1
|
Zhang X, Shi W, Li Y, Zhao W, Han S, Shen W. Pt 3Ti Intermetallic Alloy Formed by Strong Metal–Support Interaction over Pt/TiO 2 for the Selective Hydrogenation of Acetophenone. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Affiliation(s)
- Xixiong Zhang
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Catalysis, Dalian Institution of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wen Shi
- State Key Laboratory of Catalysis, Dalian Institution of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yong Li
- State Key Laboratory of Catalysis, Dalian Institution of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wenning Zhao
- State Key Laboratory of Catalysis, Dalian Institution of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shaobo Han
- State Key Laboratory of Catalysis, Dalian Institution of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wenjie Shen
- State Key Laboratory of Catalysis, Dalian Institution of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
2
|
Wulfes J, Baumann AK, Melchert T, Schröder C, Schauermann S. Adsorption and keto-enol-tautomerisation of butanal on Pd(111). Phys Chem Chem Phys 2022; 24:29480-29494. [PMID: 36448609 DOI: 10.1039/d2cp04398j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Microscopic-level understanding of the interaction of hydrocarbons with transition metal surfaces is an important prerequisite for rational design of new materials with improved catalytic properties. In this report, we present a mechanistic study on the keto-enol tautomerisation of butanal on Pd(111), which was theoretically predicted to play a crucial role in low-barrier hydrogenation of carbonyl compounds. These processes were addressed by a combination of reflection-absorption infrared spectroscopy, molecular beam techniques and theoretical calculations at the density functional theory level. Spectroscopic information obtained on Pd(111) suggests that butanal forms three different aldehyde species, which we indicate as A1-A3 as well as their enol counterpart E1. The electronically strongest perturbed and strongest binding species A1 is most likely related to the η2(C,O) adsorption configuration, in which both C and O atoms are involved in the bonding with the underlying metal. The species A2 weakly binds and is less electronically perturbed and can be associated with the η1(O) adsorption configuration. The third type of aldehyde species A3, which is nearly unperturbed and is found only at low temperatures, results from the formation of the butanal multilayer. Importantly, the enol form of butanal was observed on the surface, which gives rise to a new characteristic band at 1104 cm-1 related to the stretching vibration of the C-O single bond (ν(C-O)). With increasing temperature, the multi-layer related species A3 disappears from the surface above 136 K. The population of aldehyde species A1 and the enol species E1 noticeably increases with increasing temperature, while the band related to the aldehyde species A2 becomes strongly attenuated and finally completely disappears above 120 K. These observations suggest that species E1 and A1 are formed in an activated process and - in view of the strongly anti-correlated population of the species E1 and A2 - it can be concluded that enol species E1 is most likely formed from the weakly bound aldehyde species A2 (η1(O)). Finally, we discuss the possible routes to enol stabilization via intermolecular bonding and provide the possible structure of the enol-containing stabilized complex, which is compatible with all spectroscopic observations. The obtained results provide important insights into the process of keto-enol tautomerisation of simple carbonyl compounds.
Collapse
Affiliation(s)
- Jessica Wulfes
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Str. 1, 24118 Kiel, Germany.
| | - Ann-Katrin Baumann
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Str. 1, 24118 Kiel, Germany.
| | - Tobias Melchert
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Str. 1, 24118 Kiel, Germany.
| | - Carsten Schröder
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Str. 1, 24118 Kiel, Germany.
| | - Swetlana Schauermann
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Str. 1, 24118 Kiel, Germany.
| |
Collapse
|
3
|
Mammen N, Malola S, Honkala K, Häkkinen H. Selective Acrolein Hydrogenation over Ligand-Protected Gold Clusters: A Venus Flytrap Mechanism. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nisha Mammen
- Department of Physics, Nanoscience Center, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Sami Malola
- Department of Physics, Nanoscience Center, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Karoliina Honkala
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Hannu Häkkinen
- Department of Physics, Nanoscience Center, University of Jyväskylä, 40014 Jyväskylä, Finland
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, 40014 Jyväskylä, Finland
| |
Collapse
|
4
|
Gell L, Honkala K. Ligand assisted hydrogenation of levulinic acid on Pt(111) from first principles calculations. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02048j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we investigate the hydrogenation reaction of levulinic acid to 4-hydroxypentanovic acid on a ligand-modified Pt(111) using DFT. Modifying nanoparticle surfaces with ligands can have beneficial effects on...
Collapse
|
5
|
Schröder C, Schmidt MC, Haugg PA, Baumann A, Smyczek J, Schauermann S. Understanding Ligand‐Directed Heterogeneous Catalysis: When the Dynamically Changing Nature of the Ligand Layer Controls the Hydrogenation Selectivity. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Carsten Schröder
- Institute of Physical Chemistry Christian-Albrechts-University Kiel Max-Eyth-Str. 2 24118 Kiel Germany
| | - Marvin C. Schmidt
- Institute of Physical Chemistry Christian-Albrechts-University Kiel Max-Eyth-Str. 2 24118 Kiel Germany
| | - Philipp A. Haugg
- Institute of Physical Chemistry Christian-Albrechts-University Kiel Max-Eyth-Str. 2 24118 Kiel Germany
| | - Ann‐Katrin Baumann
- Institute of Physical Chemistry Christian-Albrechts-University Kiel Max-Eyth-Str. 2 24118 Kiel Germany
| | - Jan Smyczek
- Institute of Physical Chemistry Christian-Albrechts-University Kiel Max-Eyth-Str. 2 24118 Kiel Germany
| | - Swetlana Schauermann
- Institute of Physical Chemistry Christian-Albrechts-University Kiel Max-Eyth-Str. 2 24118 Kiel Germany
| |
Collapse
|
6
|
Schröder C, Schmidt MC, Haugg PA, Baumann AK, Smyczek J, Schauermann S. Understanding Ligand-Directed Heterogeneous Catalysis: When the Dynamically Changing Nature of the Ligand Layer Controls the Hydrogenation Selectivity. Angew Chem Int Ed Engl 2021; 60:16349-16354. [PMID: 34008906 PMCID: PMC8362066 DOI: 10.1002/anie.202103960] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/03/2021] [Indexed: 12/17/2022]
Abstract
We present a mechanistic study on the formation and dynamic changes of a ligand‐based heterogeneous Pd catalyst for chemoselective hydrogenation of α,β‐unsaturated aldehyde acrolein. Deposition of allyl cyanide as a precursor of a ligand layer renders Pd highly active and close to 100 % selective toward propenol formation by promoting acrolein adsorption in a desired configuration via the C=O end. Employing a combination of real‐space microscopic and in‐operando spectroscopic surface‐sensitive techniques, we show that an ordered active ligand layer is formed under operational conditions, consisting of stable N‐butylimine species. In a competing process, unstable amine species evolve on the surface, which desorb in the course of the reaction. Obtained atomistic‐level insights into the formation and dynamic evolution of the active ligand layer under operational conditions provide important input required for controlling chemoselectivity by purposeful surface functionalization.
Collapse
Affiliation(s)
- Carsten Schröder
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Str. 2, 24118, Kiel, Germany
| | - Marvin C Schmidt
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Str. 2, 24118, Kiel, Germany
| | - Philipp A Haugg
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Str. 2, 24118, Kiel, Germany
| | - Ann-Katrin Baumann
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Str. 2, 24118, Kiel, Germany
| | - Jan Smyczek
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Str. 2, 24118, Kiel, Germany
| | - Swetlana Schauermann
- Institute of Physical Chemistry, Christian-Albrechts-University Kiel, Max-Eyth-Str. 2, 24118, Kiel, Germany
| |
Collapse
|
7
|
Affiliation(s)
- Linfang Lu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Shihui Zou
- Key Lab of Applied Chemistry of Zhejiang Province, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Baizeng Fang
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
8
|
Wang Y, Wei S, Duan J, Wang K. Mechanism of Silyl Enol Ethers Hydrogenation Catalysed by Frustrated Lewis Pairs: A Theoretical Study. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21050236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Luneau M, Lim JS, Patel DA, Sykes ECH, Friend CM, Sautet P. Guidelines to Achieving High Selectivity for the Hydrogenation of α,β-Unsaturated Aldehydes with Bimetallic and Dilute Alloy Catalysts: A Review. Chem Rev 2020; 120:12834-12872. [DOI: 10.1021/acs.chemrev.0c00582] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Mathilde Luneau
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jin Soo Lim
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Dipna A. Patel
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - E. Charles H. Sykes
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Cynthia M. Friend
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
10
|
Gao X, Dai H, Peng L, Lu D, Wan X, Zhou C, Zheng J, Dai Y, Wang H, Yang Y. Effect of Hydrotalcites Interlayer Water on Pt-Catalyzed Aqueous-Phase Selective Hydrogenation of Cinnamaldehyde. ACS APPLIED MATERIALS & INTERFACES 2020; 12:2516-2524. [PMID: 31854963 DOI: 10.1021/acsami.9b19160] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The heterogeneous hydrogenation of α,β-unsaturated compounds requires understanding of the structure-activity relationship of metallic catalysts in consideration of solvent-mediated processes. In this work, a CoAl hydrotalcites (CoAl-HTs)-supported Pt nanoparticle catalyst is employed to study the effect of solvent water and HTs interlayer water on the aqueous-phase selective hydrogenation of cinnamaldehyde (CALD). Pt/Co2Al1-HTs catalyst displays 5075 h-1 of specific reaction rate and 89% of C═O hydrogenation selectivity at 80 °C under 20 bar of H2. Combined results of isotope-labeling experiments and theoretical DFT calculations demonstrate that the water-mediated hydrogen-exchange pathway exists in the reaction with a relatively lower-energy barrier in comparison to the direct H2-dissociated hydrogenation pathway. The results also reveal that the interlayer water species of HTs support participate in the hydrogen-exchange reaction. Based on the H2-D2 exchange results, these HTs interlayer water species can promote H2 activation and dissociation processes and thus accelerate the CALD hydrogenation reaction even under solvent-free conditions.
Collapse
Affiliation(s)
- Xing Gao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering , Nanjing Tech University , Nanjing 211816 , China
| | - Hua Dai
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering , Nanjing Tech University , Nanjing 211816 , China
| | - Lilin Peng
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering , Nanjing Tech University , Nanjing 211816 , China
| | - Di Lu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering , Nanjing Tech University , Nanjing 211816 , China
| | - Xiaoyue Wan
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering , Nanjing Tech University , Nanjing 211816 , China
| | - Chunmei Zhou
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering , Nanjing Tech University , Nanjing 211816 , China
| | - Jianwei Zheng
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering , Nanjing Tech University , Nanjing 211816 , China
| | - Yihu Dai
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering , Nanjing Tech University , Nanjing 211816 , China
| | - Hongming Wang
- Institute of Advanced Study, College of Chemistry , Nanchang University , Nanchang 330031 , China
| | - Yanhui Yang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering , Nanjing Tech University , Nanjing 211816 , China
| |
Collapse
|
11
|
Attia S, Schmidt MC, Schröder C, Schauermann S. Formation and Stabilization Mechanisms of Enols on Pt through Multiple Hydrogen Bonding. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01481] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Smadar Attia
- Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Strasse 2, 24118 Kiel, Germany
| | - Marvin C. Schmidt
- Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Strasse 2, 24118 Kiel, Germany
| | - Carsten Schröder
- Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Strasse 2, 24118 Kiel, Germany
| | - Swetlana Schauermann
- Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Strasse 2, 24118 Kiel, Germany
| |
Collapse
|