1
|
He Y, Tian CY, Wei S, Han Z, Hu HS, Li J. Computational Explorations of Th 4+ First Hydrolysis Reaction Constants: Insights from Ab Initio Molecular Dynamics and Density Functional Theory Calculations. J Phys Chem A 2025; 129:1042-1050. [PMID: 39818828 DOI: 10.1021/acs.jpca.4c07469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The fundamental hydrolysis behavior of tetravalent actinide cations (An4+) with a high charge is crucial for understanding their solution chemistry, particularly in nuclear fuel reprocessing and environmental behavior. Using Th4+ as a reference of the An4+ series, this work employed both the periodic model and the cluster model to calculate the first hydrolysis reaction constant (pKa1) of the Th4+ aqua ion and conducted a detailed evaluation of these approaches. In the periodic model, ab initio molecular dynamics (AIMD) simulations of Th4+ in the explicit solvation environment are conducted, using metadynamics and constrained molecular dynamics to calculate pKa1 values. Metadynamics simulations with sufficient sampling yielded a value of 5.02, aligning with the experimental values (4.12-4.97). Moreover, AIMD results reveal further Grotthuss-type proton transfers and changes in the solvent structures, which are important for accurately modeling the hydrolysis process. In the cluster model, density functional theory calculations are performed on isolated hydrate clusters to obtain pKa1 values, describing solvation effects through the cluster-continuum model. Based on insights from the periodic models, particularly regarding further proton transfer, the cluster model was modified and tested using different functionals and similar cations (La3+and Ac3+). The pKa1 values obtained in the cluster model also show good agreement with the experimental values. The current computational approaches provide a comprehensive understanding of Th4+ hydrolysis and a reference framework for studying the hydrolysis of other lanthanide and actinide ions.
Collapse
Affiliation(s)
- Yang He
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Chang-Yi Tian
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Shiru Wei
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Zongchang Han
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Han-Shi Hu
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Jun Li
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
- Fundamental Science Center of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
2
|
Pawlak A, Nosal-Wiercińska A. Effect of Ionic Surfactants on Kinetics and Mechanism of the Bi(III) Ion Electroreduction in the Mixed Aqueous-Organic Solutions of Supporting Electrolytes. Molecules 2024; 29:4986. [PMID: 39519628 PMCID: PMC11547737 DOI: 10.3390/molecules29214986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
This work presents the results of a study on the effect of ionic surfactants: cationic hexadecyltriammonium bromide (CTAB) and anionic sodium salt of sulfonic acid (1OSASS) on the Bi(III) electroreduction process in mixed aqueous-organic supporting electrolyte solutions containing methanol. This study showed that the composition of the supporting electrolyte solution, particularly the methanol and surfactant concentrations, significantly affects the mechanism and rate of the Bi(III) ion electroreduction. Analysis of the influence of the indicated factors on the mechanisms and kinetics of metal ion electroreduction can contribute not only to the optimization of industrial electrochemical processes but also to the development of innovative technological solutions, such as advanced electrochemical materials and novel sensors. In these experiments, an innovative electrode made of cyclic renewable liquid silver amalgam (R-AgLAFE) was used as a working electrode, which stands out among classic mercury electrodes (HMDE type) due to the significant reduction in mercury consumption while maintaining similar performance.
Collapse
Affiliation(s)
| | - Agnieszka Nosal-Wiercińska
- Department of Analytical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland;
| |
Collapse
|
3
|
Raposo-Hernández G, Sánchez Marcos E, Pappalardo RR, Martínez JM. Shedding light on the metal-phthalocyanine EXAFS spectra through classical and ab initio molecular dynamics. J Chem Phys 2023; 158:064110. [PMID: 36792519 DOI: 10.1063/5.0135944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Extended X-Ray Absorption Fine Structure (EXAFS) theoretical spectra for some 3d transition metal-phthalocyanines-FePc, NiPc, CuPc, and ZnPc-are presented. Their complexity and rigidity make them a good testbed for the development of theoretical strategies that can complement the difficulties present in the experimental spectrum fitting. Classical and ab initio molecular dynamics trajectories are generated and employed as a source of structural information to compute average spectra for each MPc species. The original ZnPc force field employed in the classical molecular dynamics simulations has been modified in order to improve the agreement with the experimental EXAFS spectrum, and the modification strategy-based on MP2 optimized structures-being extended to the rest of MPcs. Both types of trajectories, classical and ab initio, provide very similar results, showing in all cases the main features present in the experimental spectra despite the different simulation timescales employed. Spectroscopical information has been analyzed on the basis of shells and legs contributions, making possible the comparison with the experimental fitting approaches. According to the simulations results, the simple relationships employed in the fitting process to define the dependence of the Debye Waller factors associated with multiple scattering paths with those of single scattering paths are reasonable. However, a lack of multiple backscattering paths contributions is found due to the intrinsic rigidity of the chemical motif (macrocycle). Its consequences in the Debye Waller factors of the fitted contributions are discussed.
Collapse
Affiliation(s)
| | | | - Rafael R Pappalardo
- Departamento de Química Física, Universidad de Sevilla, 41012 Seville, Spain
| | - José M Martínez
- Departamento de Química Física, Universidad de Sevilla, 41012 Seville, Spain
| |
Collapse
|
4
|
Driscoll DM, Shiery RC, D'Annunzio N, Boglaienko D, Balasubramanian M, Levitskaia TG, Pearce CI, Govind N, Cantu DC, Fulton JL. Water Defect Stabilizes the Bi 3+ Lone-Pair Electronic State Leading to an Unusual Aqueous Hydration Structure. Inorg Chem 2022; 61:14987-14996. [PMID: 36099562 DOI: 10.1021/acs.inorgchem.2c01693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aqueous hydration structure of the Bi3+ ion is probed using a combination of extended X-ray absorption fine structure (EXAFS) spectroscopy and density functional theory (DFT) simulations of ion-water clusters and condensed-phase solutions. Anomalous features in the EXAFS spectra are found to be associated with a highly asymmetric first-solvent water shell. The aqueous chemistry and structure of the Bi3+ ion are dramatically controlled by the water stabilization of a lone-pair electronic state involving the mixed 6s and 6p orbitals. This leads to a distinct multimodal distribution of water molecules in the first shell that are separated by about 0.2 Å. The lone-pair structure is stabilized by a collective response of multiple waters that are localized near the lone-pair anti-bonding site. The findings indicate that the lone-pair stereochemistry of aqueous Bi3+ ions plays a major role in the binding of water and ligands in aqueous solutions.
Collapse
Affiliation(s)
- Darren M Driscoll
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Richard C Shiery
- Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - Nicolas D'Annunzio
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Daria Boglaienko
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | | | - Tatiana G Levitskaia
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Carolyn I Pearce
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Niranjan Govind
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - David C Cantu
- Chemical and Materials Engineering, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - John L Fulton
- Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
5
|
Okazaki Y, Hoshi S, Kato T, Fukui T, Toda K, Ohira SI. Electrodialytic Enrichment and Matrix Conversion for the Determination of Trace Metals in Ultra-Pure Water. ACS OMEGA 2022; 7:14082-14088. [PMID: 35559174 PMCID: PMC9089387 DOI: 10.1021/acsomega.2c00648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/05/2022] [Indexed: 06/15/2023]
Abstract
The presence of trace contaminants in ultra-pure water (UPW) used in fabrication process can greatly affect the yield and quality of industrial products. In the present study, the electrodialytic enrichment of metal cations as a means of continuously monitoring the UPW quality was studied. A newly designed electrodialytic enrichment device (EED) was used to quantitatively transfer metal ions from samples to dilute nitric acid, which was then directly introduced into an inductively coupled plasma-mass spectrometry (ICP-MS) instrument. This process could be performed without contamination of the sample, and the enrichment factor was solely dependent on the flow rate ratio of the sample and acceptor solutions. The transference of analytes into the acidic solution improved the responsivity of the ICP-MS analysis, especially at low concentrations of less than 1 μg/L. Blank solutions to support the analysis of UPW could be produced using the EED effluent, from which metal ions were quantitatively removed. In addition, calibration curves with concentration ranges of several nanograms per liter were obtained by preparing standards using a dynamic gravimetric method while employing a single bottle and continuous mass monitoring to avoid any contamination from the volumetric flasks. The sensitivities associated with the ICP-MS analysis of a number of trace metal ions were improved by one or two orders of magnitude. The data show that the present EED is able to continuously produce enriched analyte solutions to allow the ongoing monitoring of UPW quality.
Collapse
Affiliation(s)
- Yusuke Okazaki
- Department
of Chemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555 Japan
| | - Shigeyuki Hoshi
- Kurita
Water Industries Ltd., 1-1 Kawada Nogi—Machi, Shimotsugagun, Tochigi 329−0105, Japan
| | - Toshimasa Kato
- Kurita
Water Industries Ltd., 1-1 Kawada Nogi—Machi, Shimotsugagun, Tochigi 329−0105, Japan
| | - Takeo Fukui
- Kurita
Water Industries Ltd., 1-1 Kawada Nogi—Machi, Shimotsugagun, Tochigi 329−0105, Japan
| | - Kei Toda
- Department
of Chemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555 Japan
| | - Shin-Ichi Ohira
- Department
of Chemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555 Japan
| |
Collapse
|
6
|
Du D, Geng Q, Ma L, Ren S, Li JX, Dong W, Hua Q, Fan L, Shao R, Wang X, Li C, Yamauchi Y. Mesoporous PdBi nanocages for enhanced electrocatalytic performances by all-direction accessibility and steric site activation. Chem Sci 2022; 13:3819-3825. [PMID: 35432914 PMCID: PMC8966753 DOI: 10.1039/d1sc06314f] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/24/2022] [Indexed: 11/23/2022] Open
Abstract
An effective yet simple approach was developed to synthesize mesoporous PdBi nanocages for electrochemical applications. This technique relies on the subtle utilization of the hydrolysis of a metal salt to generate precipitate cores in situ as templates for navigating the growth of mesoporous shells with the assistance of polymeric micelles. The mesoporous PdBi nanocages are then obtained by excavating vulnerable cores and regulating the crystals of mesoporous metallic skeletons. The resultant mesoporous PdBi nanocages exhibited excellent electrocatalytic performance toward the ethanol oxidation reaction with a mass activity of 3.56 A mg-1_Pd, specific activity of 17.82 mA cm-2 and faradaic efficiency of up to 55.69% for C1 products.
Collapse
Affiliation(s)
- Dawei Du
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Qinghong Geng
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Lian Ma
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Siyu Ren
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Jun-Xuan Li
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Weikang Dong
- Beijing Advanced Innovation Center for Intelligent Robots and Systems and Institute of Engineering Medicine, Beijing Institute of Technology Beijing 100081 China
| | - Qingfeng Hua
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Longlong Fan
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Ruiwen Shao
- Beijing Advanced Innovation Center for Intelligent Robots and Systems and Institute of Engineering Medicine, Beijing Institute of Technology Beijing 100081 China
| | - Xiaoming Wang
- Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Department of Chemistry, Shantou University Shantou 515063 China
| | - Cuiling Li
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Yusuke Yamauchi
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) Tsukuba 305-0044 Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane 4072 Australia
| |
Collapse
|
7
|
Wang Y, Ding P, Xu H, Li Q, Guo J, Liao X, Shi B. Advanced X-ray Shielding Materials Enabled by the Coordination of Well-Dispersed High Atomic Number Elements in Natural Leather. ACS APPLIED MATERIALS & INTERFACES 2020; 12:19916-19926. [PMID: 32237713 DOI: 10.1021/acsami.0c01663] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nowadays, X-rays are playing increasingly important roles in daily life and industrial manufacture, which calls for effective and mobile shielding materials. However, it seems to be a paradox to prepare shielding materials simultaneously achieving excellent X-ray attenuation properties and superior mechanical strength. Here, an advanced leather-based X-ray shielding material containing bismuth and iodine (BiINP-LM) is prepared, and the stable and well-dispersed loading of high-Z element components is enabled by favorable interactions between bismuth iodide and leather, i.e., coordination, hydrogen bonds, and electrostatic attractions. A piece of BiINP-LM with 1.00 mm thickness displays an excellent X-ray attenuation efficiency of more than 90% in the photon energy range below 50 keV and 65% at 83 keV, which averagely exceeds ∼3% than that of the 0.25 mm lead plate and ∼5% than that of the 0.65 mm commercial lead apron. Additionally, the coordination between bismuth and leather provides an enhanced tensile and tear strength of ∼10-fold and 3-fold compared with the lead apron. It is worth mentioning that BiINP-LM also displays extra high water-vapor permeability, which is ∼50-fold more than the lead apron. Overall, this work opens up a new prospect for preparing advanced X-ray shielding materials with both excellent X-ray attenuation and outstanding physiomechanical performances.
Collapse
Affiliation(s)
- Yaping Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, P.R. China
| | - Pingping Ding
- College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, P.R. China
| | - Heng Xu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, P.R. China
| | - Qian Li
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Junling Guo
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - Xuepin Liao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, P.R. China
| | - Bi Shi
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, P.R. China
| |
Collapse
|
8
|
Kava AA, Beardsley C, Hofstetter J, Henry CS. Disposable glassy carbon stencil printed electrodes for trace detection of cadmium and lead. Anal Chim Acta 2019; 1103:58-66. [PMID: 32081189 DOI: 10.1016/j.aca.2019.12.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/25/2019] [Accepted: 12/16/2019] [Indexed: 12/20/2022]
Abstract
Cadmium (Cd) and lead (Pb) pollution is a significant environmental and human health concern, and methods to detect Cd and Pb on site are valuable. Stencil-printed carbon electrodes (SPCEs) are an attractive electrode material for point-of-care (POC) applications due to their low cost, ease of fabrication, disposability and portability. At present, SPCEs are exclusively formulated from graphitic carbon powder and conductive carbon ink. However, graphitic carbon SPCEs are not ideal for heavy metal sensing due to the heterogeneity of graphitic SPCE surfaces. Moreover, SPCEs typically require extensive modification to provide desirable detection limits and sensitivity at the POC, significantly increasing cost and complexity of analysis. While there are many examples of chemically modified SPCEs, the bulk SPCE composition has not been studied for heavy metal detection. Here, a glassy carbon microparticle stencil printed electrode (GC-SPE) was developed. The GC-SPEs were first characterized with SEM and cyclic voltammetry and then optimized for Cd and Pb detection with an in situ Bi-film plated. The GC-SPEs require no chemical modification or pretreatment significantly decreasing the cost and complexity of fabrication. The detection limits for Cd and Pb were estimated to be 0.46 μg L-1 and 0.55 μg L-1, respectively, which are below EPA limits for drinking water (5 μg L-1 Cd and 10 μg L-1 Pb) [1]. The reported GC-SPEs are advantageous with their low cost, ease of fabrication and use, and attractive performance. The GC-SPEs can be used for low-level metal detection at the POC as shown in the report herein.
Collapse
Affiliation(s)
- Alyssa A Kava
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, United States
| | - Chloe Beardsley
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, United States; Access Sensor Technologies, Fort Collins, CO, 80526, United States
| | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523, United States.
| |
Collapse
|
9
|
Kim SH, Hong GH. On the role of 210Bi in the apparent disequilibrium of 210Pb- 210Po at sea. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2019; 208-209:106024. [PMID: 31376730 DOI: 10.1016/j.jenvrad.2019.106024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/25/2019] [Accepted: 07/27/2019] [Indexed: 06/10/2023]
Abstract
The disequilibrium of the grandparent-daughter pair 210Pb (t1/2=22.3 years)-210Po (t1/2=138 days) has been used to estimate the export fluxes of particulate organic carbon in the ocean using particulate-matter-associated 210Po. 210Po is produced from 210Bi, not from 210Pb. The half-life of 210Bi (t1/2=5.01 days) is sufficiently long compared to the rates of biological particle formation and decomposition or dissolution occurring at sea. The role of 210Bi has not yet been assessed quantitatively in the apparent disequilibrium between 210Pb and 210Po, partly due to the non-existence of 210Bi depth profile measurements at sea up to now. However, greater affinity of 210Bi over 210Po and 210Pb was found recently in coastal waters and phytoplankton 207Bi uptake experiments. Build upon these findings, we developed a primitive and simple analytical approach to elucidate the role of 210Bi in the 210Po-210Pb pair in the ocean using a simplified two-box irreversible steady-state ocean model. We assumed that the activity concentrations in the dissolved and particulate phases of 210Pb, 210Bi, and 210Po in a given water column are solely determined by the concentration of the particles, their input and output, the distribution coefficients between dissolved and particulate phases, and decay constants of these radionuclides in the steady-state ocean. The 210Bi contribution to the 210Pb-210Po activity difference in seawater is found to be significant, therefore, it needs to be considered in estimating particle fluxes using 210Pb-210Po secular equilibrium at sea.
Collapse
Affiliation(s)
- Suk Hyun Kim
- Korea Institute of Ocean Science & Technology, Busan, 49111, Republic of Korea
| | - Gi-Hoon Hong
- Department of Geology, Wayne State University, Detroit, Detroit, MI, 48201, USA.
| |
Collapse
|