaloids in food: A critical review of recent research. Food Chem Toxicol 2018; 119:50-60. [PMID: 29772268 DOI: 10.1016/j.fct.2018.05.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/11/2018] [Accepted: 05/13/2018] [Indexed: 11/26/2022]
|
13
|
Li YH, Tai WCS, Khan I, Lu C, Lu Y, Wong WY, Chan WY, Wendy Hsiao WL, Lin G. Toxicoproteomic assessment of liver responses to acute pyrrolizidine alkaloid intoxication in rats. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2018; 36:65-83. [PMID: 29667502 DOI: 10.1080/10590501.2018.1450186] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A toxicoproteomic study was performed on liver of rats treated with retrorsine (RTS), a representative hepatotoxic pyrrolizidine alkaloid at a toxic dose (140 mg/kg) known to cause severe acute hepatotoxicity. By comparing current data with our previous findings in mild liver lesions of rats treated with a lower dose of RTS, seven proteins and three toxicity pathways of vascular endothelial cell death, which was further verified by observed sinusoidal endothelial cell losses, were found uniquely associated with retrorsine-induced hepatotoxicity. This toxicoproteomic study of acute pyrrolizidine alkaloid intoxication lays a foundation for future investigation to delineate molecular mechanisms of pyrrolizidine alkaloid-induced hepatotoxicity.
Collapse
Affiliation(s)
- Yan-Hong Li
- a School of Biomedical Sciences, Faculty of Medicine , The Chinese University of Hong Kong , Hong Kong SAR, China
- b School of Medicine , South China University of Technology , Guangzhou , China
| | - William Chi-Shing Tai
- c Department of Applied Biology and Chemical Technology , The Hong Kong Polytechnic University , Hong Kong SAR, China
| | - Imran Khan
- d State Key Laboratory of Quality Research in Chinese Medicines , Macau University of Science and Technology , Macau SAR, China
| | - Cheng Lu
- e Institute of Basic Research in Clinical Medicine , China Academic of Chinese Medical Sciences , Beijing , China
| | - Yao Lu
- a School of Biomedical Sciences, Faculty of Medicine , The Chinese University of Hong Kong , Hong Kong SAR, China
| | - Wing-Yan Wong
- c Department of Applied Biology and Chemical Technology , The Hong Kong Polytechnic University , Hong Kong SAR, China
| | - Wood-Yee Chan
- a School of Biomedical Sciences, Faculty of Medicine , The Chinese University of Hong Kong , Hong Kong SAR, China
| | - Wen-Luan Wendy Hsiao
- d State Key Laboratory of Quality Research in Chinese Medicines , Macau University of Science and Technology , Macau SAR, China
| | - Ge Lin
- a School of Biomedical Sciences, Faculty of Medicine , The Chinese University of Hong Kong , Hong Kong SAR, China
| |
Collapse
|
14
|
Tolleson WH. Mechanistic biomarkers of liver toxicity and carcinogenesis. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2018; 36:63-64. [PMID: 29667504 DOI: 10.1080/10590501.2018.1450205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- William H Tolleson
- a National Center for Toxicological Research, US Food and Drug Administration , Jefferson , AR , USA .
| |
Collapse
|
15
|
Zhuo Y, Wu JL, Yan X, Guo MQ, Liu N, Zhou H, Liu L, Li N. Strategy for Hepatotoxicity Prediction Induced by Drug Reactive Metabolites Using Human Liver Microsome and Online 2D-Nano-LC-MS Analysis. Anal Chem 2017; 89:13167-13175. [DOI: 10.1021/acs.analchem.7b02684] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yue Zhuo
- State
Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Jian-Lin Wu
- State
Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Xiaojing Yan
- State
Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
- Changzhou Affiliated Hospital of Nanjing University of Chinese Medicine, 25 Heping North Road, Changzhou 213003, China
| | - Ming-Quan Guo
- Key
Laboratory of Plant Germplasm Enhancement and Specialty Agriculture,
Wuhan Botanical Garden, Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Ning Liu
- Central
Laboratory, Second Hospital of Jilin University, Changchun, China
| | - Hua Zhou
- State
Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Liang Liu
- State
Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Na Li
- State
Key Laboratory for Quality Research of Chinese Medicines, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| |
Collapse
|
16
|
Li N, Zhang F, Lian W, Wang H, Zheng J, Lin G. Immunoassay approach for diagnosis of exposure to pyrrolizidine alkaloids. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2017; 35:127-139. [PMID: 28506107 DOI: 10.1080/10590501.2017.1328828] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Numerous pyrrolizidine alkaloid (PA) poisoning cases have been documented worldwide. Protein covalent binding with reactive metabolites generated from metabolic activation of PAs to form pyrrole-protein adducts is suggested to be a primary mechanism of PA-induced toxicities. The present study aimed to develop antibodies for diagnosis of PA exposure. Polyclonal antibodies were raised in rabbits and proven to specifically recognize pyrrole-protein adducts regardless of amino acid residues modified by the reactive metabolites of PAs. The developed antibodies were successfully applied to detect pyrrole-protein adducts in blood samples obtained from PA-treated rats and exhibited a potential for the clinical diagnosis of PA exposure.
Collapse
Affiliation(s)
- Na Li
- a School of Biomedical Sciences, Faculty of Medicine , The Chinese University of Hong Kong , Hong Kong SAR
| | - Fan Zhang
- b Key Laboratory of Pharmaceutics of Guizhou Province , Guizhou Medical University , Guiyang , Guizhou , China
| | - Wei Lian
- a School of Biomedical Sciences, Faculty of Medicine , The Chinese University of Hong Kong , Hong Kong SAR
- c Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines between The Chinese University of Hong Kong and Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai , China
| | - Huali Wang
- d Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , Liaoning , China
| | - Jiang Zheng
- b Key Laboratory of Pharmaceutics of Guizhou Province , Guizhou Medical University , Guiyang , Guizhou , China
- d Wuya College of Innovation , Shenyang Pharmaceutical University , Shenyang , Liaoning , China
- e Center for Developmental Therapeutics, Seattle Children's Research Institute, Division of Gastroenterology, Department of Pediatrics , University of Washington , Seattle , Washington , USA
| | - Ge Lin
- a School of Biomedical Sciences, Faculty of Medicine , The Chinese University of Hong Kong , Hong Kong SAR
- c Joint Research Laboratory for Promoting Globalization of Traditional Chinese Medicines between The Chinese University of Hong Kong and Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai , China
| |
Collapse
|
17
|
Suman S, Mishra S, Shukla Y. Toxicoproteomics in human health and disease: an update. Expert Rev Proteomics 2016; 13:1073-1089. [DOI: 10.1080/14789450.2016.1252676] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shankar Suman
- Proteomics and Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Lucknow, India
| | - Sanjay Mishra
- Proteomics and Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Lucknow, India
| | - Yogeshwer Shukla
- Proteomics and Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Lucknow, India
| |
Collapse
|
18
|
The long persistence of pyrrolizidine alkaloid-derived DNA adducts in vivo: kinetic study following single and multiple exposures in male ICR mice. Arch Toxicol 2016; 91:949-965. [PMID: 27125825 DOI: 10.1007/s00204-016-1713-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/14/2016] [Indexed: 10/21/2022]
Abstract
Pyrrolizidine alkaloid (PA)-containing plants are widespread in the world and the most common poisonous plants affecting livestock, wildlife, and humans. Our previous studies demonstrated that PA-derived DNA adducts can potentially be a common biological biomarker of PA-induced liver tumor formation. In order to validate the use of these PA-derived DNA adducts as a biomarker, it is necessary to understand the basic kinetics of the PA-derived DNA adducts formed in vivo. In this study, we studied the dose-dependent response and kinetics of PA-derived DNA adduct formation and removal in male ICR mice orally administered with a single dose (40 mg/kg) or multiple doses (10 mg/kg/day) of retrorsine, a representative carcinogenic PA. In the single-dose exposure, the PA-derived DNA adducts exhibited dose-dependent linearity and persisted for up to 4 weeks. The removal of the adducts following a single-dose exposure to retrorsine was biphasic with half-lives of 9 h (t 1/2α) and 301 h (~12.5 days, t 1/2β). In the 8-week multiple exposure study, a marked accumulation of PA-derived DNA adducts without attaining a steady state was observed. The removal of adducts after the multiple exposure also demonstrated a biphasic pattern but with much extended half-lives of 176 h (~7.33 days, t 1/2α) and 1736 h (~72.3 days, t 1/2β). The lifetime of PA-derived DNA adducts was more than 8 weeks following the multiple-dose treatment. The significant persistence of PA-derived DNA adducts in vivo supports their role in serving as a biomarker of PA exposure.
Collapse
|