1
|
Hanske A, Nazaré M, Grether U. Chemical Probes for Investigating the Endocannabinoid System. Curr Top Behav Neurosci 2025. [PMID: 39747798 DOI: 10.1007/7854_2024_563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Cannabis sativa has been used therapeutically since early civilizations, with key cannabinoids Δ9-tetrahydrocannabinol (THC) 3.1 and cannabidiol characterized in the 1960s, leading to the discovery of cannabinoid receptors type 1 (CB1R) and type 2 (CB2R) and the endocannabinoid system (ECS) in the 1990s. The ECS, involving endogenous ligands like 2-arachidonoylglycerol (2-AG) 1.1, anandamide (N-arachidonoylethanolamine (AEA)) 1.2, and various proteins, regulates vital processes such as sleep, appetite, and memory, and holds significant therapeutic potential, especially for neurological disorders. Small molecule-derived pharmacological tools, or chemical probes, target key components of the ECS and are crucial for target validation, mechanistic studies, pathway elucidation, phenotypic screening, and drug discovery. These probes selectively interact with specific proteins or pathways, enabling researchers to modulate target activity and observe biological effects. When they carry an additional reporter group, they are referred to as labeled chemical probes. Developed through medicinal chemistry, structural biology, and high-throughput screening, effective chemical probes must be selective, potent, and depending on their purpose meet additional criteria such as cell permeability and metabolic stability.This chapter describes high-quality labeled and unlabeled chemical probes targeting ECS constituents that have been successfully applied for various research purposes. CB1R and CB2R, class A G protein-coupled receptors, are activated by 2-AG 1.1, AEA 1.2, and THC 3.1, with numerous ligands developed for these receptors. Imaging techniques like single-photon emission computed tomography, positron emission tomography, and fluorescently labeled CB1R and CB2R probes have enhanced CB receptor studies. CB2R activation generally results in immunosuppressive effects, limiting tissue injury. AEA 1.2 is mainly degraded by fatty acid amide hydrolase (FAAH) or N-acylethanolamine acid amidase (NAAA) into ethanolamine and arachidonic acid (AA) 1.3. FAAH inhibitors increase endogenous fatty acid amides, providing analgesic effects without adverse effects. NAAA inhibitors reduce inflammation and pain in animal models. Diacylglycerol lipase (DAGL) is essential for 2-AG 1.1 biosynthesis, while monoacylglycerol lipase (MAGL) degrades 2-AG 1.1 into AA 1.3, thus regulating cannabinoid signaling. Multiple inhibitors targeting FAAH and MAGL have been generated, though NAAA and DAGL probe development lags behind. Similarly, advancements in inhibitors targeting endocannabinoid (eCB) cellular uptake or trafficking proteins like fatty acid-binding proteins have been slower. The endocannabinoidome (eCBome) includes the ECS and related molecules and receptors, offering therapeutic opportunities from non-THC cannabinoids and eCBome mediators. Ongoing research aims to refine chemical tools for ECS and eCBome study, addressing unmet medical needs in central nervous system disorders and beyond.
Collapse
Affiliation(s)
- Annaleah Hanske
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP, Berlin, Germany
| | - Marc Nazaré
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP, Berlin, Germany
| | - Uwe Grether
- Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| |
Collapse
|
2
|
Gündel D, Maqbool M, Teodoro R, Ludwig FA, Heerklotz A, Toussaint M, Deuther-Conrad W, Bormans G, Brust P, Kopka K, Moldovan RP. Development and evaluation of deuterated [ 18F]JHU94620 isotopologues for the non-invasive assessment of the cannabinoid type 2 receptor in brain. EJNMMI Radiopharm Chem 2024; 9:91. [PMID: 39714717 DOI: 10.1186/s41181-024-00319-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 11/29/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND The cannabinoid type 2 receptors (CB2R) represent a target of increasing importance in neuroimaging due to its upregulation under various neuropathological conditions. Previous evaluation of [18F]JHU94620 for the non-invasive assessment of the CB2R availability by positron emission tomography (PET) revealed favourable binding properties and brain uptake, however rapid metabolism, and generation of brain-penetrating radiometabolites have been its main limitations. To reduce the bias of CB2R quantification by blood-brain barrier (BBB)-penetrating radiometabolites, we aimed to improve the metabolic stability by developing -d4 and -d8 deuterated isotopologues of [18F]JHU94620. RESULTS The deuterated [18F]JHU94620 isotopologues showed improved metabolic stability avoiding the accumulation of BBB-penetrating radiometabolites in the brain over time. CB2R-specific binding with KD values in the low nanomolar range was determined across species. Dynamic PET studies revealed a CB2R-specific and reversible uptake of [18F]JHU94620-d8 in the spleen and to a local hCB2R(D80N) protein overexpression in the striatal region in rats. CONCLUSION These results support further investigations of [18F]JHU94620-d8 in pathological models and tissues with a CB2R overexpression as a prerequisite for clinical translation.
Collapse
Affiliation(s)
- Daniel Gündel
- Department of Experimental Neurooncological Radiopharmacy, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, Permoserstrasse 15, 04318, Leipzig, Germany.
| | - Mudasir Maqbool
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, 20892-1026, USA
| | - Rodrigo Teodoro
- Department of Experimental Neurooncological Radiopharmacy, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, Permoserstrasse 15, 04318, Leipzig, Germany
- Life Molecular Imaging GmbH, 13353, Berlin, Germany
| | - Friedrich-Alexander Ludwig
- Department of Experimental Neurooncological Radiopharmacy, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Anne Heerklotz
- Department of Experimental Neurooncological Radiopharmacy, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Magali Toussaint
- Department of Experimental Neurooncological Radiopharmacy, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Winnie Deuther-Conrad
- Department of Experimental Neurooncological Radiopharmacy, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Guy Bormans
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, BE-3000, Leuven, Belgium
| | - Peter Brust
- Department of Experimental Neurooncological Radiopharmacy, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, Permoserstrasse 15, 04318, Leipzig, Germany
- The Lübeck Institute of Experimental Dermatology, University Medical Center Schleswig-Holstein, 23562, Lübeck, Germany
| | - Klaus Kopka
- Department of Experimental Neurooncological Radiopharmacy, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, Permoserstrasse 15, 04318, Leipzig, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, TU Dresden, 01069, Dresden, Germany
| | - Rareş-Petru Moldovan
- Department of Experimental Neurooncological Radiopharmacy, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig, Permoserstrasse 15, 04318, Leipzig, Germany.
| |
Collapse
|
3
|
Gazzi T, Brennecke B, Olikauskas V, Hochstrasser R, Wang H, Keen Chao S, Atz K, Mostinski Y, Topp A, Heer D, Kaufmann I, Ritter M, Gobbi L, Hornsperger B, Wagner B, Richter H, O'Hara F, Wittwer MB, Jul Hansen D, Collin L, Kuhn B, Benz J, Grether U, Nazaré M. Development of a Highly Selective NanoBRET Probe to Assess MAGL Inhibition in Live Cells. Chembiochem 2024:e202400704. [PMID: 39607084 DOI: 10.1002/cbic.202400704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/23/2024] [Indexed: 11/29/2024]
Abstract
Cell-free enzymatic assays are highly useful tools in early compound profiling due to their robustness and scalability. However, their inadequacy to reflect the complexity of target engagement in a cellular environment may lead to a significantly divergent pharmacology that is eventually observed in cells. The discrepancy that emerges from properties like permeability and unspecific protein binding may largely mislead lead compound selection to undergo further chemical optimization. We report the development of a new intracellular NanoBRET assay to assess MAGL inhibition in live cells. Based on a reverse design approach, a highly potent, reversible preclinical inhibitor was conjugated to the cell-permeable BODIPY590 acceptor fluorophore while retaining its overall balanced properties. An engineered MAGL-nanoluciferase (Nluc) fusion protein provided a suitable donor counterpart for the facile interrogation of intracellular ligand activity. Validation of assay conditions using a selection of known MAGL inhibitors set the stage for the evaluation of over 1'900 MAGL drug candidates derived from our discovery program. This evaluation enabled us to select compounds for further development based not only on target engagement, but also on favorable physicochemical parameters like permeability and protein binding. This study highlights the advantages of cell-based target engagement assays for accelerating compound profiling and progress at the early stages of drug discovery programs.
Collapse
Affiliation(s)
- Thais Gazzi
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel, 4070, Switzerland
| | - Benjamin Brennecke
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel, 4070, Switzerland
| | - Valentas Olikauskas
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel, 4070, Switzerland
| | - Remo Hochstrasser
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel, 4070, Switzerland
| | - Haiyan Wang
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel, 4070, Switzerland
| | - Suzan Keen Chao
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel, 4070, Switzerland
| | - Kenneth Atz
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel, 4070, Switzerland
| | - Yelena Mostinski
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - Andreas Topp
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel, 4070, Switzerland
| | - Dominik Heer
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel, 4070, Switzerland
| | - Isabelle Kaufmann
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel, 4070, Switzerland
| | - Martin Ritter
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel, 4070, Switzerland
| | - Luca Gobbi
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel, 4070, Switzerland
| | - Benoit Hornsperger
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel, 4070, Switzerland
| | - Bjoern Wagner
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel, 4070, Switzerland
| | - Hans Richter
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel, 4070, Switzerland
| | - Fionn O'Hara
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel, 4070, Switzerland
| | - Matthias B Wittwer
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel, 4070, Switzerland
| | - Dennis Jul Hansen
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel, 4070, Switzerland
| | - Ludovic Collin
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel, 4070, Switzerland
| | - Bernd Kuhn
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel, 4070, Switzerland
| | - Joerg Benz
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel, 4070, Switzerland
| | - Uwe Grether
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel, 4070, Switzerland
| | - Marc Nazaré
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| |
Collapse
|
4
|
Kuhn B, Ritter M, Hornsperger B, Bell C, Kocer B, Rombach D, Lutz MDR, Gobbi L, Kuratli M, Bartelmus C, Bürkler M, Koller R, Tosatti P, Ruf I, Guerard M, Pavlovic A, Stephanus J, O'Hara F, Wetzl D, Saal W, Stihle M, Roth D, Hug M, Huber S, Heer D, Kroll C, Topp A, Schneider M, Gertsch J, Glasmacher S, van der Stelt M, Martella A, Wittwer MB, Collin L, Benz J, Richter H, Grether U. Structure-Guided Discovery of cis-Hexahydro-pyrido-oxazinones as Reversible, Drug-like Monoacylglycerol Lipase Inhibitors. J Med Chem 2024; 67:18448-18464. [PMID: 39360636 DOI: 10.1021/acs.jmedchem.4c01769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Monoacylglycerol lipase (MAGL) is a key enzyme involved in the metabolism of the endogenous signaling ligand 2-arachidonoylglycerol, a neuroprotective endocannabinoid intimately linked to central nervous system (CNS) disorders associated with neuroinflammation. In the quest for novel MAGL inhibitors, a focused screening approach on a Roche library subset provided a reversible benzoxazinone hit exhibiting high ligand efficiency. The subsequent design of the three-dimensional cis-hexahydro-pyrido-oxazinone (cis-HHPO) moiety as benzoxazinone replacement enabled the combination of high MAGL potency with favorable ADME properties. Through enzymatic resolution an efficient synthetic route of the privileged cis-(4R,8S) HHPO headgroup was established, providing access to the highly potent and selective MAGL inhibitor 7o. Candidate molecule 7o matches the target compound profile of CNS drugs as it achieves high CSF exposures after systemic administration in rodents. It engages with the target in the brain and modulates neuroinflammatory processes, thus holding great promise for the treatment of CNS disorders.
Collapse
Affiliation(s)
- Bernd Kuhn
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Martin Ritter
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Benoit Hornsperger
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Charles Bell
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Buelent Kocer
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Didier Rombach
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Marius D R Lutz
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Luca Gobbi
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Martin Kuratli
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Christian Bartelmus
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Markus Bürkler
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Raffael Koller
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Paolo Tosatti
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Iris Ruf
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Melanie Guerard
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Anto Pavlovic
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Juliane Stephanus
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Fionn O'Hara
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Dennis Wetzl
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Wiebke Saal
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Martine Stihle
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Doris Roth
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Melanie Hug
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Sylwia Huber
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Dominik Heer
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Carsten Kroll
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Andreas Topp
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Manfred Schneider
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern 3012, Switzerland
| | - Sandra Glasmacher
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern 3012, Switzerland
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Leiden 2300 CC, Netherlands
| | - Andrea Martella
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Leiden 2300 CC, Netherlands
| | - Matthias Beat Wittwer
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Ludovic Collin
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Jörg Benz
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Hans Richter
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Uwe Grether
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, Basel 4070, Switzerland
| |
Collapse
|
5
|
Auvity S, Attili B, Caillé F, Goislard M, Cayla J, Hinnen F, Demphel S, Brulon V, Bottlaender M, Leroy C, Bormans G, Kuhnast B, Peyronneau MA. Translational Preclinical PET Imaging and Metabolic Evaluation of a New Cannabinoid 2 Receptor (CB 2R) Radioligand, ( Z)- N-(3-(2-(2-[ 18F]Fluoroethoxy)ethyl)-4,5-dimethylthiazol-2(3 H)-ylidene)-2,2,3,3-tetramethylcyclopropane-1-carboxamide. ACS Pharmacol Transl Sci 2024; 7:3144-3154. [PMID: 39421654 PMCID: PMC11480890 DOI: 10.1021/acsptsci.4c00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/29/2024] [Accepted: 09/02/2024] [Indexed: 10/19/2024]
Abstract
We have previously developed seven fluorinated analogues of A-836339 as new PET tracers for cannabinoid type 2 receptor (CB2R) imaging, among which (Z)-N-(3-(2-(2-[18F]fluoroethoxy)ethyl)-4,5-dimethylthiazol-2(3H)-ylidene)-2,2,3,3-tetramethylcyclopropane-1-carboxamide ([18F]FC0324) displayed high affinity and selectivity for CB2R in healthy rats. In the present study, we have further evaluated the imaging and metabolic properties of [18F]FC0324 in a rat model of human CB2R overexpression in the brain (AAV-hCB2) and in non-human primates (NHPs). Autoradiography with AAV-hCB2 rat brain sections exhibited a signal of [18F]FC0324 8-fold higher in the ipsilateral region than in the contralateral region. Blocking with NE40, a CB2R-specific agonist, resulted in a 91% decrease in the radioactivity. PET experiments showed a signal 7-fold higher in the ipsilateral region, and the specificity of [18F]FC0324 for hCB2R in vivo was confirmed by the 80% decrease after blocking with NE40. In NHPs, brain time-activity curves displayed a fast and homogeneous distribution followed by a rapid washout, in accordance with the low amount of CB2Rs in healthy brain. Whole-body PET-CT suggested a high and specific uptake of the radiotracer in the spleen, a CB2R-rich organ, and in the organs involved in metabolism and excretion, with a low bone uptake. In vitro metabolism with monkey liver microsomes (MLMs) led to the formation of six main hydroxylated metabolites of FC0324. Five of them were produced by human liver microsomes, being much less active than MLMs. In vivo, in NHPs, the main radiometabolite was likely to result from further oxidation of hydroxylated compounds, and parent [18F]FC0324 accounted for 8 ± 3% of plasma radioactivity (at 120 min p.i.) with a low level of potential interfering radiometabolites. Furthermore, this metabolism should be significantly reduced in humans due to species differences. In conclusion, [18F]FC0324 appears to be a promising candidate for further human studies with suitable kinetics, selectivity, and metabolic profile for CB2R PET imaging.
Collapse
Affiliation(s)
- Sylvain Auvity
- CEA,
INSERM, CNRS, BioMaps, Service Hospitalier Frédéric
Joliot, Université Paris-Saclay, 91400 Orsay, France
- Inserm
UMR-S 1144, Faculté de Pharmacie de Paris, Université Paris-Cité, 75006 Paris, France
- Assistance
Publique-Hôpitaux de Paris, Hôpital
Universitaire Necker-Enfants Malades, 75015 Paris, France
| | - Bala Attili
- Laboratory
for Radiopharmaceutical Research, Department of Pharmaceutical and
Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Fabien Caillé
- CEA,
INSERM, CNRS, BioMaps, Service Hospitalier Frédéric
Joliot, Université Paris-Saclay, 91400 Orsay, France
| | - Maud Goislard
- CEA,
INSERM, CNRS, BioMaps, Service Hospitalier Frédéric
Joliot, Université Paris-Saclay, 91400 Orsay, France
| | - Jérôme Cayla
- CEA,
INSERM, CNRS, BioMaps, Service Hospitalier Frédéric
Joliot, Université Paris-Saclay, 91400 Orsay, France
| | - Françoise Hinnen
- CEA,
INSERM, CNRS, BioMaps, Service Hospitalier Frédéric
Joliot, Université Paris-Saclay, 91400 Orsay, France
| | - Stéphane Demphel
- CEA,
INSERM, CNRS, BioMaps, Service Hospitalier Frédéric
Joliot, Université Paris-Saclay, 91400 Orsay, France
| | - Vincent Brulon
- CEA,
INSERM, CNRS, BioMaps, Service Hospitalier Frédéric
Joliot, Université Paris-Saclay, 91400 Orsay, France
| | - Michel Bottlaender
- CEA,
INSERM, CNRS, BioMaps, Service Hospitalier Frédéric
Joliot, Université Paris-Saclay, 91400 Orsay, France
- UNIACT,
Neurospin, CEA, 91191 Gif-sur-Yvette, France
| | - Claire Leroy
- CEA,
INSERM, CNRS, BioMaps, Service Hospitalier Frédéric
Joliot, Université Paris-Saclay, 91400 Orsay, France
| | - Guy Bormans
- Laboratory
for Radiopharmaceutical Research, Department of Pharmaceutical and
Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Bertrand Kuhnast
- CEA,
INSERM, CNRS, BioMaps, Service Hospitalier Frédéric
Joliot, Université Paris-Saclay, 91400 Orsay, France
| | - Marie-Anne Peyronneau
- CEA,
INSERM, CNRS, BioMaps, Service Hospitalier Frédéric
Joliot, Université Paris-Saclay, 91400 Orsay, France
| |
Collapse
|
6
|
Wąsińska-Kałwa M, Omran A, Mach L, Scipioni L, Bouma J, Li X, Radetzki S, Mostinski Y, Schippers M, Gazzi T, van der Horst C, Brennecke B, Hanske A, Kolomeets Y, Guba W, Sykes D, von Kries JP, Broichhagen J, Hua T, Veprintsev D, Heitman LH, Oddi S, Maccarrone M, Grether U, Nazare M. Visualization of membrane localization and the functional state of CB 2R pools using matched agonist and inverse agonist probe pairs. Chem Sci 2024:d4sc00402g. [PMID: 39430942 PMCID: PMC11485011 DOI: 10.1039/d4sc00402g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/28/2024] [Indexed: 10/22/2024] Open
Abstract
The diversity of physiological roles of the endocannabinoid system has turned it into an attractive yet elusive therapeutic target. However, chemical probes with various functionalities could pave the way for a better understanding of the endocannabinoid system at the cellular level. Notably, inverse agonists of CB2R - a key receptor of the endocannabinoid system - lagged behind despite the evidence regarding the therapeutic potential of its antagonism. Herein, we report a matched fluorescent probe pair based on a common chemotype to address and visualize both the active and inactive states of CB2R, selectively. Alongside extensive cross-validation by flow cytometry, time-lapse confocal microscopy, and super-resolution microscopy, we successfully visualize the intracellular localization of CB2R pools in live cells. The synthetic simplicity, together with the high CB2R-selectivity and specificity of our probes, turns them into valuable tools in chemical biology and drug development that can benefit the clinical translatability of CB2R-based drugs.
Collapse
Affiliation(s)
- M Wąsińska-Kałwa
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP Campus Berlin-Buch 13125 Berlin Germany
| | - A Omran
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP Campus Berlin-Buch 13125 Berlin Germany
| | - L Mach
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP Campus Berlin-Buch 13125 Berlin Germany
| | - L Scipioni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila 67100 L'Aquila Italy
- European Center for Brain Research/Institute for Research and Health Care (IRCCS) Santa Lucia Foundation via del Fosso di Fiorano 64 00143 Rome Italy
| | - J Bouma
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University 2333 CC Leiden The Netherlands
| | - X Li
- iHuman Institute, ShanghaiTech University Shanghai 201210 China
- School of Life Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - S Radetzki
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP Campus Berlin-Buch 13125 Berlin Germany
| | - Y Mostinski
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP Campus Berlin-Buch 13125 Berlin Germany
| | - M Schippers
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd 4070 Basel Switzerland
| | - T Gazzi
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP Campus Berlin-Buch 13125 Berlin Germany
| | - C van der Horst
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University 2333 CC Leiden The Netherlands
| | - B Brennecke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP Campus Berlin-Buch 13125 Berlin Germany
| | - A Hanske
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP Campus Berlin-Buch 13125 Berlin Germany
| | - Y Kolomeets
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP Campus Berlin-Buch 13125 Berlin Germany
| | - W Guba
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd 4070 Basel Switzerland
| | - D Sykes
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham Nottingham NG7 2UH UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, University of Nottingham Midlands UK
| | - J P von Kries
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP Campus Berlin-Buch 13125 Berlin Germany
| | - J Broichhagen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP Campus Berlin-Buch 13125 Berlin Germany
| | - T Hua
- iHuman Institute, ShanghaiTech University Shanghai 201210 China
- School of Life Science and Technology, ShanghaiTech University Shanghai 201210 China
| | - D Veprintsev
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham Nottingham NG7 2UH UK
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, University of Nottingham Midlands UK
| | - L H Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University 2333 CC Leiden The Netherlands
| | - S Oddi
- Department of Veterinary Medicine, University of Teramo Via R. Balzarini 1 64100 Teramo Italy
- European Center for Brain Research/Institute for Research and Health Care (IRCCS) Santa Lucia Foundation via del Fosso di Fiorano 64 00143 Rome Italy
| | - M Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila 67100 L'Aquila Italy
- European Center for Brain Research/Institute for Research and Health Care (IRCCS) Santa Lucia Foundation via del Fosso di Fiorano 64 00143 Rome Italy
| | - U Grether
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd 4070 Basel Switzerland
| | - M Nazare
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie FMP Campus Berlin-Buch 13125 Berlin Germany
| |
Collapse
|
7
|
Chicca A, Bátora D, Ullmer C, Caruso A, Grüner S, Fingerle J, Hartung T, Degen R, Müller M, Grether U, Pacher P, Gertsch J. A Highly Potent, Orally Bioavailable Pyrazole-Derived Cannabinoid CB2 Receptor- Selective Full Agonist for In Vivo Studies. ACS Pharmacol Transl Sci 2024; 7:2424-2438. [PMID: 39144568 PMCID: PMC11320734 DOI: 10.1021/acsptsci.4c00269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 08/16/2024]
Abstract
The cannabinoid CB2 receptor (CB2R) is a potential therapeutic target for distinct forms of tissue injury and inflammatory diseases. To thoroughly investigate the role of CB2R in pathophysiological conditions and for target validation in vivo, optimal pharmacological tool compounds are essential. Despite the sizable progress in the generation of potent and selective CB2R ligands, pharmacokinetic parameters are often neglected for in vivo studies. Here, we report the generation and characterization of a tetra-substituted pyrazole CB2R full agonist named RNB-61 with high potency (K i 0.13-1.81 nM, depending on species) and a peripherally restricted action due to P-glycoprotein-mediated efflux from the brain. 3H and 14C labeled RNB-61 showed apparent K d values of <4 nM toward human CB2R in both cell and tissue experiments. The 6,800-fold selectivity over CB1 receptors and negligible off-targets in vitro, combined with high oral bioavailability and suitable systemic pharmacokinetic (PK) properties, prompted the assessment of RNB-61 in a mouse ischemia-reperfusion model of acute kidney injury (AKI) and in a rat model of chronic kidney injury/inflammation and fibrosis (CKI) induced by unilateral ureteral obstruction. RNB-61 exerted dose-dependent nephroprotective and/or antifibrotic effects in the AKI/CKI models. Thus, RNB-61 is an optimal CB2R tool compound for preclinical in vivo studies with superior biophysical and PK properties over generally used CB2R ligands.
Collapse
Affiliation(s)
- Andrea Chicca
- Institute
of Biochemistry and Molecular Medicine, University of Bern, Bern 3012, Switzerland
| | - Daniel Bátora
- Institute
of Biochemistry and Molecular Medicine, University of Bern, Bern 3012, Switzerland
- Graduate
School for Cellular and Biomedical Sciences, University of Bern, Bern 3012, Switzerland
| | - Christoph Ullmer
- Pharmaceutical
Sciences, Roche Innovation Center Basel,
Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Antonello Caruso
- Pharmaceutical
Sciences, Roche Innovation Center Basel,
Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Sabine Grüner
- Pharmaceutical
Sciences, Roche Innovation Center Basel,
Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Jürgen Fingerle
- Pharmaceutical
Sciences, Roche Innovation Center Basel,
Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Thomas Hartung
- Pharmaceutical
Sciences, Roche Innovation Center Basel,
Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Roland Degen
- Pharmaceutical
Sciences, Roche Innovation Center Basel,
Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Matthias Müller
- Pharmaceutical
Sciences, Roche Innovation Center Basel,
Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Uwe Grether
- Pharmaceutical
Sciences, Roche Innovation Center Basel,
Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Pal Pacher
- Laboratory
of Cardiovascular Physiology and Tissue Injury (P.P.), National Institute on Alcohol Abuse and Alcoholism,
National Institutes of Health (NIH), Bethesda MD 20892-9304, United States
| | - Jürg Gertsch
- Institute
of Biochemistry and Molecular Medicine, University of Bern, Bern 3012, Switzerland
| |
Collapse
|
8
|
Kosar M, Mach L, Carreira EM, Nazaré M, Pacher P, Grether U. Patent review of cannabinoid receptor type 2 (CB 2R) modulators (2016-present). Expert Opin Ther Pat 2024; 34:665-700. [PMID: 38886185 DOI: 10.1080/13543776.2024.2368745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
INTRODUCTION Cannabinoid receptor type 2 (CB2R), predominantly expressed in immune tissues, is believed to play a crucial role within the body's protective mechanisms. Its modulation holds immense therapeutic promise for addressing a wide spectrum of dysbiotic conditions, including cardiovascular, gastrointestinal, liver, kidney, neurodegenerative, psychiatric, bone, skin, and autoimmune diseases, as well as lung disorders, cancer, and pain management. AREAS COVERED This review is an account of patents from 2016 up to 2023 which describes novel CB2R ligands, therapeutic applications, synthesis, as well as formulations of CB2R modulators. EXPERT OPINION The patents cover a vast, structurally diverse chemical space. The focus of CB2R ligand development has shifted from unselective dual-cannabinoid receptor type 1 (CB1R) and 2 agonists toward agonists with high selectivity over CB1R, particularly for indications associated with inflammation and tissue injury. Currently, there are at least eight CB2R agonists and one antagonist in active clinical development. A better understanding of the endocannabinoid system (ECS) and in particular of CB2R pharmacology is required to unlock the receptor's full therapeutic potential.
Collapse
Affiliation(s)
- Miroslav Kosar
- Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Leonard Mach
- Medicinal Chemistry, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Berlin, Berlin, Germany
| | - Erick M Carreira
- Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Marc Nazaré
- Medicinal Chemistry, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Berlin, Berlin, Germany
| | - Pal Pacher
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD, USA
| | - Uwe Grether
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| |
Collapse
|
9
|
Mach L, Omran A, Bouma J, Radetzki S, Sykes DA, Guba W, Li X, Höffelmeyer C, Hentsch A, Gazzi T, Mostinski Y, Wasinska-Kalwa M, de Molnier F, van der Horst C, von Kries JP, Vendrell M, Hua T, Veprintsev DB, Heitman LH, Grether U, Nazare M. Highly Selective Drug-Derived Fluorescent Probes for the Cannabinoid Receptor Type 1 (CB 1R). J Med Chem 2024; 67:11841-11867. [PMID: 38990855 DOI: 10.1021/acs.jmedchem.4c00465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The cannabinoid receptor type 1 (CB1R) is pivotal within the endocannabinoid system regulating various signaling cascades with effects in appetite regulation, pain perception, memory formation, and thermoregulation. Still, understanding of CB1R's cellular signaling, distribution, and expression dynamics is very fragmentary. Real-time visualization of CB1R is crucial for addressing these questions. Selective drug-like CB1R ligands with a defined pharmacological profile were investigated for the construction of CB1R fluorescent probes using a reverse design-approach. A modular design concept with a diethyl glycine-based building block as the centerpiece allowed for the straightforward synthesis of novel probe candidates. Validated by computational docking studies, radioligand binding, and cAMP assay, this systematic approach allowed for the identification of novel pyrrole-based CB1R fluorescent probes. Application in fluorescence-based target-engagement studies and live cell imaging exemplify the great versatility of the tailored CB1R probes for investigating CB1R localization, trafficking, pharmacology, and its pathological implications.
Collapse
Affiliation(s)
- Leonard Mach
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Anahid Omran
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Jara Bouma
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University and Oncode Institute, 2333 CC Leiden, The Netherlands
| | - Silke Radetzki
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - David A Sykes
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, NG7 2UH Nottingham, U.K
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Edgbaston, B15 2TT Birmingham, Midlands, U.K
| | - Wolfgang Guba
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Xiaoting Li
- iHuman Institute, ShanghaiTech University, 201210 Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Calvin Höffelmeyer
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Axel Hentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Thais Gazzi
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Yelena Mostinski
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | | | - Fabio de Molnier
- IRR Chemistry Hub and Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, EH16 4UU Edinburgh, U.K
| | - Cas van der Horst
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University and Oncode Institute, 2333 CC Leiden, The Netherlands
| | - Jens Peter von Kries
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Marc Vendrell
- IRR Chemistry Hub and Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, EH16 4UU Edinburgh, U.K
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, 201210 Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Dmitry B Veprintsev
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, NG7 2UH Nottingham, U.K
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Edgbaston, B15 2TT Birmingham, Midlands, U.K
| | - Laura H Heitman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University and Oncode Institute, 2333 CC Leiden, The Netherlands
| | - Uwe Grether
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland
| | - Marc Nazare
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| |
Collapse
|
10
|
Chicca A, Batora D, Ullmer C, Caruso A, Fingerle J, Hartung T, Degen R, Müller M, Grether U, Pacher P, Gertsch J. A highly potent, orally bioavailable pyrazole-derived cannabinoid CB2 receptor-selective full agonist for in vivo studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591311. [PMID: 38903103 PMCID: PMC11188143 DOI: 10.1101/2024.04.26.591311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The cannabinoid CB2 receptor (CB2R) is a potential therapeutic target for distinct forms of tissue injury and inflammatory diseases. To thoroughly investigate the role of CB2R in pathophysiological conditions and for target validation in vivo, optimal pharmacological tool compounds are essential. Despite the sizable progress in the generation of potent and selective CB2R ligands, pharmacokinetic parameters are often neglected for in vivo studies. Here, we report the generation and characterization of a tetra-substituted pyrazole CB2R full agonist named RNB-61 with high potency (K i 0.13-1.81 nM, depending on species) and a peripherally restricted action due to P-glycoprotein mediated efflux from the brain. 3H and 14C labelled RNB-61 showed apparent K d values < 4 nM towards human CB2R in both cell and tissue experiments. The >6000-fold selectivity over CB1 receptors and negligible off-targets in vitro, combined with high oral bioavailability and suitable systemic pharmacokinetic (PK) properties, prompted the assessment of RNB-61 in a mouse ischemia-reperfusion model of acute kidney injury (AKI) and in a rat model of chronic kidney injury/inflammation and fibrosis (CKI) induced by unilateral ureteral obstruction. RNB-61 exerted dose-dependent nephroprotective and/or antifibrotic effects in the AKI/CKI models. Thus, RNB-61 is an optimal CB2R tool compound for preclinical in vivo studies with superior biophysical and PK properties over generally used CB2R ligands.
Collapse
Affiliation(s)
- Andrea Chicca
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern 3012, Switzerland
| | - Daniel Batora
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern 3012, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Christoph Ullmer
- Pharmaceutical Sciences, Roche Innovation Center Basel, Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Antonello Caruso
- Pharmaceutical Sciences, Roche Innovation Center Basel, Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Jürgen Fingerle
- Pharmaceutical Sciences, Roche Innovation Center Basel, Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Thomas Hartung
- Pharmaceutical Sciences, Roche Innovation Center Basel, Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Roland Degen
- Pharmaceutical Sciences, Roche Innovation Center Basel, Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Matthias Müller
- Pharmaceutical Sciences, Roche Innovation Center Basel, Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Uwe Grether
- Pharmaceutical Sciences, Roche Innovation Center Basel, Roche Pharma Research and Early Development, Basel 4070, Switzerland
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury (P.P.), National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health (NIH), Bethesda, MD
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern 3012, Switzerland
| |
Collapse
|
11
|
He Y, Delparente A, Jie CVML, Keller C, Humm R, Heer D, Collin L, Schibli R, Gobbi L, Grether U, Mu L. Preclinical Evaluation of the Reversible Monoacylglycerol Lipase PET Tracer (R)-[ 11C]YH132: Application in Drug Development and Neurodegenerative Diseases. Chembiochem 2024; 25:e202300819. [PMID: 38441502 DOI: 10.1002/cbic.202300819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/12/2024] [Indexed: 04/05/2024]
Abstract
Monoacylglycerol lipase (MAGL) plays a crucial role in the degradation of 2-arachidonoylglycerol (2-AG), one of the major endocannabinoids in the brain. Inhibiting MAGL could lead to increased levels of 2-AG, which showed beneficial effects on pain management, anxiety, inflammation, and neuroprotection. In the current study, we report the characterization of an enantiomerically pure (R)-[11C]YH132 as a novel MAGL PET tracer. It demonstrates an improved pharmacokinetic profile compared to its racemate. High in vitro MAGL specificity of (R)-[11C]YH132 was confirmed by autoradiography studies using mouse and rat brain sections. In vivo, (R)-[11C]YH132 displayed a high brain penetration, and high specificity and selectivity toward MAGL by dynamic PET imaging using MAGL knockout and wild-type mice. Pretreatment with a MAGL drug candidate revealed a dose-dependent reduction of (R)-[11C]YH132 accumulation in WT mouse brains. This result validates its utility as a PET probe to assist drug development. Moreover, its potential application in neurodegenerative diseases was explored by in vitro autoradiography using brain sections from animal models of Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Yingfang He
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093, Zurich, Switzerland
- Present address: Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai, 200032, China
| | - Aro Delparente
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093, Zurich, Switzerland
| | - Caitlin V M L Jie
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093, Zurich, Switzerland
| | - Claudia Keller
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093, Zurich, Switzerland
| | - Roland Humm
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | - Dominik Heer
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | - Ludovic Collin
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | - Roger Schibli
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093, Zurich, Switzerland
| | - Luca Gobbi
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | - Uwe Grether
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, CH-4070, Basel, Switzerland
| | - Linjing Mu
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093, Zurich, Switzerland
| |
Collapse
|
12
|
Teodoro R, Gündel D, Deuther-Conrad W, Kazimir A, Toussaint M, Wenzel B, Bormans G, Hey-Hawkins E, Kopka K, Brust P, Moldovan RP. Synthesis, Structure-Activity Relationships, Radiofluorination, and Biological Evaluation of [ 18F]RM365, a Novel Radioligand for Imaging the Human Cannabinoid Receptor Type 2 (CB2R) in the Brain with PET. J Med Chem 2023; 66:13991-14010. [PMID: 37816245 PMCID: PMC10614203 DOI: 10.1021/acs.jmedchem.3c01035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Indexed: 10/12/2023]
Abstract
The development of cannabinoid receptor type 2 (CB2R) PET radioligands has been intensively explored due to the pronounced CB2R upregulation under various pathological conditions. Herein, we report on the synthesis of a series of CB2R affine fluorinated indole-2-carboxamide ligands. Compound RM365 was selected for PET radiotracer development due to its high CB2R affinity (Ki = 2.1 nM) and selectivity over CB1R (factor > 300). Preliminary in vitro evaluation of [18F]RM365 indicated species differences in the binding to CB2R (KD of 2.32 nM for the hCB2R vs KD > 10,000 nM for the rCB2R). Metabolism studies in mice revealed a high in vivo stability of [18F]RM365. PET imaging in a rat model of local hCB2R(D80N) overexpression in the brain demonstrates the ability of [18F]RM365 to reach and selectively label the hCB2R(D80N) with a high signal-to-background ratio. Thus, [18F]RM365 is a very promising PET radioligand for the imaging of upregulated hCB2R expression under pathological conditions.
Collapse
Affiliation(s)
- Rodrigo Teodoro
- Institute
of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals,
Research Site Leipzig, Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), 04318 Leipzig, Germany
| | - Daniel Gündel
- Institute
of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals,
Research Site Leipzig, Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), 04318 Leipzig, Germany
| | - Winnie Deuther-Conrad
- Institute
of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals,
Research Site Leipzig, Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), 04318 Leipzig, Germany
| | - Aleksandr Kazimir
- Faculty
of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Magali Toussaint
- Institute
of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals,
Research Site Leipzig, Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), 04318 Leipzig, Germany
| | - Barbara Wenzel
- Institute
of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals,
Research Site Leipzig, Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), 04318 Leipzig, Germany
| | - Guy Bormans
- Radiopharmaceutical
Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, BE-3000 Leuven, Belgium
| | - Evamarie Hey-Hawkins
- Faculty
of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Klaus Kopka
- Institute
of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals,
Research Site Leipzig, Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), 04318 Leipzig, Germany
- Faculty
of Chemistry and Food Chemistry, School of Science, TU Dresden, 01069 Dresden, Germany
| | - Peter Brust
- Institute
of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals,
Research Site Leipzig, Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), 04318 Leipzig, Germany
- The
Lübeck Institute of Experimental Dermatology, University Medical Center Schleswig-Holstein, 23562 Lübeck, Germany
| | - Rareş-Petru Moldovan
- Institute
of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals,
Research Site Leipzig, Helmholtz-Zentrum
Dresden-Rossendorf (HZDR), 04318 Leipzig, Germany
| |
Collapse
|
13
|
Haider A, Wang L, Gobbi L, Li Y, Chaudhary A, Zhou X, Chen J, Zhao C, Rong J, Xiao Z, Hou L, Elghazawy NH, Sippl W, Davenport AT, Daunais JB, Ahmed H, Crowe R, Honer M, Rominger A, Grether U, Liang SH, Ametamey SM. Evaluation of [ 18F]RoSMA-18-d 6 as a CB2 PET Radioligand in Nonhuman Primates. ACS Chem Neurosci 2023; 14:3752-3760. [PMID: 37788055 DOI: 10.1021/acschemneuro.3c00222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023] Open
Abstract
The cannabinoid type 2 receptor (CB2) has been implicated in a variety of central and peripheral inflammatory diseases, prompting significant interest in the development of CB2-targeted diagnostic and therapeutic agents. A validated positron emission tomography (PET) radioligand for imaging CB2 in the living human brain as well as in peripheral tissues is currently lacking. As part of our research program, we have recently identified the trisubstituted pyridine, [18F]RoSMA-18-d6, which proved to be highly suitable for in vitro and in vivo mapping of CB2 in rodents. The aim of this study was to assess the performance characteristics of [18F]RoSMA-18-d6 in nonhuman primates (NHPs) to pave the way for clinical translation. [18F]RoSMA-18-d6 was synthesized from the respective tosylate precursor according to previously reported procedures. In vitro autoradiograms with NHP spleen tissue sections revealed a high binding of [18F]RoSMA-18-d6 to the CB2-rich NHP spleen, which was significantly blocked by coincubation with the commercially available CB2 ligand, GW405833 (10 μM). In contrast, no specific binding was observed by in vitro autoradiography with NHP brain sections, which was in agreement with the notion of a CB2-deficient healthy mammalian brain. In vitro findings were corroborated by PET imaging experiments in NHPs, where [18F]RoSMA-18-d6 uptake in the spleen was dose-dependently attenuated with 1 and 5 mg/kg GW405833, while no specific brain signal was observed. Remarkably, we observed tracer uptake and retention in the NHP spinal cord, which was reduced by GW405833 blockade, pointing toward a potential utility of [18F]RoSMA-18-d6 in probing CB2-expressing cells in the bone marrow. If these observations are substantiated in NHP models of enhanced leukocyte proliferation in the bone marrow, [18F]RoSMA-18-d6 may serve as a valuable marker for hematopoietic activity in various pathologies. In conclusion, [18F]RoSMA-18-d6 proved to be a suitable PET radioligand for imaging CB2 in NHPs, supporting its translation to humans.
Collapse
Affiliation(s)
- Achi Haider
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Luca Gobbi
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Yinlong Li
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Ahmad Chaudhary
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Xin Zhou
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Jiahui Chen
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Chunyu Zhao
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Jian Rong
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Zhiwei Xiao
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Lu Hou
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Nehal H Elghazawy
- Institute of Pharmacy, Department of Medicinal Chemistry, Martin-Luther-University Halle-Wittenberg, W.-Langenbeck-Str. 4, 06120 Halle, Germany
| | - Wolfgang Sippl
- Institute of Pharmacy, Department of Medicinal Chemistry, Martin-Luther-University Halle-Wittenberg, W.-Langenbeck-Str. 4, 06120 Halle, Germany
| | - April T Davenport
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina 27157, United States
| | - James B Daunais
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina 27157, United States
| | - Hazem Ahmed
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Ron Crowe
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Michael Honer
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Bern University Hospital, 3010 Bern, Switzerland
| | - Uwe Grether
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, 1364 Clifton Road, Atlanta, Georgia 30322, United States
| | - Simon M Ametamey
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Institute of Pharmaceutical Sciences ETH, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| |
Collapse
|
14
|
Cools R, Kerkhofs K, Leitao RCF, Bormans G. Preclinical Evaluation of Novel PET Probes for Dementia. Semin Nucl Med 2023; 53:599-629. [PMID: 37149435 DOI: 10.1053/j.semnuclmed.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 05/08/2023]
Abstract
The development of novel PET imaging agents that selectively bind specific dementia-related targets can contribute significantly to accurate, differential and early diagnosis of dementia causing diseases and support the development of therapeutic agents. Consequently, in recent years there has been a growing body of literature describing the development and evaluation of potential new promising PET tracers for dementia. This review article provides a comprehensive overview of novel dementia PET probes under development, classified by their target, and pinpoints their preclinical evaluation pathway, typically involving in silico, in vitro and ex/in vivo evaluation. Specific target-associated challenges and pitfalls, requiring extensive and well-designed preclinical experimental evaluation assays to enable successful clinical translation and avoid shortcomings observed for previously developed 'well-established' dementia PET tracers are highlighted in this review.
Collapse
Affiliation(s)
- Romy Cools
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Kobe Kerkhofs
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium; NURA, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Renan C F Leitao
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Guy Bormans
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
15
|
Maccarrone M, Di Marzo V, Gertsch J, Grether U, Howlett AC, Hua T, Makriyannis A, Piomelli D, Ueda N, van der Stelt M. Goods and Bads of the Endocannabinoid System as a Therapeutic Target: Lessons Learned after 30 Years. Pharmacol Rev 2023; 75:885-958. [PMID: 37164640 PMCID: PMC10441647 DOI: 10.1124/pharmrev.122.000600] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/12/2023] Open
Abstract
The cannabis derivative marijuana is the most widely used recreational drug in the Western world and is consumed by an estimated 83 million individuals (∼3% of the world population). In recent years, there has been a marked transformation in society regarding the risk perception of cannabis, driven by its legalization and medical use in many states in the United States and worldwide. Compelling research evidence and the Food and Drug Administration cannabis-derived cannabidiol approval for severe childhood epilepsy have confirmed the large therapeutic potential of cannabidiol itself, Δ9-tetrahydrocannabinol and other plant-derived cannabinoids (phytocannabinoids). Of note, our body has a complex endocannabinoid system (ECS)-made of receptors, metabolic enzymes, and transporters-that is also regulated by phytocannabinoids. The first endocannabinoid to be discovered 30 years ago was anandamide (N-arachidonoyl-ethanolamine); since then, distinct elements of the ECS have been the target of drug design programs aimed at curing (or at least slowing down) a number of human diseases, both in the central nervous system and at the periphery. Here a critical review of our knowledge of the goods and bads of the ECS as a therapeutic target is presented to define the benefits of ECS-active phytocannabinoids and ECS-oriented synthetic drugs for human health. SIGNIFICANCE STATEMENT: The endocannabinoid system plays important roles virtually everywhere in our body and is either involved in mediating key processes of central and peripheral diseases or represents a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of the components of this complex system, and in particular of key receptors (like cannabinoid receptors 1 and 2) and metabolic enzymes (like fatty acid amide hydrolase and monoacylglycerol lipase), will advance our understanding of endocannabinoid signaling and activity at molecular, cellular, and system levels, providing new opportunities to treat patients.
Collapse
Affiliation(s)
- Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Vincenzo Di Marzo
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Jürg Gertsch
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Uwe Grether
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Allyn C Howlett
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Tian Hua
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Alexandros Makriyannis
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Daniele Piomelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Natsuo Ueda
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| | - Mario van der Stelt
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Italy (M.M.); European Center for Brain Research, Santa Lucia Foundation, Rome, Italy (M.M.); Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, University of Laval, Quebec, Canada (V.D.); Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bern, Switzerland (J.G.); Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland (U.G.); Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.C.H.); iHuman Institute, ShanghaiTech University, Shanghai, China (T.H.); Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts (A.M.); Departments of Pharmaceutical Sciences and Biological Chemistry, University of California, Irvine, California (D.P.); Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan (N.U.); Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands (M.S.)
| |
Collapse
|
16
|
Bhattacharjee P, Iyer MR. Rational Design, Synthesis, and Evaluation of Fluorescent CB 2 Receptor Ligands for Live-Cell Imaging: A Comprehensive Review. Pharmaceuticals (Basel) 2023; 16:1235. [PMID: 37765043 PMCID: PMC10534640 DOI: 10.3390/ph16091235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The cannabinoid receptors CB1 and CB2 are class A G protein-coupled receptors (GPCRs) that are activated via endogenous lipids called endocannabinoids. The endocannabinoid system (ECS) plays a critical role in the regulation of several physiological states and a wide range of diseases. In recent years, drug discovery approaches targeting the cannabinoid type 2 receptor (CB2R) have gained prominence. Particular attention has been given to selective agonists targeting the CB2 receptors to circumvent the neuropsychotropic side effects associated with CB1 receptors. The pharmacological modulation of CB2R holds therapeutic promise for various diseases, such as inflammatory disorders and immunological conditions, as well as pain management and cancer treatment. Recently, the utilization of fluorescent probes has emerged as a valuable technique for investigating the interactions between ligands and proteins at an exceptional level of spatial and temporal precision. In this review, we aim to examine the progress made in the development of fluorescent probes targeting CB2 receptors and highlight their significance in facilitating the successful clinical translation of CB2R-based therapies.
Collapse
Affiliation(s)
| | - Malliga R. Iyer
- Section on Medicinal Chemistry, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Rockville, MD 20852, USA
| |
Collapse
|
17
|
Kallinen A, Mardon K, Lane S, Montgomery AP, Bhalla R, Stimson DHR, Ahamed M, Cowin GJ, Hibbs D, Werry EL, Fulton R, Connor M, Kassiou M. Synthesis and Preclinical Evaluation of Fluorinated 5-Azaindoles as CB2 PET Radioligands. ACS Chem Neurosci 2023; 14:2902-2921. [PMID: 37499194 DOI: 10.1021/acschemneuro.3c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Several classes of cannabinoid receptor type 2 radioligands have been evaluated for imaging of neuroinflammation, with successful clinical translation yet to take place. Here we describe the synthesis of fluorinated 5-azaindoles and pharmacological characterization and in vivo evaluation of 18F-radiolabeled analogues. [18F]2 (hCB2 Ki = 96.5 nM) and [18F]9 (hCB2 Ki = 7.7 nM) were prepared using Cu-mediated 18F-fluorination with non-decay-corrected radiochemical yields of 15 ± 6% and 18 ± 2% over 85 and 80 min, respectively, with high radiochemical purities (>97%) and molar activities (140-416 GBq/μmol). In PET imaging studies in rats, both [18F]2 and [18F]9 demonstrated specific binding in CB2-rich spleen after pretreatment with CB2-specific GW405833. Moreover, [18F]9 exhibited higher brain uptake at later time points in a murine model of neuroinflammation compared with a healthy control group. The results suggest further evaluation of azaindole based CB2 radioligands is warranted in other neuroinflammation models.
Collapse
Affiliation(s)
- Annukka Kallinen
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Karine Mardon
- ARC Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Samuel Lane
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | | | | | | | - Muneer Ahamed
- ARC Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Gary J Cowin
- ARC Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David Hibbs
- Sydney Pharmacy School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Eryn L Werry
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Roger Fulton
- Faculty of Health Sciences, The University of Sydney, Sydney, NSW 2050, Australia
| | - Mark Connor
- Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
18
|
Liu L, Johnson PD, Prime ME, Khetarpal V, Brown CJ, Anzillotti L, Bertoglio D, Chen X, Coe S, Davis R, Dickie AP, Esposito S, Gadouleau E, Giles PR, Greenaway C, Haber J, Halldin C, Haller S, Hayes S, Herbst T, Herrmann F, Heßmann M, Hsai MM, Khani Y, Kotey A, Lembo A, Mangette JE, Marriner GA, Marston RW, Mills MR, Monteagudo E, Forsberg-Morén A, Nag S, Orsatti L, Sandiego C, Schaertl S, Sproston J, Staelens S, Tookey J, Turner PA, Vecchi A, Veneziano M, Muñoz-Sanjuan I, Bard J, Dominguez C. Design and Evaluation of [ 18F]CHDI-650 as a Positron Emission Tomography Ligand to Image Mutant Huntingtin Aggregates. J Med Chem 2023; 66:641-656. [PMID: 36548390 DOI: 10.1021/acs.jmedchem.2c01585] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Therapeutic interventions are being developed for Huntington's disease (HD), a hallmark of which is mutant huntingtin protein (mHTT) aggregates. Following the advancement to human testing of two [11C]-PET ligands for aggregated mHTT, attributes for further optimization were identified. We replaced the pyridazinone ring of CHDI-180 with a pyrimidine ring and minimized off-target binding using brain homogenate derived from Alzheimer's disease patients. The major in vivo metabolic pathway via aldehyde oxidase was blocked with a 2-methyl group on the pyrimidine ring. A strategically placed ring-nitrogen on the benzoxazole core ensured high free fraction in the brain without introducing efflux. Replacing a methoxy pendant with a fluoro-ethoxy group and introducing deuterium atoms suppressed oxidative defluorination and accumulation of [18F]-signal in bones. The resulting PET ligand, CHDI-650, shows a rapid brain uptake and washout profile in non-human primates and is now being advanced to human testing.
Collapse
Affiliation(s)
- Longbin Liu
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 700, Los Angeles, California 90045, United States
| | - Peter D Johnson
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Michael E Prime
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Vinod Khetarpal
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 700, Los Angeles, California 90045, United States
| | - Christopher J Brown
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Luca Anzillotti
- Experimental Pharmacology Department, IRBM S.p.A., Via Pontina km 30,600, Pomezia, Roma 00071, Italy
| | - Daniele Bertoglio
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Xuemei Chen
- Curia Global, Inc., 1001 Main Street, Buffalo, New York 14203, United States
| | - Samuel Coe
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Randall Davis
- Curia Global, Inc., 1001 Main Street, Buffalo, New York 14203, United States
| | - Anthony P Dickie
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Simone Esposito
- Experimental Pharmacology Department, IRBM S.p.A., Via Pontina km 30,600, Pomezia, Roma 00071, Italy
| | - Elise Gadouleau
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Paul R Giles
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Catherine Greenaway
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - James Haber
- Curia Global, Inc., 1001 Main Street, Buffalo, New York 14203, United States
| | - Christer Halldin
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Hospital, Karolinska Institutet, Stockholm S-17176, Sweden
| | - Scott Haller
- Charles River Laboratories, 54943 North Main Street, Mattawan, Michigan 49071, United States
| | - Sarah Hayes
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Todd Herbst
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 700, Los Angeles, California 90045, United States
| | - Frank Herrmann
- Evotec SE, Manfred Eigen Campus, Essener Bogen 7, Hamburg 22419, Germany
| | - Manuela Heßmann
- Evotec SE, Manfred Eigen Campus, Essener Bogen 7, Hamburg 22419, Germany
| | - Ming Min Hsai
- Curia Global, Inc., 1001 Main Street, Buffalo, New York 14203, United States
| | - Yaser Khani
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Hospital, Karolinska Institutet, Stockholm S-17176, Sweden
| | - Adrian Kotey
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Angelo Lembo
- Experimental Pharmacology Department, IRBM S.p.A., Via Pontina km 30,600, Pomezia, Roma 00071, Italy
| | - John E Mangette
- Curia Global, Inc., 1001 Main Street, Buffalo, New York 14203, United States
| | - Gwendolyn A Marriner
- Charles River Laboratories, 54943 North Main Street, Mattawan, Michigan 49071, United States
| | - Richard W Marston
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Matthew R Mills
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Edith Monteagudo
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 700, Los Angeles, California 90045, United States
| | - Anton Forsberg-Morén
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Hospital, Karolinska Institutet, Stockholm S-17176, Sweden
| | - Sangram Nag
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Hospital, Karolinska Institutet, Stockholm S-17176, Sweden
| | - Laura Orsatti
- Experimental Pharmacology Department, IRBM S.p.A., Via Pontina km 30,600, Pomezia, Roma 00071, Italy
| | - Christine Sandiego
- Invicro, 60 Temple St, Ste 8A, New Haven, Connecticut 06510, United States
| | - Sabine Schaertl
- Evotec SE, Manfred Eigen Campus, Essener Bogen 7, Hamburg 22419, Germany
| | - Joanne Sproston
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Steven Staelens
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Jack Tookey
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Penelope A Turner
- Evotec (U.K.) Ltd, 114 Innovation Drive, Milton Park, Abingdon OX14 4RZ, U.K
| | - Andrea Vecchi
- Experimental Pharmacology Department, IRBM S.p.A., Via Pontina km 30,600, Pomezia, Roma 00071, Italy
| | - Maria Veneziano
- Experimental Pharmacology Department, IRBM S.p.A., Via Pontina km 30,600, Pomezia, Roma 00071, Italy
| | - Ignacio Muñoz-Sanjuan
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 700, Los Angeles, California 90045, United States
| | - Jonathan Bard
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 700, Los Angeles, California 90045, United States
| | - Celia Dominguez
- CHDI Management/CHDI Foundation, 6080 Center Drive, Suite 700, Los Angeles, California 90045, United States
| |
Collapse
|
19
|
Atz K, Guba W, Grether U, Schneider G. Machine Learning and Computational Chemistry for the Endocannabinoid System. Methods Mol Biol 2023; 2576:477-493. [PMID: 36152211 DOI: 10.1007/978-1-0716-2728-0_39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Computational methods in medicinal chemistry facilitate drug discovery and design. In particular, machine learning methodologies have recently gained increasing attention. This chapter provides a structured overview of the current state of computational chemistry and its applications for the interrogation of the endocannabinoid system (ECS), highlighting methods in structure-based drug design, virtual screening, ligand-based quantitative structure-activity relationship (QSAR) modeling, and de novo molecular design. We emphasize emerging methods in machine learning and anticipate a forecast of future opportunities of computational medicinal chemistry for the ECS.
Collapse
Affiliation(s)
- Kenneth Atz
- ETH Zurich, Department of Chemistry and Applied Biosciences, Zurich, Switzerland
| | - Wolfgang Guba
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Uwe Grether
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland.
| | - Gisbert Schneider
- ETH Zurich, Department of Chemistry and Applied Biosciences, Zurich, Switzerland
- ETH Singapore SEC Ltd, Singapore, Singapore
| |
Collapse
|
20
|
Wu YR, Tang JQ, Zhang WN, Zhuang CL, Shi Y. Rational drug design of CB2 receptor ligands: from 2012 to 2021. RSC Adv 2022; 12:35242-35259. [PMID: 36540233 PMCID: PMC9730932 DOI: 10.1039/d2ra05661e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/03/2022] [Indexed: 08/29/2023] Open
Abstract
Cannabinoid receptors belong to the large family of G-protein-coupled receptors, which can be divided into two receptor types, cannabinoid receptor type-1 (CB1) and cannabinoid receptor type-2 (CB2). Marinol, Cesamet and Sativex are marketed CB1 drugs which are still in use and work well, but the central nervous system side effects caused by activation CB1, which limited the development of CB1 ligands. So far, no selective CB2 ligand has been approved for marketing, but lots of its ligands in the clinical stage and pre-clinical stage have positive effects on the treatment of some disease models and have great potential for development. Most selective CB2 agonists are designed and synthesized based on non-selective CB2 agonists through the classical med-chem strategies, e.g. molecular hybridization, scaffold hopping, bioisosterism, etc. During these processes, the balance between selectivity, activity, and pharmacokinetic properties needs to be achieved. Hence, we summarized some reported ligands on the basis of the optimization strategies in recent 10 years, and the limitations and future directions.
Collapse
Affiliation(s)
- Yan-Ran Wu
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University 1160 Shengli Street Yinchuan 750004 China
| | - Jia-Qin Tang
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University 1160 Shengli Street Yinchuan 750004 China
| | - Wan-Nian Zhang
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University 1160 Shengli Street Yinchuan 750004 China
- School of Pharmacy, Second Military Medical University 325 Guohe Road Shanghai 200433 China
| | - Chun-Lin Zhuang
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University 1160 Shengli Street Yinchuan 750004 China
- School of Pharmacy, Second Military Medical University 325 Guohe Road Shanghai 200433 China
| | - Ying Shi
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University 1160 Shengli Street Yinchuan 750004 China
| |
Collapse
|
21
|
Zhang Y, Yang K, Ye S, Tang W, Chang X, Wang Y, Wang C, Wang Y, Wu Y, Miao Z. Application of a fluorine strategy in the lead optimization of betulinic acid to the discovery of potent CD73 inhibitors. Steroids 2022; 188:109112. [PMID: 36150476 DOI: 10.1016/j.steroids.2022.109112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 01/11/2023]
Abstract
The ecto-5'-nucleotidase (CD73) is an important enzyme in the adenosine pathway and catalyzes the extracellular hydrolysis of adenosine monophosphate (AMP) yielding adenosine which is involved in the inflammation and immunosuppression. Inhibitors of CD73 have potential as novel immunotherapy agents for the treatment of cancer and infection. In this study, we discovered a series of fluorinated betulinic acid derivatives as potent CD73 inhibitors by a fluorine scanning strategy. Among these, three compounds ZM522, ZM553 and ZM557 exhibited inhibitory activity with IC50 values of 0.56 uM, 0.74 uM and 0.47 uM, respectively. In addition, these compounds showed a 7-fold, 5-fold and 8-fold increase in activity compared to the positive control drug α, β-methylene adenosine diphosphate (APCP) against the human CD73 enzyme. Two of these (ZM522 and ZM553) also exhibited effective interferon gamma (INF-γ) elevation and indicated the regulation of rescued T cell activation. Therefore, our study provides both a lead optimization strategy and potential compounds for further development of small molecule CD73 inhibitors.
Collapse
Affiliation(s)
- Yanming Zhang
- School of Pharmacy, The Second Military Medical University, 325 Guohe Road, Shanghai 200433, PR China
| | - Keli Yang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, PR China
| | - Shuang Ye
- School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Wenmin Tang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, PR China
| | - Xuliang Chang
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, PR China
| | - Yuan Wang
- School of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, PR China
| | - Chuanhao Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, PR China
| | - Ying Wang
- Department of Dermatology, The First Affiliated Hospital of Second Military Medical University, Shanghai 200433, PR China.
| | - Yuelin Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, PR China.
| | - Zhenyuan Miao
- School of Pharmacy, The Second Military Medical University, 325 Guohe Road, Shanghai 200433, PR China.
| |
Collapse
|
22
|
Ni R, Müller Herde A, Haider A, Keller C, Louloudis G, Vaas M, Schibli R, Ametamey SM, Klohs J, Mu L. In vivo Imaging of Cannabinoid Type 2 Receptors: Functional and Structural Alterations in Mouse Model of Cerebral Ischemia by PET and MRI. Mol Imaging Biol 2022; 24:700-709. [PMID: 34642898 PMCID: PMC9581861 DOI: 10.1007/s11307-021-01655-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Stroke is one of the most prevalent vascular diseases. Non-invasive molecular imaging methods have the potential to provide critical insights into the temporal dynamics and follow alterations of receptor expression and metabolism in ischemic stroke. The aim of this study was to assess the cannabinoid type 2 receptor (CB2R) levels in transient middle cerebral artery occlusion (tMCAO) mouse models at subacute stage using positron emission tomography (PET) with our novel tracer [18F]RoSMA-18-d6 and structural imaging by magnetic resonance imaging (MRI). PROCEDURES Our recently developed CB2R PET tracer [18F]RoSMA-18-d6 was used for imaging neuroinflammation at 24 h after reperfusion in tMCAO mice. The RNA expression levels of CB2R and other inflammatory markers were analyzed by quantitative real-time polymerase chain reaction using brain tissues from tMCAO (1 h occlusion) and sham-operated mice. [18F]fluorodeoxyglucose (FDG) was included for evaluation of the cerebral metabolic rate of glucose (CMRglc). In addition, diffusion-weighted imaging and T2-weighted imaging were performed for anatomical reference and delineating the lesion in tMCAO mice. RESULTS mRNA expressions of inflammatory markers TNF-α, Iba1, MMP9 and GFAP, CNR2 were increased to 1.3-2.5 fold at 24 h after reperfusion in the ipsilateral compared to contralateral hemisphere of tMCAO mice, while mRNA expression of the neuronal marker MAP-2 was markedly reduced to ca. 50 %. Reduced [18F]FDG uptake was observed in the ischemic striatum of tMCAO mouse brain at 24 h after reperfusion. Although higher activity of [18F]RoSMA-18-d6 in ex vivo biodistribution studies and higher standard uptake value ratio (SUVR) were detected in the ischemic ipsilateral compared to contralateral striatum in tMCAO mice, the in vivo specificity of [18F]RoSMA-18-d6 was confirmed only in the CB2R-rich spleen. CONCLUSIONS This study revealed an increased [18F]RoSMA-18-d6 measure of CB2R and a reduced [18F]FDG measure of CMRglc in the ischemic striatum of tMCAO mice at subacute stage. [18F]RoSMA-18-d6 might be a promising PET tracer for detecting CB2R alterations in animal models of neuroinflammation without neuronal loss.
Collapse
Affiliation(s)
- Ruiqing Ni
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Adrienne Müller Herde
- Department of Chemistry and Applied Biosciences, ETH Zurich, HCI H427 Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Achi Haider
- Department of Chemistry and Applied Biosciences, ETH Zurich, HCI H427 Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Claudia Keller
- Department of Chemistry and Applied Biosciences, ETH Zurich, HCI H427 Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Georgios Louloudis
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Markus Vaas
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Roger Schibli
- Department of Chemistry and Applied Biosciences, ETH Zurich, HCI H427 Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Simon M Ametamey
- Department of Chemistry and Applied Biosciences, ETH Zurich, HCI H427 Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Jan Klohs
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Linjing Mu
- Department of Chemistry and Applied Biosciences, ETH Zurich, HCI H427 Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland.
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
23
|
Kecheliev V, Spinelli F, Herde A, Haider A, Mu L, Klohs J, Ametamey SM, Ni R. Evaluation of cannabinoid type 2 receptor expression and pyridine-based radiotracers in brains from a mouse model of Alzheimer's disease. Front Aging Neurosci 2022; 14:1018610. [PMID: 36248003 PMCID: PMC9561934 DOI: 10.3389/fnagi.2022.1018610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Neuroinflammation plays an important role in the pathophysiology of Alzheimer's disease. The cannabinoid type 2 receptor (CB2R) is an emerging target for neuroinflammation and therapeutics of Alzheimer's disease. Here, we aim to assess the alterations in brain CB2R levels and evaluate novel CB2R imaging tracers in the arcAß mouse model of Alzheimer's disease amyloidosis. Immunohistochemical staining for amyloid-ß deposits (6E10), microgliosis (anti-Iba1 and anti-CD68 antibodies), astrocytes (GFAP) and the anti-CB2R antibody was performed on brain slices from 17-month-old arcAß mice. Autoradiography using the CB2R imaging probes [18F]RoSMA-18-d6, [11C]RSR-056, and [11C]RS-028 and mRNA analysis were performed in brain tissue from arcAß and non-transgenic littermate (NTL) mice at 6, 17, and 24 months of age. Specific increased CB2R immunofluorescence intensities on the increased number of GFAP-positive astrocytes and Iba1-positive microglia were detected in the hippocampus and cortex of 17-month-old arcAß mice compared to NTL mice. CB2R immunofluorescence was higher in glial cells inside 6E10-positive amyloid-ß deposits than peri-plaque glial cells, which showed low background immunofluorescence in the hippocampus and cortex of 17-month-old arcAß mice. Ex vivo autoradiography showed that the specific binding of [18F]RoSMA-18-d6 and [11C]RSR-056 was comparable in arcAß and NTL mice at 6, 17, and 24 months of age. The level of Cnr2 mRNA expression in the brain was not significantly different between arcAß and NTL mice at 6, 17, or 24 months of age. In conclusion, we demonstrated pronounced specific increases in microglial and astroglial CB2R expression levels in a mouse model of AD-related cerebral amyloidosis, emphasizing CB2R as a suitable target for imaging neuroinflammation.
Collapse
Affiliation(s)
- Vasil Kecheliev
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Francesco Spinelli
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Adrienne Herde
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Achi Haider
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Linjing Mu
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Jan Klohs
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Simon M. Ametamey
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
24
|
Kaczocha M, Haj-Dahmane S. Mechanisms of endocannabinoid transport in the brain. Br J Pharmacol 2022; 179:4300-4310. [PMID: 33786823 PMCID: PMC8481389 DOI: 10.1111/bph.15469] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
The endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide are among the best studied lipid messengers in the brain. By activating cannabinoid receptors in the CNS, endocannabinoids tune synaptic function, thereby influencing a variety of physiological and behavioural processes. Extensive research conducted over the last few decades has considerably enhanced our understanding of the molecular mechanisms and physiological functions of the endocannabinoid system. It is now well-established that endocannabinoids are synthesized by postsynaptic neurons and serve as retrograde messengers that suppress neurotransmitter release at central synapses. While the detailed mechanisms by which endocannabinoids gate synaptic function and behavioural processes are relatively well characterized, the mechanisms governing endocannabinoid transport at central synapses remain ill defined. Recently, several studies have begun to unravel the mechanisms governing intracellular and intercellular endocannabinoid transport. In this review, we will focus on new advances in the mechanisms of intracellular and synaptic endocannabinoid transport in the CNS. LINKED ARTICLES: This article is part of a themed issue on New discoveries and perspectives in mental and pain disorders. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.17/issuetoc.
Collapse
Affiliation(s)
- Martin Kaczocha
- Department of Anesthesiology, Stony Brook University, Stony Brook, New York, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| | - Samir Haj-Dahmane
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA
- Neuroscience Program, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
25
|
Gündel D, Deuther-Conrad W, Ueberham L, Kaur S, Otikova E, Teodoro R, Toussaint M, Lai TH, Clauß O, Scheunemann M, Bormans G, Bachmann M, Kopka K, Brust P, Moldovan RP. Structure-Based Design, Optimization, and Development of [ 18F]LU13: A Novel Radioligand for Cannabinoid Receptor Type 2 Imaging in the Brain with PET. J Med Chem 2022; 65:9034-9049. [PMID: 35771668 DOI: 10.1021/acs.jmedchem.2c00256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cannabinoid receptor type 2 (CB2R) is an attractive target for the diagnosis and therapy of neurodegenerative diseases and cancer. In this study, we aimed at the development of a novel 18F-labeled radioligand starting from the structure of the known naphthyrid-2-one CB2R ligands. Compound 28 (LU13) was identified with the highest binding affinity and selectivity versus CB1R (CB2RKi = 0.6 nM; CB1RKi/CB2RKi > 1000) and was selected for radiolabeling with fluorine-18 and biological characterization. The new radioligand [18F]LU13 showed high CB2R affinity in vitro as well as high metabolic stability in vivo. PET imaging with [18F]LU13 in a rat model of vector-based/-related hCB2R overexpression in the striatum revealed a high signal-to-background ratio. Thus, [18F]LU13 is a novel and highly promising PET radioligand for the imaging of upregulated CB2R expression under pathological conditions in the brain.
Collapse
Affiliation(s)
- Daniel Gündel
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Research Site Leipzig, 04318 Leipzig, Germany
| | - Winnie Deuther-Conrad
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Research Site Leipzig, 04318 Leipzig, Germany
| | - Lea Ueberham
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Research Site Leipzig, 04318 Leipzig, Germany
| | - Sarandeep Kaur
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Research Site Leipzig, 04318 Leipzig, Germany
| | - Elina Otikova
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Research Site Leipzig, 04318 Leipzig, Germany
| | - Rodrigo Teodoro
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Research Site Leipzig, 04318 Leipzig, Germany
| | - Magali Toussaint
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Research Site Leipzig, 04318 Leipzig, Germany
| | - Thu Hang Lai
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Research Site Leipzig, 04318 Leipzig, Germany.,Department of Research and Development, ROTOP Pharmaka GmbH, 01069 Dresden, Germany
| | - Oliver Clauß
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Research Site Leipzig, 04318 Leipzig, Germany
| | - Matthias Scheunemann
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Research Site Leipzig, 04318 Leipzig, Germany
| | - Guy Bormans
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, BE-3000 Leuven, Belgium
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Research Site Leipzig, 04318 Leipzig, Germany
| | - Klaus Kopka
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Research Site Leipzig, 04318 Leipzig, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, TU Dresden, 01069 Dresden, Germany
| | - Peter Brust
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Research Site Leipzig, 04318 Leipzig, Germany.,The Lübeck Institute of Experimental Dermatology, University Medical Center Schleswig-Holstein, 23562 Lübeck, Germany
| | - Rareş-Petru Moldovan
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Research Site Leipzig, 04318 Leipzig, Germany
| |
Collapse
|
26
|
Gazzi T, Brennecke B, Atz K, Korn C, Sykes D, Forn-Cuni G, Pfaff P, Sarott RC, Westphal MV, Mostinski Y, Mach L, Wasinska-Kalwa M, Weise M, Hoare BL, Miljuš T, Mexi M, Roth N, Koers EJ, Guba W, Alker A, Rufer AC, Kusznir EA, Huber S, Raposo C, Zirwes EA, Osterwald A, Pavlovic A, Moes S, Beck J, Nettekoven M, Benito-Cuesta I, Grande T, Drawnel F, Widmer G, Holzer D, van der Wel T, Mandhair H, Honer M, Fingerle J, Scheffel J, Broichhagen J, Gawrisch K, Romero J, Hillard CJ, Varga ZV, van der Stelt M, Pacher P, Gertsch J, Ullmer C, McCormick PJ, Oddi S, Spaink HP, Maccarrone M, Veprintsev DB, Carreira EM, Grether U, Nazaré M. Detection of cannabinoid receptor type 2 in native cells and zebrafish with a highly potent, cell-permeable fluorescent probe. Chem Sci 2022; 13:5539-5545. [PMID: 35694350 PMCID: PMC9116301 DOI: 10.1039/d1sc06659e] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/22/2022] [Indexed: 12/16/2022] Open
Abstract
Despite its essential role in the (patho)physiology of several diseases, CB2R tissue expression profiles and signaling mechanisms are not yet fully understood. We report the development of a highly potent, fluorescent CB2R agonist probe employing structure-based reverse design. It commences with a highly potent, preclinically validated ligand, which is conjugated to a silicon-rhodamine fluorophore, enabling cell permeability. The probe is the first to preserve interspecies affinity and selectivity for both mouse and human CB2R. Extensive cross-validation (FACS, TR-FRET and confocal microscopy) set the stage for CB2R detection in endogenously expressing living cells along with zebrafish larvae. Together, these findings will benefit clinical translatability of CB2R based drugs. Detection and visualization of the cannabinoid receptor type 2 by a cell-permeable high affinity fluorescent probe platform enables tracing receptor trafficking in live cells and in zebrafish.![]()
Collapse
Affiliation(s)
- Thais Gazzi
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Campus Berlin-Buch 13125 Berlin Germany
| | - Benjamin Brennecke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Campus Berlin-Buch 13125 Berlin Germany
| | - Kenneth Atz
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Claudia Korn
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - David Sykes
- Faculty of Medicine & Health Sciences, University of Nottingham Nottingham NG7 2UH England UK.,United Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham Midlands England UK
| | | | - Patrick Pfaff
- Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Roman C Sarott
- Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Matthias V Westphal
- Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Yelena Mostinski
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Campus Berlin-Buch 13125 Berlin Germany
| | - Leonard Mach
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Campus Berlin-Buch 13125 Berlin Germany
| | - Malgorzata Wasinska-Kalwa
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Campus Berlin-Buch 13125 Berlin Germany
| | - Marie Weise
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Campus Berlin-Buch 13125 Berlin Germany
| | - Bradley L Hoare
- Faculty of Medicine & Health Sciences, University of Nottingham Nottingham NG7 2UH England UK.,United Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham Midlands England UK
| | - Tamara Miljuš
- Faculty of Medicine & Health Sciences, University of Nottingham Nottingham NG7 2UH England UK.,United Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham Midlands England UK
| | - Maira Mexi
- Faculty of Medicine & Health Sciences, University of Nottingham Nottingham NG7 2UH England UK.,United Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham Midlands England UK
| | - Nicolas Roth
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London London EC1M 6BQ England UK
| | - Eline J Koers
- Faculty of Medicine & Health Sciences, University of Nottingham Nottingham NG7 2UH England UK.,United Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham Midlands England UK
| | - Wolfgang Guba
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - André Alker
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Arne C Rufer
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Eric A Kusznir
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Sylwia Huber
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Catarina Raposo
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Elisabeth A Zirwes
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Anja Osterwald
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Anto Pavlovic
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Svenja Moes
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Jennifer Beck
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Matthias Nettekoven
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Irene Benito-Cuesta
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria Pozuelo de Alarcón 28223 Madrid Spain
| | - Teresa Grande
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria Pozuelo de Alarcón 28223 Madrid Spain
| | - Faye Drawnel
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Gabriella Widmer
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Daniela Holzer
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Tom van der Wel
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University 2333 CC Leiden the Netherlands
| | - Harpreet Mandhair
- Institute of Biochemistry and Molecular Medicine, University of Bern 3012 Bern Switzerland
| | - Michael Honer
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Jürgen Fingerle
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Jörg Scheffel
- Dermatological Allergology, Allergie-Centrum-Charité, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin Berlin Germany.,Allergology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP Berlin Germany
| | - Johannes Broichhagen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Campus Berlin-Buch 13125 Berlin Germany
| | - Klaus Gawrisch
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health Rockville MD 20852 USA
| | - Julián Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria Pozuelo de Alarcón 28223 Madrid Spain
| | - Cecilia J Hillard
- Department of Pharmacology and Toxicology, Neuroscience Research Center, Medical College of Wisconsin Milwaukee WI 53226 USA
| | - Zoltan V Varga
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health Rockville MD 20852 USA.,HCEMM-SU Cardiometabolic Immunology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University 1085 Budapest Hungary
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University 2333 CC Leiden the Netherlands
| | - Pal Pacher
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health Rockville MD 20852 USA
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, University of Bern 3012 Bern Switzerland
| | - Christoph Ullmer
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Peter J McCormick
- William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary University of London London EC1M 6BQ England UK
| | - Sergio Oddi
- Faculty of Veterinary Medicine, University of Teramo 64100 Teramo European Italy.,European Center for Brain Research (CERC), Santa Lucia Foundation 00179 Rome Italy
| | - Herman P Spaink
- Leiden University Einsteinweg 55 2333 CC Leiden the Netherlands
| | - Mauro Maccarrone
- European Center for Brain Research (CERC), Santa Lucia Foundation 00179 Rome Italy.,Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila 67100 L'Aquila Italy
| | - Dmitry B Veprintsev
- Faculty of Medicine & Health Sciences, University of Nottingham Nottingham NG7 2UH England UK.,United Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham Midlands England UK
| | - Erick M Carreira
- Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Uwe Grether
- Roche Pharma Research & Early Development, Roche Innovation Center Basel F. Hoffmann-La Roche Ltd. 4070 Basel Switzerland
| | - Marc Nazaré
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) Campus Berlin-Buch 13125 Berlin Germany
| |
Collapse
|
27
|
Kopf S, Bourriquen F, Li W, Neumann H, Junge K, Beller M. Recent Developments for the Deuterium and Tritium Labeling of Organic Molecules. Chem Rev 2022; 122:6634-6718. [PMID: 35179363 DOI: 10.1021/acs.chemrev.1c00795] [Citation(s) in RCA: 191] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Organic compounds labeled with hydrogen isotopes play a crucial role in numerous areas, from materials science to medicinal chemistry. Indeed, while the replacement of hydrogen by deuterium gives rise to improved absorption, distribution, metabolism, and excretion (ADME) properties in drugs and enables the preparation of internal standards for analytical mass spectrometry, the use of tritium-labeled compounds is a key technique all along drug discovery and development in the pharmaceutical industry. For these reasons, the interest in new methodologies for the isotopic enrichment of organic molecules and the extent of their applications are equally rising. In this regard, this Review intends to comprehensively discuss the new developments in this area over the last years (2017-2021). Notably, besides the fundamental hydrogen isotope exchange (HIE) reactions and the use of isotopically labeled analogues of common organic reagents, a plethora of reductive and dehalogenative deuteration techniques and other transformations with isotope incorporation are emerging and are now part of the labeling toolkit.
Collapse
Affiliation(s)
- Sara Kopf
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | | - Wu Li
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | | - Kathrin Junge
- Leibniz-Institut für Katalyse e. V., 18059 Rostock, Germany
| | | |
Collapse
|
28
|
Chen Z, Haider A, Chen J, Xiao Z, Gobbi L, Honer M, Grether U, Arnold SE, Josephson L, Liang SH. The Repertoire of Small-Molecule PET Probes for Neuroinflammation Imaging: Challenges and Opportunities beyond TSPO. J Med Chem 2021; 64:17656-17689. [PMID: 34905377 PMCID: PMC9094091 DOI: 10.1021/acs.jmedchem.1c01571] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Neuroinflammation is an adaptive response of the central nervous system to diverse potentially injurious stimuli, which is closely associated with neurodegeneration and typically characterized by activation of microglia and astrocytes. As a noninvasive and translational molecular imaging tool, positron emission tomography (PET) could provide a better understanding of neuroinflammation and its role in neurodegenerative diseases. Ligands to translator protein (TSPO), a putative marker of neuroinflammation, have been the most commonly studied in this context, but they suffer from serious limitations. Herein we present a repertoire of different structural chemotypes and novel PET ligand design for classical and emerging neuroinflammatory targets beyond TSPO. We believe that this Perspective will support multidisciplinary collaborations in academic and industrial institutions working on neuroinflammation and facilitate the progress of neuroinflammation PET probe development for clinical use.
Collapse
Affiliation(s)
- Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Ahmed Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Jiahui Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Zhiwei Xiao
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Luca Gobbi
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Michael Honer
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Uwe Grether
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, CH-4070 Basel, Switzerland
| | - Steven E. Arnold
- Department of Neurology and the Massachusetts Alzheimer’s Disease Research Center, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, Massachusetts 02129, USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, United States
| |
Collapse
|
29
|
Deng X, Salgado-Polo F, Shao T, Xiao Z, Van R, Chen J, Rong J, Haider A, Shao Y, Josephson L, Perrakis A, Liang SH. Imaging Autotaxin In Vivo with 18F-Labeled Positron Emission Tomography Ligands. J Med Chem 2021; 64:15053-15068. [PMID: 34662125 DOI: 10.1021/acs.jmedchem.1c00913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Autotaxin (ATX) is a secreted phosphodiesterase that has been implicated in a remarkably wide array of pathologies, especially in fibrosis and cancer. While ATX inhibitors have entered the clinical arena, a validated probe for positron emission tomography (PET) is currently lacking. With the aim to develop a suitable ATX-targeted PET radioligand, we have synthesized a focused library of fluorinated imidazo[1,2-a]pyridine derivatives, determined their inhibition constants, and confirmed their binding mode by crystallographic analysis. Based on their promising in vitro properties, compounds 9c, 9f, 9h, and 9j were radiofluorinated. Also, a deuterated analog of [18F]9j, designated as [18F]ATX-1905 ([18F]20), was designed and proved to be highly stable against in vivo radiodefluorination compared with [18F]9c, [18F]9f, [18F]9h, and [18F]9j. These results along with in vitro and in vivo studies toward ATX in a mouse model of LPS-induced liver injury suggest that [18F]ATX-1905 is a suitable PET probe for the non-invasive quantification of ATX.
Collapse
Affiliation(s)
- Xiaoyun Deng
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fernando Salgado-Polo
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Tuo Shao
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Zhiwei Xiao
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Richard Van
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Jiahui Chen
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Achi Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Anastassis Perrakis
- Oncode Institute and Division of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
30
|
Teodoro R, Gündel D, Deuther-Conrad W, Ueberham L, Toussaint M, Bormans G, Brust P, Moldovan RP. Development of [ 18F]LU14 for PET Imaging of Cannabinoid Receptor Type 2 in the Brain. Int J Mol Sci 2021; 22:ijms22158051. [PMID: 34360817 PMCID: PMC8347709 DOI: 10.3390/ijms22158051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022] Open
Abstract
Cannabinoid receptors type 2 (CB2R) represent an attractive therapeutic target for neurodegenerative diseases and cancer. Aiming at the development of a positron emission tomography (PET) radiotracer to monitor receptor density and/or occupancy during a CB2R-tailored therapy, we herein describe the radiosynthesis of cis-[18F]1-(4-fluorobutyl-N-((1s,4s)-4-methylcyclohexyl)-2-oxo-1,2-dihydro-1,8-naphthyridine-3-carboxamide ([18F]LU14) starting from the corresponding mesylate precursor. The first biological evaluation revealed that [18F]LU14 is a highly affine CB2R radioligand with >80% intact tracer in the brain at 30 min p.i. Its further evaluation by PET in a well-established rat model of CB2R overexpression demonstrated its ability to selectively image the CB2R in the brain and its potential as a tracer to further investigate disease-related changes in CB2R expression.
Collapse
Affiliation(s)
- Rodrigo Teodoro
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Research Site Leipzig, 04318 Leipzig, Germany; (R.T.); (D.G.); (W.D.-C.); (L.U.); (M.T.); (P.B.)
| | - Daniel Gündel
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Research Site Leipzig, 04318 Leipzig, Germany; (R.T.); (D.G.); (W.D.-C.); (L.U.); (M.T.); (P.B.)
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Research Site Leipzig, 04318 Leipzig, Germany; (R.T.); (D.G.); (W.D.-C.); (L.U.); (M.T.); (P.B.)
| | - Lea Ueberham
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Research Site Leipzig, 04318 Leipzig, Germany; (R.T.); (D.G.); (W.D.-C.); (L.U.); (M.T.); (P.B.)
| | - Magali Toussaint
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Research Site Leipzig, 04318 Leipzig, Germany; (R.T.); (D.G.); (W.D.-C.); (L.U.); (M.T.); (P.B.)
| | - Guy Bormans
- Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, BE-3000 Leuven, Belgium;
| | - Peter Brust
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Research Site Leipzig, 04318 Leipzig, Germany; (R.T.); (D.G.); (W.D.-C.); (L.U.); (M.T.); (P.B.)
- The Lübeck Institute of Experimental Dermatology, University Medical Center Schleswig-Holstein, 23562 Lübeck, Germany
| | - Rareş-Petru Moldovan
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Research Site Leipzig, 04318 Leipzig, Germany; (R.T.); (D.G.); (W.D.-C.); (L.U.); (M.T.); (P.B.)
- Correspondence: ; Tel.: +49-3412-3417-94634
| |
Collapse
|
31
|
Hou L, Rong J, Haider A, Ogasawara D, Varlow C, Schafroth MA, Mu L, Gan J, Xu H, Fowler CJ, Zhang MR, Vasdev N, Ametamey S, Cravatt BF, Wang L, Liang SH. Positron Emission Tomography Imaging of the Endocannabinoid System: Opportunities and Challenges in Radiotracer Development. J Med Chem 2021; 64:123-149. [PMID: 33379862 PMCID: PMC7877880 DOI: 10.1021/acs.jmedchem.0c01459] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The endocannabinoid system (ECS) is involved in a wide range of biological functions and comprises cannabinoid receptors and enzymes responsible for endocannabinoid synthesis and degradation. Over the past 2 decades, significant advances toward developing drugs and positron emission tomography (PET) tracers targeting different components of the ECS have been made. Herein, we summarized the recent development of PET tracers for imaging cannabinoid receptors 1 (CB1R) and 2 (CB2R) as well as the key enzymes monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH), particularly focusing on PET neuroimaging applications. State-of-the-art PET tracers for the ECS will be reviewed including their chemical design, pharmacological properties, radiolabeling, as well as preclinical and human PET imaging. In addition, this review addresses the current challenges for ECS PET biomarker development and highlights the important role of PET ligands to study disease pathophysiology as well as to facilitate drug discovery.
Collapse
Affiliation(s)
- Lu Hou
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Jian Rong
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Ahmed Haider
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Daisuke Ogasawara
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Cassis Varlow
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry/Institute of Medical Science, University of Toronto, 250 College St., Toronto, M5T 1R8, ON., Canada
| | - Michael A. Schafroth
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Linjing Mu
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Jiefeng Gan
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
| | - Christopher J. Fowler
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-901 87 Umeå, Sweden
| | - Ming-Rong Zhang
- Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Neil Vasdev
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health & Department of Psychiatry/Institute of Medical Science, University of Toronto, 250 College St., Toronto, M5T 1R8, ON., Canada
| | - Simon Ametamey
- Center for Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland
| | - Benjamin F. Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, SR107 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|