1
|
Gao C, Cai X, Huang J, Li Q, Kong H, Yao J, Wang Y, Li XL. 2D Chiral Ag(I) Complexes with A-π- A- and D-π- A-Type Dicarboxylic Acid Ligands: Presenting Significant Differences in Nonlinear Optical Responses. Inorg Chem 2025; 64:1541-1550. [PMID: 39792886 DOI: 10.1021/acs.inorgchem.4c04815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Three two-dimensional (2D) chiral Ag(I) complexes with formulas [Ag4(LR)4(5-nipa)2]n (1), [Ag4(LS)4(5-nipa)2]n (2), and {[Ag4(LS)4(5-hipa)2]·2H2O}n (3) were prepared through the reactions of Ag2O with enantiopure bis-monodentate N-donors (LR/LS) and different dicarboxylic acids bearing A (acceptor)-π-A- and D (donor)-π-A-type structural features, where LR/LS = (-)/(+)-2-(4'-pyridyl)-4,5-pinene-pyridine, 5-H2nipa = 5-nitroisophthalic acid, and 5-H2hipa = 5-hydroxyisophthalic acid. A study of their nonlinear optical responses reveals that chiral 1 and 2 enantiomeric pairs with the A-π-A-type dicarboxylic acid ligand simultaneously display second- and third-harmonic generation (SHG and THG) responses, while chiral 3 containing the D-π-A-type dicarboxylic acid ligand only exhibits a very strong THG response. The THG intensity of 3 is 451 × α-SiO2, being about 27 and 24 times larger than those of 1 and 2, respectively.
Collapse
Affiliation(s)
- Congli Gao
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Xiaoyu Cai
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Jinying Huang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Qianrong Li
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Huajie Kong
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Jimei Yao
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Yang Wang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Xi-Li Li
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| |
Collapse
|
2
|
Lu X, Huo Q, Li J, Li B, Yu X, Sun X, Cheng L, Zhou H, Tian Y, Li D. Elevating Nonlinear Optical Response Through D-Electron Modulation in Metal-Organic Frameworks. Chemistry 2025; 31:e202403564. [PMID: 39445652 DOI: 10.1002/chem.202403564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 10/25/2024]
Abstract
Electronic structure and excited state behavior is of pronounced influence on regulation of nonlinear optical (NLO) response. Herein, a serials of transition metal ions bearing different d-electron numbers were in situ coordinated within porphyrinic metal-organic frameworks (MOFs), creating NLO-responsive M-metal (metal=Fe, Co, Ni, Cu, and Zn) frameworks. It demonstrated that the NLO properties can be optimized with the increased occupancy of the d-shell, which enhances the degree of delocalization. Specifically, the full-filled (d10) electron configuration of Zn2+ stabilizes the electronic structure, combination with π-π* local excitation character of M-Zn, promoting charge transfer process and resulting in outstanding NLO properties. Moreover, parameters related to the nonlinear process (β, n2, Imχ(3), Reχ(3) and χ(3)) of M-Zn are calculated to be higher than those of other materials, consistent with theoretical calculations. This work paves the way for NLO modulation based on electronic analysis and provides a promising approach for constructing high-performance NLO materials.
Collapse
Affiliation(s)
- Xin Lu
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Qingwei Huo
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Jiaqi Li
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Bo Li
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Xinlei Yu
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Xianshun Sun
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Longjiu Cheng
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Hongping Zhou
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Yupeng Tian
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Dandan Li
- Institutes of Physical Science and Information Technology, Faculty of Materials Science and Engineering, School of Chemistry and Chemical Engineering, School of Life Sciences, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
3
|
Abazari R, Sanati S, Nadafan M, Cordes DB, Slawin AMZ, Safin DA, Liu M. Integration of Open Metal Sites in an Amino-Functionalized Sm(III)-Organic Framework toward Enhanced Third-Order Nonlinear Optical Property. Inorg Chem 2024; 63:18173-18181. [PMID: 39269734 DOI: 10.1021/acs.inorgchem.4c03046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
A variety of new inorganic and organic materials have emerged to advance laser technologies and optical engineering. A rational design approach can contribute significantly to fabricating nonlinear optically active metal-organic frameworks (MOFs) by considering the underlying structure-property linkage. Here, it has been embarked on a study of novel samarium(III) MOF, ([Sm2(ata)3(DMF)4]·DMF (ata2-: 2-aminoterephthalate), abbreviated as NH2-Sm-MUM-4) with enhanced nonlinear optical (NLO) properties. The crystal structure of this MOF represents a 6-connected framework with a pcu topology and distinctive characteristics, including open metal sites, free amine groups, and great stability, making it suitable for third-order NLO activity. The nonlinear index of refraction (n2) revealed the self-focusing impacts of NH2-Sm-MUM-4 at different incident intensities. The highest value of n2 and β related to 10 mw power of incident intensity are 5.15 cm2/W and 2.65 cm/W, respectively. As far as the authors know, this is the first study examining the potential systematic structural-property associations in Sm-MOFs considering improved third-order NLO properties.
Collapse
Affiliation(s)
- Reza Abazari
- Department of Inorganic Chemistry, Faculty of Science, University of Maragheh, P.O. Box 55181-83111, Maragheh 55181-83111, Iran
| | - Soheila Sanati
- Department of Inorganic Chemistry, Faculty of Science, University of Maragheh, P.O. Box 55181-83111, Maragheh 55181-83111, Iran
| | - Marzieh Nadafan
- Department of Physics, Shahid Rajaee Teacher Training University, P.O. Box 16788-15811, Tehran 16788-15811, Iran
| | - David B Cordes
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, U.K
| | - Alexandra M Z Slawin
- School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, U.K
| | - Damir A Safin
- Scientific and Educational and Innovation Center for Chemical and Pharmaceutical Technologies, Ural Federal University Named after the First President of Russia B.N. Yeltsin, Mira Street 19, Ekaterinburg 620002, Russian Federation
- Department of Technical Sciences, Western Caspian University, Baku 1001, Azerbaijan
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
4
|
Zhu H, Zhang D, Sun X, Qian S, Feng E, Sheng X. Intramolecular charge transfer enhanced optical limiting in novel hydrazone derivatives with a D 1-D-A i-π-A structure. Phys Chem Chem Phys 2024; 26:12150-12161. [PMID: 38587789 DOI: 10.1039/d4cp00475b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The present paper investigates one of the hydrazone derivatives (BTH with a D-π-A structure) based on density functional theory. With the computation results of ground state absorption (GSA), excited-state absorption (ESA) and multi-photon absorption (MPA), the optical limiting effect observed in the experiment for the BTH molecule can be well predicted and elucidated by the MPA-ESA mechanism. The analysis of the hole-electron and the electron density differences between two transition states reveal that the main transitions involved in the GSA and ESA of BTH could be recognized as local excitation. Based on these observations, four novel hydrazone derivatives based on the BTH unit with a D1-D-Ai-π-A structure were designed to promote intramolecular charge transfer (ICT). It shows that the ICT effect is well improved by adding the D1 and Ai units. Compared with the original BTH molecule, the main bands of GSA and ESA of D1-D-Ai-π-A molecules are both red-shifted. In addition, GSA, ESA and MPA probabilities are all improved because the obvious charge transfer character results in the transition dipole moment change from localized to delocalized. Accordingly, the optical limiting effect in these hydrazone derivatives is well enhanced. These observations provide guidance for designing novel optical limiting materials based on the hydrazone derivatives.
Collapse
Affiliation(s)
- Hongjuan Zhu
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, Department of Physics, Anhui Normal University, Anhui, Wuhu 241000, China.
| | - Danyang Zhang
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, Department of Physics, Anhui Normal University, Anhui, Wuhu 241000, China.
| | - Xianghao Sun
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, Department of Physics, Anhui Normal University, Anhui, Wuhu 241000, China.
| | - Shifeng Qian
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, Department of Physics, Anhui Normal University, Anhui, Wuhu 241000, China.
| | - Eryin Feng
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, Department of Physics, Anhui Normal University, Anhui, Wuhu 241000, China.
| | - Xiaowei Sheng
- Anhui Province Key Laboratory for Control and Applications of Optoelectronic Information Materials, Department of Physics, Anhui Normal University, Anhui, Wuhu 241000, China.
| |
Collapse
|
5
|
Yin X, Sun Y, Geng K, Cui Y, Huang J, Hou H. Ingenious Modulation of Third-Order Nonlinear Optical Response of Zr-MOFs through Defect Engineering Based on a Mixed-Linker Strategy. Inorg Chem 2024; 63:6723-6733. [PMID: 38569126 DOI: 10.1021/acs.inorgchem.3c04651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Defect engineering plays a pivotal role in regulating electronic structure and facilitating charge transfer, yielding captivating effects on third-order nonlinear optical (NLO) properties. In this work, we utilized a mixed-linker strategy to intentionally disrupt the initial periodic arrangement of UiO-66 and construct defects. Specifically, we incorporated tetrakis(4-carboxyphenyl)porphyrin (TCPP) with an exceptionally electron-rich delocalization system into the framework of UiO-66 using a one-pot solvothermal method, ingeniously occupying the partial distribution sites of the Zr6 clusters. Compared to UiO-66, the NLO absorption and refraction performance of TCPP/UiO-66 were significantly improved. Additionally, due to the presence of nitrogen-rich sites that can accommodate metal ions in the porphyrin ring of TCPP, Co(II), Ni(II), Cu(II), and Zn(II) are introduced into TCPP/UiO-66, extending the d-π conjugation effect to further regulate the defects. The NLO absorption behavior transforms saturation absorption (SA) to reverse saturation absorption (RSA), while the refraction behavior shifts from self-defocusing to self-focusing. This work shows that defects can effectively regulate the electronic structure, while TCPP plays a crucial role in significantly enhancing electron delocalization.
Collapse
Affiliation(s)
- Xiaoyu Yin
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yupei Sun
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kangshuai Geng
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yang Cui
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jing Huang
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Hongwei Hou
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
6
|
Yu J, Sun Y, Geng K, Huang J, Cui Y, Hou H. Third-Order Nonlinear Optical Modulation Behavior of Photoresponsive Bimetallic MOFs. Inorg Chem 2024; 63:6526-6536. [PMID: 38519424 DOI: 10.1021/acs.inorgchem.4c00503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Bimetallic metal-organic frameworks (MOFs) capable of sensing external stimuli will provide more possibilities for further regulating third-order nonlinear optical (NLO) properties. In this work, we synthesized bimetallic MOFs (ZnCu-MOF and ZnCd-MOF) through central metal exchange using a photoresponsive Zn-MOF as a precursor. Compared with Zn-MOF, both ZnCu-MOF and ZnCd-MOF exhibit significantly enhanced third-order NLO absorption properties. This is mainly attributed to the introduction of metal ions with different electron configurations that can adjust the bandgap of MOFs and enhance electron delocalization, thus promoting electron transfer. Interestingly, the bimetallic MOFs show a transition from reverse saturation absorption (RSA) to saturation absorption (SA) after exposure to ultraviolet irradiation, as they retain the properties of directional photogenerated electron transfer. Photoresponsive bimetallic MOFs not only have the effect of bimetallic modulation of electronic structures but also have the characteristics of photoinduced electron transfer, exhibiting diversified optical properties. These findings provide a novel method for the development of multifunctional NLO materials.
Collapse
Affiliation(s)
- Jiongjiong Yu
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yupei Sun
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kangshuai Geng
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jing Huang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yang Cui
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Hongwei Hou
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
7
|
Pu DF, Chen QY, Zheng X, Li DJ. Fabrication of Two-Dimensional Homo-Bimetallic Porphyrin Framework Thin Films for Optimizing Nonlinear Optical Limiting. Inorg Chem 2024; 63:909-914. [PMID: 38123359 DOI: 10.1021/acs.inorgchem.3c04030] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Developing efficient metal-organic framework (MOF) optical devices with tunable third-order nonlinear optical (NLO) properties is an important challenge for scientific research and practical application. Herein, 2D monometallic and hetero/homo-bimetallic porphyrin MOF thin films (ZnTCPP(M) M = H2, Fe, Zn) were fabricated using the liquid-phase epitaxial (LPE) layer-by-layer (LBL) method to investigate the metal substitution dependent third-order NLO behavior. The prepared homo-bimetallic ZnTCPP(Zn) thin film exhibited enhanced third-order NLO performance with a higher third-order nonlinear susceptibility of ∼4.21 × 10-7 esu compared to monometallic and hetero-bimetallic counterparts. Additionally, theoretical calculations were performed to complement the experimental findings and revealed that the enhanced NLO effect of the ZnTCPP(Zn) thin film is mainly attributed to the enhanced local excitation. These findings not only provide a comprehensive understanding of the relationship between metal types and the NLO behavior of porphyrin MOF thin films but also offer valuable insights into the design and optimization of NLO devices.
Collapse
Affiliation(s)
- De-Fu Pu
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, PR China
| | - Qing-Yun Chen
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, PR China
| | - Xin Zheng
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, PR China
| | - De-Jing Li
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian 350108, PR China
| |
Collapse
|
8
|
Sun Y, Xu W, Lang F, Wang H, Pan F, Hou H. Transformation of SBUs and Synergy of MOF Host-Guest in Single Crystalline State: Ingenious Strategies for Modulating Third-Order NLO Signals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305879. [PMID: 37715100 DOI: 10.1002/smll.202305879] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/30/2023] [Indexed: 09/17/2023]
Abstract
Central metal exchange can innovatively open the cavity of metal-organic frameworks (MOFs) by alternating the framework topology. Here, the single-crystal-to-single-crystal (SC-SC) transformation is reported from a Co-based MOF {[Co1.25 (HL)0.5 (Pz-NH2 )0.25 (µ3 -O)0.25 (µ2 -OH)0.25 (H2 O)]·0.125 Co·0.125 L·10.25H2 O}n (Co-MOF, L = 5,5'-(1H-2,3,5-triazole-1,4-diyl)diisophthalic acid) into two novel MOF materials, {[Cu1.75 L0.75 (Pz-NH2 )0.125 (µ3 -O)0.125 (µ2 -OH)0.25 (H2 O)0.375 ]•3CH3 CN}n (Cu-MOF) and {[Zn1.75 L0.625 (Pz-NH2 )0.25 (µ3 -O)0.25 (µ2 -O)0.25 (H2 O)1.25 ]•4CH3 CN}n (Zn-MOF), through exchanging the Co2+ in the MOF into Cu2+ or Zn2+ , respectively. The free Co2+ and L4- in the Co-MOF channels fuse with the skeleton during the Co→Cu and Co→Zn exchange processes, leading to the expansion of the channel space and the transformation of the secondary building units (SBUs) to form an adjustable skeleton. The nonlinear optical response results show that the MOFs generated by the exchange of the central metal exhibit different saturable absorption and the self-focusing effect. In addition, loading polypyrrole (PPy) into the MOFs can not only improve the stability of the MOFs but also further optimize the nonlinear optical behavior. This work suggests that SC-SC central metal exchange and the introduction of polymer molecules can tune the nonlinear optical response, which provides a new perspective for the future study of nonlinear optical materials.
Collapse
Affiliation(s)
- Yupei Sun
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Wenjuan Xu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Feifan Lang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Huarui Wang
- The College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan, 471022, China
| | - Fangfang Pan
- College of Chemistry, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Hongwei Hou
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| |
Collapse
|
9
|
Xiang G, Li N, Chen GH, Li QH, Chen SM, He YP, Zhang J. Enhancing Third-Order Nonlinear Optical Property by Regulating Interaction between Zr 4(embonate) 6 Cage and N, N-Chelated Transition-Metal Cation. Molecules 2023; 28:molecules28052301. [PMID: 36903547 PMCID: PMC10005618 DOI: 10.3390/molecules28052301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Herein, the combination of anionic Zr4L6 (L = embonate) cages and N, N-chelated transition-metal cations leads to a series of new cage-based architectures, including ion pair structures (PTC-355 and PTC-356), dimer (PTC-357), and 3D frameworks (PTC-358 and PTC-359). Structural analyses show that PTC-358 exhibits a 2-fold interpenetrating framework with a 3,4-connected topology, and PTC-359 shows a 2-fold interpenetrating framework with a 4-connected dia network. Both PTC-358 and PTC-359 can be stable in air and other common solvents at room temperature. The investigations of third-order nonlinear optical (NLO) properties indicate that these materials show different degrees of optical limiting effects. It is surprising that increasing coordination interactions between anion and cation moieties can effectively enhance their third-order NLO properties, which can be attributed to the formation of coordination bonds that facilitate charge transfer. In addition, the phase purity, UV-vis spectra, and photocurrent properties of these materials were also studied. This work provides new ideas for the construction of third-order NLO materials.
Collapse
Affiliation(s)
- Gang Xiang
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Na Li
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Guang-Hui Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Qiao-Hong Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Shu-Mei Chen
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Correspondence: (S.-M.C.); (Y.-P.H.)
| | - Yan-Ping He
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Correspondence: (S.-M.C.); (Y.-P.H.)
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
10
|
Pan Y, Sanati S, Nadafan M, Abazari R, Gao J, Kirillov AM. Postsynthetic Modification of NU-1000 for Designing a Polyoxometalate-Containing Nanocomposite with Enhanced Third-Order Nonlinear Optical Performance. Inorg Chem 2022; 61:18873-18882. [PMID: 36375112 PMCID: PMC9775467 DOI: 10.1021/acs.inorgchem.2c02709] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
For the advancement of laser technologies and optical engineering, various types of new inorganic and organic materials are emerging. Metal-organic frameworks (MOFs) reveal a promising use in nonlinear optics, given the presence of organic linkers, metal cluster nodes, and possible delocalization of π-electron systems. These properties can be further enhanced by the inclusion of solely inorganic materials such as polyoxometalates as prospective low-cost electron-acceptor species. In this study, a novel hybrid nanocomposite, namely, SiW12@NU-1000 composed of SiW12 (H4SiW12O40) and Zr-based MOF (NU-1000), was assembled, completely characterized, and thoroughly investigated in terms of its nonlinear optical (NLO) performance. The third-order NLO behavior of the developed system was assessed by Z-scan measurements using a 532 nm laser. The effect of two-photon absorption and self-focusing was significant in both NU-1000 and SiW12@NU-1000. Experimental studies suggested a much superior NLO performance of SiW12@NU-1000 if compared to that of NU-1000, which can be assigned to the charge-energy transfer between SiW12 and NU-1000. Negligible light scattering, good stability, and facile postsynthetic fabrication method can promote the applicability of the SiW12@NU-1000 nanocomposite for various optoelectronic purposes. This research may thus open new horizons to improve and enhance the NLO performance of MOF-based materials through π-electron delocalization and compositing metal-organic networks with inorganic molecules as electron acceptors, paving the way for the generation of novel types of hybrid materials for prospective NLO applications.
Collapse
Affiliation(s)
- Yangdan Pan
- The
Key Laboratory of Advanced Textile Materials and Manufacturing Technology
of Ministry of Education, National Engineering Lab for Textile Fiber
Materials and Processing Technology, School of Materials Science and
Engineering, Zhejiang Sci-Tech University, Hangzhou310018, China
| | - Soheila Sanati
- Department
of Chemistry, Faculty of Science, University
of Maragheh, 55181-83111Maragheh, Iran
| | - Marzieh Nadafan
- Department
of Physics, Shahid Rajaee Teacher Training
University, 16788-15811Tehran, Iran
| | - Reza Abazari
- Department
of Chemistry, Faculty of Science, University
of Maragheh, 55181-83111Maragheh, Iran,
| | - Junkuo Gao
- The
Key Laboratory of Advanced Textile Materials and Manufacturing Technology
of Ministry of Education, National Engineering Lab for Textile Fiber
Materials and Processing Technology, School of Materials Science and
Engineering, Zhejiang Sci-Tech University, Hangzhou310018, China,
| | - Alexander M. Kirillov
- Centro
de Química Estrutural, Institute of Molecular Sciences, Departamento
de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001Lisbon, Portugal,
| |
Collapse
|
11
|
Lepcha G, Singha T, Majumdar S, Pradhan AK, Das KS, Datta PK, Dey B. Adipic acid directed self-healable supramolecular metallogels of Co(II) and Ni(II): intriguing scaffolds for comparative optical-phenomenon in terms of third-order optical non-linearity. Dalton Trans 2022; 51:13435-13443. [PMID: 35993453 DOI: 10.1039/d2dt01983c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Two brilliant outcomes of supramolecular self-assembly directed, low molecular weight organic gelator based self-healable Co(II) and Ni(II) metallogels were achieved. Adipic acid as the low molecular weight organic gelator and dimethylformamide (DMF) solvent are employed for the metallogelation process. Rheological analyses of both gel-scaffolds reveal mechanical toughness as well as visco-elasticity. Thixotropic behaviours of both the gels were scrutinized. Morphological variations due to the presence of two different metal ions with diverse metal-ligand coordinating interactions were established. The mechanistic pathways for forming stable metallogels of Co(II)-adipic acid (Co-AA) and Ni(II)-adipic acid (Ni-AA) were judiciously developed through infrared absorption spectral analysis. The nonlinear optical properties, such as the third-order process, of these synthesized metallogels were scrutinized by means of the Z-scan method at a beam excitation wavelength of 750 nm by a femtosecond laser with different excitation intensities ranging from 64 to 140 GW cm-2. The third-order nonlinear optical susceptibility (χ(3)) of the order of 10-14 esu was obtained from the measured Z-scan data. Both the metallogels exhibit positive nonlinear refraction and reverse saturable (RSA) absorption at high-intensity excitation. Co(II) and Ni(II) metallogels show nonlinear refractive indices (n2I) of (3.619 ± 0.146) × 10-6 cm2 GW-1 and (3.472 ± 0.102) × 10-6 cm2 GW-1, respectively, and two photon absorption coefficients (β) of (1.503 ± 0.045) × 10-1 cm GW-1 and (1.381 ± 0.029) × 10-1 cm GW-1 at an excitation intensity of 140 GW cm-2. We also studied the optical limiting properties with a limiting threshold of 9.57 mJ cm-2. Therefore, both metallogels can be considered promising materials for photonic devices: for instance, for optical switching and optical limiting.
Collapse
Affiliation(s)
- Gerald Lepcha
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India.
| | - Tara Singha
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur-721302, India.
| | - Santanu Majumdar
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India.
| | - Amit Kumar Pradhan
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur-721302, India.
| | - Krishna Sundar Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, West Bengal 700032, India
| | - Prasanta Kumar Datta
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur-721302, India.
| | - Biswajit Dey
- Department of Chemistry, Visva-Bharati University, Santiniketan 731235, India.
| |
Collapse
|
12
|
Geng K, Yang X, Zhao Y, Cui Y, Ding J, Hou H. Efficient Strategy for Investigating the Third-Order Nonlinear Optical (NLO) Properties of Solid-State Coordination Polymers. Inorg Chem 2022; 61:12386-12395. [PMID: 35895943 DOI: 10.1021/acs.inorgchem.2c01785] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The investigation of third-order nonlinear optical (NLO) properties of coordination polymers (CPs) based on solid samples is very difficult but is crucial for practical applications. Herein, we show a method for preparing high optical quality CP films in a polymer matrix to study the third-order NLO performance of solid-state CPs. Two novel azobenzene-based CPs, [CdL(DMAc)(H2O)]n (1) and {[CuL(4,4'-azobpy)]·3H2O}n (2) (H2L = 5-((4-(phenyldiazenyl)phenoxy)methyl)isophthalic acid), were selected as study subjects. The corresponding microcrystals with a grain size of around 3 μm were doped into poly(vinyl alcohol) (PVA), forming CP films (1-MC/PVA and 2-MC/PVA). 1-MC/PVA and 2-MC/PVA exhibit NLO absorption switching behavior from saturable absorption (SA) to reverse saturable absorption (RSA) with increasing pulse energy. Moreover, their NLO properties can also be efficiently modulated by photostimulation energy due to the trans → cis isomerization of an azobenzene moiety. The density functional theory (DFT) results show that the narrower the band gap between the conduction band minimum and the valence band maximum, the denser the electron density distribution in the central mental and coordination atoms, which is beneficial to exhibit better third-order NLO performance. This work provides a feasible method for the wider practical application of solid materials with excellent third-order NLO performance.
Collapse
Affiliation(s)
- Kangshuai Geng
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Xiaoqian Yang
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yujie Zhao
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yang Cui
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jie Ding
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Hongwei Hou
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
13
|
Li XL, Wang A, Cui M, Gao C, Yu X, Su B, Zhou L, Liu CM, Xiao HP, Zhang YQ. Modulating Two Pairs of Chiral Dy III Enantiomers by Distinct β-Diketone Ligands to Show Giant Differences in Single-Ion Magnet Performance and Nonlinear Optical Response. Inorg Chem 2022; 61:9283-9294. [PMID: 35658475 DOI: 10.1021/acs.inorgchem.2c01031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Using Dy(dbm)3(H2O) and Dy(btfa)3(H2O)2 to react with enantiopure N-donors, (-)/(+)-4,5-pinenepyridyl-2-pyrazine (LR/LS), respectively, two pairs of chiral DyIII enantiomers, Dy(dbm)3LR/Dy(dbm)3LS (R-1-Dy/S-1-Dy) and Dy(btfa)3LR/Dy(btfa)3LS (R-2-Dy/S-2-Dy) were obtained, wherein one of the benzene rings of dbm- (dibenzoylmethanate) in R-1-Dy/S-1-Dy is displaced by the -CF3 group of btfa- (4,4,4-trifluoro-1-phenyl-1,3-butanedionate) in R-2-Dy/S-2-Dy. Interestingly, this substitution results not only in giant differences in their single-ion magnetic (SIM) performances but also in their completely different nonlinear optical (NLO) responses. R-1-Dy presents a large effective energy barrier (Ueff = 265.47 K) under zero applied field, being more than 4 × R-2-Dy (61.40 K). The discrepancy on their magnetic performances has been further elucidated by ab initio calculations. Meanwhile, R-1-Dy/S-1-Dy display the strongest third-harmonic generation responses (35/33 × α-SiO2) among the known lanthanide NLO-active coordination compounds (CCs). On the contrary, R-2-Dy/S-2-Dy exhibit moderate second-harmonic generation responses (0.65/0.70 × KDP). These results not only give the first example of the CCs with both SMM/SIM behavior and a THG response but also provide an efficient strategy for achieving the function regulation and switch in multifunctional CCs.
Collapse
Affiliation(s)
- Xi-Li Li
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, P.R. China
| | - Ailing Wang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, P.R. China
| | - Minghui Cui
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, P.R. China
| | - Congli Gao
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, P.R. China
| | - Xiaojing Yu
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, P.R. China
| | - Bing Su
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, P.R. China
| | - Liming Zhou
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, P.R. China
| | - Cai-Ming Liu
- Beijing National Laboratory for Molecular Sciences, Institution of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Hong-Ping Xiao
- School of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, P.R. China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P.R. China
| |
Collapse
|
14
|
Khan MU, Hussain S, Asghar MA, Munawar KS, Khera RA, Imran M, Ibrahim MM, Hessien MM, Mersal GAM. Exploration of Nonlinear Optical Properties for the First Theoretical Framework of Non-Fullerene DTS(FBTTh 2) 2-Based Derivatives. ACS OMEGA 2022; 7:18027-18040. [PMID: 35664583 PMCID: PMC9161415 DOI: 10.1021/acsomega.2c01474] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Organic compounds having significant nonlinear optical (NLO) applications are being employed in the optoelectronics field. In the current work, a series of non-fullerene acceptor (NFA) based compounds are designed by modifying the acceptors with different substituents using DTS(FBTTh 2 ) 2 R1 as a reference compound. To study the NLO responses to the tuning of various acceptors, DFT and TD-DFT based parameters were calculated at the M06 level along with the 6-31G(d,p) basis set. The designed compounds (MSTD2-MSTD7) showed smaller values of the energy gap in comparison to the reference compound. The energy gaps of the title compounds were linked to global reactivity insights; MSTD7 provided a lower band gap, with smaller and larger quantities for hardness and softness characteristics, respectively. Further, UV-vis analyses were performed for all of the designed compounds, displaying wavelengths red-shifted from that of DTS(FBTTh 2 ) 2 R1 . The intraelectron transfer (ICT) process and stability of the title compounds were explored via frontier molecular orbital (FMO) and natural bond orbital (NBO) studies, respectively. Out of all the designed compounds, the highest value of linear polarizability ⟨α⟩ of 3.485 × 10-22 esu, first hyperpolarizability (βtotal) of 13.44 × 10-27 esu and second-order hyperpolarizability ⟨γ⟩ of 3.66 × 10-31 esu were exhibited by MSTD7. In short, all of the designed compounds exhibited promising NLO properties because of their low charge transport resistance. These NLO properties may be useful for experimental researchers to uncover NLO materials for modern applications.
Collapse
Affiliation(s)
| | - Shabbir Hussain
- Department
of Chemistry, Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Muhammad Adnan Asghar
- Department
of Chemistry, Division of Science and Technology, University of Education Lahore 54770, Pakistan
| | | | - Rasheed Ahmad Khera
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Imran
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mohamed M. Ibrahim
- Department
of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mahmoud M. Hessien
- Department
of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Gaber A. M. Mersal
- Department
of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
15
|
Xu X, He Y, Meng W, Yao L, Liu L, Xu F, Zhao C. Chiral Wheel Anions of Copper(II)-Early Lanthanides(III) with High Optical-Limiting Properties. Dalton Trans 2022; 51:5414-5418. [DOI: 10.1039/d2dt00117a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new family of chiral wheel anions {CuII22LnIII4} (La, Ce, Pr, Nd and Sm) was obtained from aqueous solution by the use of tartrate anions. It provides a new perspective...
Collapse
|
16
|
Wang ST, Liu CH, Zheng C, Li DJ, Fang WH, Zhang J. Heterometallic Al 6Zn 12 nano-plate with π-conjugated ligand: synthesis and nonlinear absorption properties. Chem Commun (Camb) 2021; 57:12820-12823. [PMID: 34786582 DOI: 10.1039/d1cc05919j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Presented herein is the synthesis, structure, and optical properties of the aluminum(III)-zinc(II) heterometallic compound AlOC-57. This compound was found to form a large unit cell (approximately sixteen thousand atoms) and a three-shell nano-plate structure. Based on the Z-scan patterns, the third-order nonlinear optical response of the heterometallic nano-plate was mainly attributed to its nonlinear absorption (reverse saturable absorption).
Collapse
Affiliation(s)
- San-Tai Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Chen-Hui Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Chan Zheng
- School of Materials Science and Engineering, Fujian University of Technology, 3 Xueyuan Road, Fuzhou, 350108, China
| | - De-Jing Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Wei-Hui Fang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
| |
Collapse
|
17
|
Cui M, Yang L, Li F, Zhou L, Song Y, Fang SM, Liu CM, Li XL. Multifunctional Dy III Enantiomeric Pairs Showing Enhanced Photoluminescences and Third-Harmonic Generation Responses through the Coordination Role of Homochiral Tridentate N,N,N-Pincer Ligands. Inorg Chem 2021; 60:13366-13375. [PMID: 34428893 DOI: 10.1021/acs.inorgchem.1c01682] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
By utilizing Dy(hfac)3(H2O)2 to react with enantiomerically pure tridentate N,N,N-pincer ligands, namely (-)/(+)-2,6-bis(4',5'-pinene-2'-pyridyl)pyridine (LR and LS), respectively, homochiral DyIII enantiomeric pairs formulated as Dy(hfac)3LR/Dy(hfac)3LS (R-1/S-1) (hfac- = hexafluoroacetylacetonate) were achieved and structurally characterized. Meanwhile, their magnetic, photoluminescent (PL), and chiroptical properties were probed. The PL test results indicate that the precursor Dy(hfac)3(H2O)2 only shows very weak emission, while R-1 exhibits characteristic DyIII f-f transition emission bands at room temperature. Furthermore, the nonlinear optical responses of Dy(hfac)3(H2O)2, LR/LS, and R-1/S-1 were investigated in detail based on crystalline samples. The results reveal that LR and LS present the coexistence of second- and third-harmonic generation (SHG and THG) responses with more intense signals for SHG responses; and Dy(hfac)3(H2O)2 merely displays weak THG responses, while R-1 and S-1 also only exhibit THG responses. However, the THG intensities of R-1 and S-1 are more than six times larger than that of Dy(hfac)3(H2O)2 under the identical measurement conditions. These results demonstrate that introducing homochiral N,N,N-pincer ligands to replace two H2O molecules of Dy(hfac)3(H2O)2 results in significant improvements of both PL performances and THG responses of resultant R-1/S-1 enantiomers. R-1 and S-1 integrate PL, THG, and chiral optical activity in one molecule, suggesting their multifunctional merits. In particular, a convenient method is introduced to simultaneously test THG and SHG responses of molecular materials based on crystalline samples in this work.
Collapse
Affiliation(s)
- Minghui Cui
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China
| | - Linpo Yang
- Department of Applied Physics, Harbin Institute of Technology, Harbin 150001, PR China
| | - Fengcai Li
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China
| | - Liming Zhou
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China
| | - Yinglin Song
- Department of Applied Physics, Harbin Institute of Technology, Harbin 150001, PR China
| | - Shao-Ming Fang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China
| | - Cai-Ming Liu
- Bejing National Laboratory for Molecular Sciences, Institution of Chemistry, Chinese Academy of Sciences, Bejing 100190, PR China
| | - Xi-Li Li
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450002, PR China
| |
Collapse
|
18
|
Zhou J, Xing C, Zhai Y, Xu W, Zhao Y, Geng K, Hou H. Influence of a Substituted Methyl on the Photoresponsive Third-Order Nonlinear-Optical Properties Based on Azobenzene Metal Complexes. Inorg Chem 2021; 60:7240-7249. [PMID: 33899484 DOI: 10.1021/acs.inorgchem.1c00331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For studying the effect of a substituted group on the photoresponsive third-order nonlinear-optical (NLO) properties, photosensitive azobenzene derivative H2L1 was first selected to construct metal complexes {[Zn2(L1)2(H2O)3]·2DMA)}n (1) and {[Cd(L1)(4,4'-bpy)H2O]·H2O}n (2). Then H2L2 with a substituted methyl on the azobenzene ring was used to construct complexes {[Zn(L2)(4,4'-bpy)(H2O)]}n (3) and {[Cd(L2)(4,4'-bpy)(H2O)]}n (4). When the azobenzene moiety of the complexes is trans, the NLO behaviors of the complexes are the same. However, after the azobenzene moiety is excited by ultraviolet (UV) light to change from trans to cis, the substituted methyl increases the repulsion between two azobenzene rings in 3 and 4, thereby affecting their NLO behaviors. Therefore, the nonlinearity of the two types of complexes is different after UV irradiation. Density functional theory calculations support this result. The substituted methyl has a significant influence on the nonlinear absorption behaviors of 3 and 4. This work not only reports the examples of photoresponsive NLO materials based on metal complexes but also provides a new idea to deeply explore NLO properties.
Collapse
Affiliation(s)
- Jiachao Zhou
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Chang Xing
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yali Zhai
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Wenjuan Xu
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yujie Zhao
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kangshuai Geng
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Hongwei Hou
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
19
|
Geng K, Xie Q, Zhao Y, Yang L, Song Y, Hou H. Unlocking the Remarkable Influence of Intramolecular Group Rotation for Third-order Nonlinear Optical Properties. Chem Asian J 2021; 16:981-987. [PMID: 33751826 DOI: 10.1002/asia.202100160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/06/2021] [Indexed: 12/23/2022]
Abstract
This work exposes for the first time the remarkable influence of intramolecular group rotation on third-order nonlinear optical (NLO) performance. In order to prove the role of group rotation, we designed and synthesized two photo-response compounds tetramethyl 5,5'-(((diazene-1,2-diylbis(4,1-phenylene))bis(oxy))bis(methylene))diisophthalate (1) and 5,5'-(((diazene-1,2-diylbis(4,1-phenylene))bis(oxy))bis(methylene))diisophthalic acid (2) and investigated their NLO performance under different substituent (benzyloxy group) rotation states. 1 and 2 have dynamic benzyloxy group rotation in dilute solution and shows reverse saturated absorption (RSA). When the benzyloxy group rotation of 1 and 2 was restricted by PMMA, their NLO performance not only converted into saturated absorption (SA) and NLO refraction behaviours, but also hardly changed after isomerization. Interestingly, we also restricted the benzyloxy group rotation in solution to a certain extent through photo-induced trans→cis isomerization, and found that the NLO performances of cis isomers of 1 and 2 exhibit SA and positive refraction and are similar to those of 1-PMMA and 2-PMMA. This work provides a new exploratory method for studying the influencing factors of third-order NLO performance.
Collapse
Affiliation(s)
- Kangshuai Geng
- Green Catalysis Center and College of Chemistry, Zhengzhou University, 450001, Zhengzhou, P. R. China
| | - Qiong Xie
- Green Catalysis Center and College of Chemistry, Zhengzhou University, 450001, Zhengzhou, P. R. China
| | - Yujie Zhao
- Green Catalysis Center and College of Chemistry, Zhengzhou University, 450001, Zhengzhou, P. R. China
| | - Linpo Yang
- Department of Applied Physics, Harbin Institute of Technology, 150001, Harbin, P. R. China
| | - Yinglin Song
- Department of Applied Physics, Harbin Institute of Technology, 150001, Harbin, P. R. China
| | - Hongwei Hou
- Green Catalysis Center and College of Chemistry, Zhengzhou University, 450001, Zhengzhou, P. R. China
| |
Collapse
|
20
|
Liu Y, Li Q, Li D, Zhang X, Fang W, Zhang J. Designable Al
32
‐Oxo Clusters with Hydrotalcite‐like Structures: Snapshots of Boundary Hydrolysis and Optical Limiting. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ya‐Jie Liu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Qiao‐Hong Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - De‐Jing Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Xue‐Zhen Zhang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Wei‐Hui Fang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| |
Collapse
|
21
|
Liu Y, Li Q, Li D, Zhang X, Fang W, Zhang J. Designable Al
32
‐Oxo Clusters with Hydrotalcite‐like Structures: Snapshots of Boundary Hydrolysis and Optical Limiting. Angew Chem Int Ed Engl 2021; 60:4849-4854. [DOI: 10.1002/anie.202012919] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Ya‐Jie Liu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Qiao‐Hong Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - De‐Jing Li
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Xue‐Zhen Zhang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Wei‐Hui Fang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| |
Collapse
|
22
|
Wang G, Li Y, Huang X, Chen D. Polydiacetylene and its composites with long effective conjugation lengths and tunable third-order nonlinear optical absorption. Polym Chem 2021. [DOI: 10.1039/d1py00235j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Through the deliberate annealing of suspensions, bluish-green phase polydiacetylene and polydiacetylene composites that have remarkably extended ECLs were effectively fabricated that exhibit different nonlinear optical absorption types.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200438
- China
| | - Yanran Li
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200438
- China
| | - Xiayun Huang
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200438
- China
| | - Daoyong Chen
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200438
- China
| |
Collapse
|
23
|
Xu W, Sun Y, Meng X, Zhang W, Hou H. Tuning the photoelectric response of pyrene-based coordination polymers by optimizing charge transfer. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00004g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Three π–π stacked CPs were designed and synthesized for application of photoelectric response. The effect of charge transfer on the photoelectric properties is explored by adjusting the composition and π-stacking fashion of the CPs.
Collapse
Affiliation(s)
- Wenjuan Xu
- The College of Chemistry
- Green Catalysis Centre
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Yupei Sun
- The College of Chemistry
- Green Catalysis Centre
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Xiangru Meng
- The College of Chemistry
- Green Catalysis Centre
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Wenjing Zhang
- The College of Chemistry
- Green Catalysis Centre
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Hongwei Hou
- The College of Chemistry
- Green Catalysis Centre
- Zhengzhou University
- Zhengzhou
- P.R. China
| |
Collapse
|
24
|
Chen GH, Li DJ, He YP, Zhang SH, Liang FP, Zhang J. Self-Assembly of a Ti 4(embonate) 6 Cage toward Silver. Inorg Chem 2020; 59:14861-14865. [PMID: 33026801 DOI: 10.1021/acs.inorgchem.0c02308] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herein we report a variety of supramolecular architectures that are self-assembled by the highly charged anionic Ti4L6 (L = embonate) cages and noble-metal Ag+ ions in the presence of the different ligands, including six Ti4L6-Ag(PPh3) cages in whose structures the Ti4L6 cage catches various in situ formed [Ag(PPh3)]+ moieties by a coordination bond and one cocrystal superstructure of a Ti4L6 cage with an in situ generated [Ag2(Ph2P(CH2)5PPh2)3]2+ cage via supramolecular interactions. In addition, the third-order nonlinear-optical properties of these compounds are investigated in detail.
Collapse
Affiliation(s)
- Guang-Hui Chen
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - De-Jing Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Yan-Ping He
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Shu-Hua Zhang
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Fu-Pei Liang
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| |
Collapse
|
25
|
Edappadikkunnummal S, Prasannan D, Francis J, Desai NR, Keloth C. An insight into phenomenal optical non‐linearities arising from synergistic relationship between selected BODIPYs and noble metal nanoparticles. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Shiju Edappadikkunnummal
- Laser and Nonlinear Optics Laboratory, Department of Physics National Institute of Technology Calicut Kozhikode 673601 India
| | - Dijo Prasannan
- Bioinorganic Materials Research Laboratory, Department of Chemistry National Institute of Technology Calicut Kozhikode 673 601 India
| | - Jaismon Francis
- Laser and Nonlinear Optics Laboratory, Department of Physics National Institute of Technology Calicut Kozhikode 673601 India
| | | | - Chandrasekharan Keloth
- Laser and Nonlinear Optics Laboratory, Department of Physics National Institute of Technology Calicut Kozhikode 673601 India
| |
Collapse
|
26
|
Ramakrishna D. Mixed ligand cobalt and palladium complexes containing triphenylphosphine and a hydrazone: Synthesis and application in non-linear optics. JOURNAL OF CHEMICAL RESEARCH 2020. [DOI: 10.1177/1747519820943534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mixed ligand complexes of cobalt and palladium containing triphenylphosphine and a hydrazone derived from furfural and hydrazine hydrate have been designed, synthesized, evaluated, and characterized from their spectral properties, elemental analysis, and magnetic susceptibility measurements. The spectral techniques suggest that the complexes exhibit square planar geometry. The monomeric properties of the complexes are evaluated from their magnetic susceptibility values. The complexes were subjected to z-scan analysis for third-order non-linear optical measurements. Non-linear transmission measurements performed using laser pulses at 532 nm in nanosecond indicate that the complexes may show good potential as optical limiters.
Collapse
Affiliation(s)
- Dileep Ramakrishna
- Department of Chemistry, School of Engineering, Presidency University, Bangalore, India
| |
Collapse
|
27
|
Yang X, Shao Z, Zhao Y, Xie Q, Meng X, Song Y, Hou H. Control of third-order nonlinear optical properties by coordination metal change based on a series of metal organic chains. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Study on new quinacridone derivatives with enhanced third-order nonlinear optical properties. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Zhou W, Fang Y, Wu X, Han Y, Yang J, Shen L, Song Y. Anthracene derivatives as broadband nonlinear optical materials: nonlinear absorption and excited-state dynamics analysis. RSC Adv 2020; 10:19974-19981. [PMID: 35520396 PMCID: PMC9054195 DOI: 10.1039/d0ra02638g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/18/2020] [Indexed: 01/03/2023] Open
Abstract
Two anthracene derivatives, AN-1 and AN-2, with different π-bridge lengths were designed and synthesized to investigate their optical nonlinearities. The nonlinear absorption (NLA) properties of both derivatives were measured via the femtosecond Z-scan technique with the wavelength range from 532 nm to 800 nm. The reverse saturable absorption (RSA) of both compounds results from two-photon absorption induced excited-state absorption (TPA-ESA). At all wavelengths, the reverse saturable absorption of AN-2 is superior to that of AN-1 due to a better molecular planarity for AN-2. Compared with the results of AN-1, the two-photon absorption coefficient of AN-2 can be increased by nearly 8 times (from 0.182 × 10−2 cm GW−1 for AN-1 to 1.42 × 10−2 cm GW−1 for AN-2) at 600 nm by extending the π-bridge. The evolution of femtosecond transient absorption (TA) spectra reveals the relaxation process from the singlet local excited-state (LES) to charge transfer state (CTS) for both compounds. The results imply that anthracene derivatives may be potential candidates for applications in future laser photonics. Expanding the π-bridge to adjust the molecular planarity via increasing the amount of ethylene can modulate the nonlinear optical response.![]()
Collapse
Affiliation(s)
- Wenfa Zhou
- School of Optoelectronic Science and Engineering
- Soochow University
- Suzhou 215006
- China
| | - Yu Fang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application
- School of Mathematics and Physics
- Suzhou University of Science and Technology
- Suzhou 215009
- China
| | - Xingzhi Wu
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application
- School of Mathematics and Physics
- Suzhou University of Science and Technology
- Suzhou 215009
- China
| | - Yanbing Han
- Department of Physics
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Junyi Yang
- School of Physical Science and Technology
- Soochow University
- Suzhou 215006
- China
| | - Lei Shen
- School of Physical Science and Technology
- Soochow University
- Suzhou 215006
- China
| | - Yinglin Song
- Department of Physics
- Harbin Institute of Technology
- Harbin 150001
- China
- School of Physical Science and Technology
| |
Collapse
|