1
|
Avazverdi E, Mirzadeh H, Ehsani M, Bagheri-Khoulenjani S. Polysaccharide-based polyampholyte complex formation: Investigating the role of intra-chain interactions. Carbohydr Polym 2023; 313:120836. [PMID: 37182945 DOI: 10.1016/j.carbpol.2023.120836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/25/2023] [Accepted: 03/18/2023] [Indexed: 04/03/2023]
Abstract
The difference in inter-chain and intra-chain electrostatic attraction was investigated in polyelectrolyte and polyampholyte electrostatic complex formation. Three polymers with similar backbone molecular structures including chitosan (Ch) polycation, carboxymethyl cellulose (CMCe) polyanion, and carboxymethyl chitosan (CMCh) polyampholyte were used for this purpose. The turbidimetric, water content, and rheological measurements for polyampholyte self-complex showed more dependence on the ionic strength rather than the polyelectrolyte one. The degree of dissociation (α), dissociation constant (pKa), and intrinsic persistence length were calculated by applying the Katchalsky-Lifson model to potentiometric data. We studied the gyration radii as a function of Debye length and observed the polyampholyte chain contractions due to the intra-chain electrostatic attractions, which minimize the entropic gain of the inter-chain complex formation. This is in accordance with the decrease in pKa by αc for CMCh which is the opposite of that for the Ch and CMCe samples. We also found that the polyampholyte has less intrinsic and electrostatic persistence length compared with both polyanion and polycation with similar chain structures indicating the impact of the inter-chain electrostatic interaction on the complex properties. This study deepens our insight about the behavior of CMCh and the nature of difference between CMCh and Ch/CMCe electrostatic complexes.
Collapse
|
2
|
Abdiyev KZ, Maric M, Orynbayev BY, Toktarbay Z, Zhursumbaeva MB, Seitkaliyeva NZ. Flocculating properties of 2-acrylamido-2-methyl-1-propane sulfonic acid-co-allylamine polyampholytic copolymers. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03994-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Yang Y, Narayanan Nair AK, Che Ruslan MFA, Sun S. Interfacial properties of the aromatic hydrocarbon + water system in the presence of hydrophilic silica. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Choudhary N, Narayanan Nair AK, Sun S. Interfacial behavior of the decane + brine + surfactant system in the presence of carbon dioxide, methane, and their mixture. SOFT MATTER 2021; 17:10545-10554. [PMID: 34761789 DOI: 10.1039/d1sm01267c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Molecular dynamics simulations are carried out to get insights into the interfacial behavior of the decane + brine + surfactant + CH4 + CO2 system at reservoir conditions. Our results show that the addition of CH4, CO2, and sodium dodecyl sulfate (SDS) surfactant at the interface reduces the IFTs of the decane + water and decane + brine (NaCl) systems. Here the influence of methane was found to be less pronounced than that of carbon dioxide. As expected, the addition of salt increases the IFTs of the decane + water + surfactant and decane + water + surfactant + CH4/CO2 systems. The IFTs of these surfactant-containing systems decrease with temperature and the influence of pressure is found to be less pronounced. The atomic density profiles show that the sulfate head groups of the SDS molecules penetrate the water-rich phase and their alkyl tails are stretched into the decane-rich phase. The sodium counterions of the surfactant molecules are located very close to their head groups. Furthermore, the density profiles of water and salt ions are hardly affected by the presence of the SDS molecules. However, the interfacial thickness between water and decane/CH4/CO2 molecules increases with increasing surfactant concentration. An important result is that the enrichment of CH4 and/or CO2 in the interfacial region decreases with increasing surfactant concentration. These results may be useful in the context of the water-alternating-gas approach that has been utilized during CO2-enhanced oil recovery operations.
Collapse
Affiliation(s)
- Nilesh Choudhary
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| | - Arun Kumar Narayanan Nair
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| | - Shuyu Sun
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
5
|
Selenova B, Ayazbayeva A, Shakhvorostov A, Kabdrakhmanova S, Nauryzova S, Kudaibergenov S. Preparation and study of the physicochemical characteristics of multilayer polymer composites based on poly(ethyleneimine)-stabilized copper nanoparticles and poly(sodium 2-acrylamide-2-methyl-1-propanesulfonate). CHEMICAL BULLETIN OF KAZAKH NATIONAL UNIVERSITY 2021. [DOI: 10.15328/cb1235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Multilayer films were synthesized from a complex of branched polyethyleneimine (PEI) with copper nanoparticles (PEI-CuNPs) and sodium poly-2-acrylamide-2-methyl-1-propanesulfonate (PAMPSNa), applied layer-by-layer (LbL) on a solid support in an acidic medium. Protonation of the amino groups of PEI in an acidic medium increases the positive charge of the PEI-CuNPs system to +43.5 mV and promotes the formation of an interpolyelectrolyte complex between the positively charged PEI-CuNPs and the highly charged anionic polyelectrolyte PAMPS, the ζ-potential of which was -141 mV. AFM images and SEM micrographs showed a uniform distribution of spherical copper nanoparticles in the homogeneous structure of the multilayer film. The optical characteristics and hydrodynamic dimensions of PEI-CuNPs indicate the formation of PEI-CuNPs nanoparticles with sizes of 60-300 nm, with an average size of up to 100 nm. Copper nanoparticles distributed uniformly in a multilayer PEI-CuNPs/PAMPS film may be of interest for applications in the field of membrane catalysis, biochips, sensor membranes, and controlled drug delivery.
Collapse
|
6
|
Choudhary N, Anwari Che Ruslan MF, Narayanan Nair AK, Qiao R, Sun S. Bulk and Interfacial Properties of the Decane + Brine System in the Presence of Carbon Dioxide, Methane, and Their Mixture. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nilesh Choudhary
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mohd Fuad Anwari Che Ruslan
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Arun Kumar Narayanan Nair
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Rui Qiao
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Shuyu Sun
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
7
|
Yang Y, Narayanan Nair AK, Sun S. Sorption and Diffusion of Methane, Carbon Dioxide, and Their Mixture in Amorphous Polyethylene at High Pressures and Temperatures. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c06110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yafan Yang
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Arun Kumar Narayanan Nair
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Shuyu Sun
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
8
|
Lunkad R, Murmiliuk A, Tošner Z, Štěpánek M, Košovan P. Role of p KA in Charge Regulation and Conformation of Various Peptide Sequences. Polymers (Basel) 2021; 13:E214. [PMID: 33435335 PMCID: PMC7827592 DOI: 10.3390/polym13020214] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/31/2020] [Accepted: 01/02/2021] [Indexed: 12/15/2022] Open
Abstract
Peptides containing amino acids with ionisable side chains represent a typical example of weak ampholytes, that is, molecules with multiple titratable acid and base groups, which generally exhibit charge regulating properties upon changes in pH. Charged groups on an ampholyte interact electrostatically with each other, and their interaction is coupled to conformation of the (macro)molecule, resulting in a complex feedback loop. Their charge-regulating properties are primarily determined by the pKA of individual ionisable side-chains, modulated by electrostatic interactions between the charged groups. The latter is determined by the amino acid sequence in the peptide chain. In our previous work we introduced a simple coarse-grained model of a flexible peptide. We validated it against experiments, demonstrating its ability to quantitatively predict charge on various peptides in a broad range of pH. In the current work, we investigated two types of peptide sequences: diblock and alternating, each of them consisting of an equal number of amino acids with acid and base side-chains. We showed that changing the sequence while keeping the same overall composition has a profound effect on the conformation, whereas it practically does not affect total charge on the peptide. Nevertheless, the sequence significantly affects the charge state of individual groups, showing that the zero net effect on the total charge is a consequence of unexpected cancellation of effects. Furthermore, we investigated how the difference between the pKA of acid and base side chains affects the charge and conformation of the peptide, showing that it is possible to tune the charge-regulating properties by following simple guiding principles based on the pKA and on the amino acid sequence. Our current results provide a theoretical basis for understanding of the complex coupling between the ionisation and conformation in flexible polyampholytes, including synthetic polymers, biomimetic materials and biological molecules, such as intrinsically disordered proteins, whose function can be regulated by changes in the pH.
Collapse
Affiliation(s)
| | | | | | | | - Peter Košovan
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, 128 43 Prague, Czech Republic; (R.L.); (A.M.); (Z.T.); (M.Š.)
| |
Collapse
|
9
|
Choudhary N, Che Ruslan MFA, Narayanan Nair AK, Sun S. Bulk and Interfacial Properties of Alkanes in the Presence of Carbon Dioxide, Methane, and Their Mixture. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04843] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nilesh Choudhary
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mohd Fuad Anwari Che Ruslan
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Arun Kumar Narayanan Nair
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Shuyu Sun
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
10
|
Yang Y, Narayanan Nair AK, Anwari Che Ruslan MF, Sun S. Bulk and Interfacial Properties of the Decane + Water System in the Presence of Methane, Carbon Dioxide, and Their Mixture. J Phys Chem B 2020; 124:9556-9569. [PMID: 33059452 DOI: 10.1021/acs.jpcb.0c05759] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular dynamics simulations are carried out to study the two-phase behavior of the n-decane + water system in the presence of methane, carbon dioxide, and their mixture under reservoir conditions. The simulation studies were complemented by theoretical modeling using the perturbed-chain statistical associating fluid theory (PC-SAFT) equation of state (EoS) and density gradient theory. Our results show that the presence of methane and carbon dioxide decreases the interfacial tension (IFT) of the decane + water system. In general, the IFT increases with increasing pressure and decreasing temperature for the methane + decane + water and carbon dioxide + decane + water systems, similar to what has been found for the corresponding decane + water system. The most important finding of this study is that the presence of carbon dioxide decreases the IFT of the methane + decane + water system. The atomic density profiles provide evidence of the local accumulation of methane and carbon dioxide at the interface, in most of the studied systems. The results of this study show the preferential dissolution in the water-rich phase and enrichment at the interface for carbon dioxide in the methane + carbon dioxide + decane + water system. This indicates the preferential interaction of water with carbon dioxide relative to methane and decane. Notably, there is an enrichment of the interface by decane at high mole fractions of methane in the methane/decane-rich or methane/carbon dioxide/decane-rich phase. Overall, the solubility of methane and carbon dioxide in the water-rich phase increases with increasing pressure and temperature. Additionally, we find that the overall performance of the PC-SAFT EoS and the cubic-plus-association EoS is similar with respect to the calculation of bulk and interfacial properties of these systems.
Collapse
Affiliation(s)
- Yafan Yang
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Arun Kumar Narayanan Nair
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mohd Fuad Anwari Che Ruslan
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Shuyu Sun
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
11
|
Narayanan A, Menefee JR, Liu Q, Dhinojwala A, Joy A. Lower Critical Solution Temperature-Driven Self-Coacervation of Nonionic Polyester Underwater Adhesives. ACS NANO 2020; 14:8359-8367. [PMID: 32538616 DOI: 10.1021/acsnano.0c02396] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To enable attachment to underwater surfaces, aquatic fauna such as mussels and sandcastle worms utilize the advantages of coacervation to deliver concentrated protein-rich adhesive cocktails in an aqueous environment onto underwater surfaces. Recently, a mussel adhesive protein Mfp-3s, was shown to exhibit a coacervation-based adhesion mechanism. Current synthetic strategies to mimic Mfp-3s often involve complexation of oppositely charged polymers. Such complex coacervates are more sensitive to changes in pH and salt, thereby limiting their utility to narrow ranges of pH and ionic strength. In this study, by taking advantage of the lower critical solution temperature-driven coacervation, we have created mussel foot protein-inspired, tropoelastin-like, bioabsorbable, nonionic, self-coacervating polyesters for the delivery of photo-cross-linkable adhesives underwater and to overcome the challenges of adhesion in wet or underwater environments. We describe the rationale for their design and the underwater adhesive properties of these nonionic adhesives. Compared to previously reported coacervate adhesives, these "charge-free" polyesters coacervate in wide ranges of pH (3-12) and ionic strength (0-1 M NaCl) and rapidly (<300 s) adhere to substrates submerged underwater. The study introduces smart materials that mimic the self-coacervation and environmental stability of Mfp-3s and demonstrate the potential for biological adhesive applications where high water content, salts, and pH changes can be expected.
Collapse
Affiliation(s)
- Amal Narayanan
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Joshua R Menefee
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Qianhui Liu
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Ali Dhinojwala
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Abraham Joy
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
12
|
Yang Y, Narayanan Nair AK, Sun S. Sorption and Diffusion of Methane and Carbon Dioxide in Amorphous Poly(alkyl acrylates): A Molecular Simulation Study. J Phys Chem B 2020; 124:1301-1310. [PMID: 31995385 DOI: 10.1021/acs.jpcb.9b11840] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular simulations were carried out to understand the structural features and the sorption and diffusion behavior of methane and carbon dioxide in amorphous poly(alkyl acrylates) in the temperature range of 300-600 K. The hybrid Monte Carlo/molecular dynamics approach was employed to address the effects of polymer swelling and framework flexibility on the gas sorption. Simulations show that the glass-transition temperature decreases with the side-chain length of poly(alkyl acrylate), consistent with experiments. This is due to the fact that the shielding of the polar ester groups increases with the side-chain length. The simulated sorption isotherms for methane and carbon dioxide were in agreement with the experimental data. The polymer swelling becomes more pronounced, especially in the case of sorption of carbon dioxide. A significant swelling occurs, possibly because of the greater interaction between carbon dioxide and the polar ester groups in the polymers. The uptake of methane and carbon dioxide by poly(alkyl acrylates) generally increases with the side-chain length. Our simulations confirm the experimental findings that the diffusion coefficients of methane and carbon dioxide in poly(alkyl acrylates) increase with the side-chain length. Interestingly, the activation energies of gas diffusion decrease with the side-chain length. The diffusion coefficients of the penetrants have an exponential relationship with the void fraction, which is in agreement with the free volume theory.
Collapse
Affiliation(s)
- Yafan Yang
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Arun Kumar Narayanan Nair
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| | - Shuyu Sun
- Physical Science and Engineering Division (PSE), Computational Transport Phenomena Laboratory , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Saudi Arabia
| |
Collapse
|
13
|
Abstract
Abstract
The macromolecular complexes of random, regular, graft, block and dendritic polyampholytes with respect to transition metal ions, surfactants, dyes, polyelectrolytes, and proteins are discussed in this review. Application aspects of macromolecular complexes of polyampholytes in biotechnology, medicine, nanotechnology, catalysis are demonstrated.
Collapse
Affiliation(s)
- Sarkyt E. Kudaibergenov
- Institute of Polymer Materials and Technology , Almaty , Kazakhstan
- Laboratory of Engineering Profile, Satbayev University , Almaty , Kazakhstan
| |
Collapse
|
14
|
Gotlib IY, Victorov AI. Association kinetics and equilibrium in solutions of cross-associating chains that contain inactive spacers. POLYMER 2020. [DOI: 10.1016/j.polymer.2019.122085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Bulk and interfacial properties of decane in the presence of carbon dioxide, methane, and their mixture. Sci Rep 2019; 9:19784. [PMID: 31875027 PMCID: PMC6930215 DOI: 10.1038/s41598-019-56378-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/05/2019] [Indexed: 11/08/2022] Open
Abstract
Molecular dynamics simulations were performed to study the bulk and interfacial properties of methane + n-decane, carbon dioxide + n-decane, and methane + carbon dioxide + n-decane systems under geological conditions. In addition, theoretical calculations using the predictive Peng-Robinson equation of state and density gradient theory are carried out to compare with the simulation data. A key finding is the preferential dissolution in the decane-rich phase and adsorption at the interface for carbon dioxide from the methane/carbon dioxide mixture. In general, both the gas solubility and the swelling factor increase with increasing pressure and decreasing temperature. Interestingly, the methane solubility and the swelling of the methane + n-decane system are not strongly influenced by temperature. Our results also show that the presence of methane increases the interfacial tension (IFT) of the carbon dioxide + n-decane system. Typically, the IFT of the studied systems decreases with increasing pressure and temperature. The relatively higher surface excess of the carbon dioxide + n-decane system results in a steeper decrease in its IFT as a function of pressure. Such systematic investigations may help to understand the behavior of the carbon dioxide-oil system in the presence of impurities such as methane for the design and operation of carbon capture and storage and enhanced oil recovery processes.
Collapse
|
16
|
Landsgesell J, Nová L, Rud O, Uhlík F, Sean D, Hebbeker P, Holm C, Košovan P. Simulations of ionization equilibria in weak polyelectrolyte solutions and gels. SOFT MATTER 2019; 15:1155-1185. [PMID: 30706070 DOI: 10.1039/c8sm02085j] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
This article recapitulates the state of the art regarding simulations of ionization equilibria of weak polyelectrolyte solutions and gels. We start out by reviewing the essential thermodynamics of ionization and show how the weak polyelectrolyte ionization differs from the ionization of simple weak acids and bases. Next, we describe simulation methods for ionization reactions, focusing on two methods: the constant-pH ensemble and the reaction ensemble. After discussing the advantages and limitations of both methods, we review the existing simulation literature. We discuss coarse-grained simulations of weak polyelectrolytes with respect to ionization equilibria, conformational properties, and the effects of salt, both in good and poor solvent conditions. This is followed by a discussion of branched star-like weak polyelectrolytes and weak polyelectrolyte gels. At the end we touch upon the interactions of weak polyelectrolytes with other polymers, surfaces, nanoparticles and proteins. Although proteins are an important class of weak polyelectrolytes, we explicitly exclude simulations of protein ionization equilibria, unless they involve protein-polyelectrolyte interactions. Finally, we try to identify gaps and open problems in the existing simulation literature, and propose challenges for future development.
Collapse
Affiliation(s)
- Jonas Landsgesell
- Institute for Computational Physics, University of Stuttgart, Allmandring 3, Stuttgart, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kumari L, Badwaik HR. Polysaccharide-based nanogels for drug and gene delivery. POLYSACCHARIDE CARRIERS FOR DRUG DELIVERY 2019:497-557. [DOI: 10.1016/b978-0-08-102553-6.00018-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
18
|
Rathee VS, Sidky H, Sikora BJ, Whitmer JK. Role of Associative Charging in the Entropy-Energy Balance of Polyelectrolyte Complexes. J Am Chem Soc 2018; 140:15319-15328. [PMID: 30351015 DOI: 10.1021/jacs.8b08649] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Polyelectrolytes may be classified into two primary categories (strong and weak) depending on how their charge state responds to the local environment. Both of these find use in many applications, including drug delivery, gene therapy, layer-by-layer films, and fabrication of ion filtration membranes. The mechanism of polyelectrolyte complexation is, however, still not completely understood, though experimental investigations suggest that entropy gain due to release of counterions is the key driving force for strong polyelectrolyte complexation. Here we perform a comprehensive thermodynamic investigation through coarse-grained molecular simulations permitting us to calculate the free energy of complex formation. Importantly, our expanded-ensemble methods permit the explicit separation of energetic and entropic contributions to the free energy. Our investigations indicate that entropic contributions indeed dominate the free energy of complex formation for strong polyelectrolytes, but are less important than energetic contributions when weak electrostatic coupling or weak polyelectrolytes are present. Our results provide a new view of the free energy of polyelectrolyte complex formation driven by polymer association, which should also arise in systems with large charge spacings or bulky counterions, both of which act to weaken ion-polymer binding.
Collapse
Affiliation(s)
- Vikramjit S Rathee
- Department of Chemical and Biomolecular Engineering , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Hythem Sidky
- Department of Chemical and Biomolecular Engineering , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Benjamin J Sikora
- Department of Chemical and Biomolecular Engineering , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| | - Jonathan K Whitmer
- Department of Chemical and Biomolecular Engineering , University of Notre Dame , Notre Dame , Indiana 46556 , United States
| |
Collapse
|
19
|
Kudaibergenov SE, Nuraje N. Intra- and Interpolyelectrolyte Complexes of Polyampholytes. Polymers (Basel) 2018; 10:E1146. [PMID: 30961071 PMCID: PMC6403860 DOI: 10.3390/polym10101146] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/12/2022] Open
Abstract
At present, a large amount of research from experimental and theoretical points of view has been done on interpolyelectrolyte complexes formed by electrostatic attractive forces and/or interpolymer complexes stabilized by hydrogen bonds. By contrast, relatively less attention has been given to polymer⁻polymer complex formation with synthetic polyampholytes (PA). In this review the complexation of polyampholytes with polyelectrolytes (PE) is considered from theoretical and application points of view. Formation of intra- and interpolyelectrolyte complexes of random, regular, block, dendritic polyampholytes are outlined. A separate subsection is devoted to amphoteric behavior of interpolyelectrolyte complexes. The realization of the so-called "isoelectric effect" for interpolyelectrolyte complexes of water-soluble polyampholytes, amphoteric hydrogels and cryogels with respect to surfactants, dye molecules, polyelectrolytes and proteins is demonstrated.
Collapse
Affiliation(s)
- Sarkyt E Kudaibergenov
- Laboratory of Functional Polymers, Institute of Polymer Materials and Technology, Almaty 050013, Kazakhstan.
| | - Nurxat Nuraje
- Department of Chemical Engineering, Texas Tech University, Lubbock TX 79409-3121, Box 43121, USA.
| |
Collapse
|
20
|
Rathee VS, Zervoudakis AJ, Sidky H, Sikora BJ, Whitmer JK. Weak polyelectrolyte complexation driven by associative charging. J Chem Phys 2018; 148:114901. [DOI: 10.1063/1.5017941] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Vikramjit S. Rathee
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Aristotle J. Zervoudakis
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Hythem Sidky
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Benjamin J. Sikora
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Jonathan K. Whitmer
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|