1
|
Wu Y, Foollee A, Chan AY, Hille S, Hauke J, Challis MP, Johnson JL, Yaron TM, Mynard V, Aung OH, Cleofe MAS, Huang C, Lim Kam Sian TCC, Rahbari M, Gallage S, Heikenwalder M, Cantley LC, Schittenhelm RB, Formosa LE, Smith GC, Okun JG, Müller OJ, Rusu PM, Rose AJ. Phosphoproteomics-directed manipulation reveals SEC22B as a hepatocellular signaling node governing metabolic actions of glucagon. Nat Commun 2024; 15:8390. [PMID: 39333498 PMCID: PMC11436942 DOI: 10.1038/s41467-024-52703-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/17/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
The peptide hormone glucagon is a fundamental metabolic regulator that is also being considered as a pharmacotherapeutic option for obesity and type 2 diabetes. Despite this, we know very little regarding how glucagon exerts its pleiotropic metabolic actions. Given that the liver is a chief site of action, we performed in situ time-resolved liver phosphoproteomics to reveal glucagon signaling nodes. Through pathway analysis of the thousands of phosphopeptides identified, we reveal "membrane trafficking" as a dominant signature with the vesicle trafficking protein SEC22 Homolog B (SEC22B) S137 phosphorylation being a top hit. Hepatocyte-specific loss- and gain-of-function experiments reveal that SEC22B was a key regulator of glycogen, lipid and amino acid metabolism, with SEC22B-S137 phosphorylation playing a major role in glucagon action. Mechanistically, we identify several protein binding partners of SEC22B affected by glucagon, some of which were differentially enriched with SEC22B-S137 phosphorylation. In summary, we demonstrate that phosphorylation of SEC22B is a hepatocellular signaling node mediating the metabolic actions of glucagon and provide a rich resource for future investigations on the biology of glucagon action.
Collapse
Affiliation(s)
- Yuqin Wu
- Nutrient Metabolism & Signalling Laboratory, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria, Australia
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
| | - Ashish Foollee
- Nutrient Metabolism & Signalling Laboratory, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria, Australia
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
| | - Andrea Y Chan
- Nutrient Metabolism & Signalling Laboratory, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria, Australia
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
| | - Susanne Hille
- Department of Internal Medicine V, University Hospital of Schleswig-Holstein, Campus Kiel, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Jana Hauke
- Division of Inherited Metabolic Diseases, University Children's Hospital, Heidelberg, Germany
| | - Matthew P Challis
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
| | - Jared L Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, USA
- Department of Cell Biology, Harvard Medical School, Boston, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Tomer M Yaron
- Meyer Cancer Center, Weill Cornell Medicine, New York, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, USA
- Columbia University Vagelos College of Physicians and Surgeons, New York, USA
| | - Victoria Mynard
- Nutrient Metabolism & Signalling Laboratory, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria, Australia
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
| | - Okka H Aung
- Nutrient Metabolism & Signalling Laboratory, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria, Australia
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
| | - Maria Almira S Cleofe
- Nutrient Metabolism & Signalling Laboratory, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria, Australia
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
| | - Cheng Huang
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
- Monash Proteomics and Metabolomics Platform, Monash University, Victoria, Australia
| | | | - Mohammad Rahbari
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, Heidelberg, Germany
- University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Department of Surgery, Theodor-Kutzer-Ufer 1-3, Heidelberg, Germany
- University Tuebingen, Faculty of Medicine, Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome, Otfried-Müller-Straße 37, Tübingen, Germany
| | - Suchira Gallage
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, Heidelberg, Germany
- University Tuebingen, Faculty of Medicine, Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome, Otfried-Müller-Straße 37, Tübingen, Germany
| | - Mathias Heikenwalder
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, Heidelberg, Germany
- University Tuebingen, Faculty of Medicine, Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome, Otfried-Müller-Straße 37, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard-Karls University, Tübingen, Germany
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, USA
- Department of Cell Biology, Harvard Medical School, Boston, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Ralf B Schittenhelm
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
- Monash Proteomics and Metabolomics Platform, Monash University, Victoria, Australia
| | - Luke E Formosa
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
| | - Greg C Smith
- School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Jürgen G Okun
- Division of Inherited Metabolic Diseases, University Children's Hospital, Heidelberg, Germany
| | - Oliver J Müller
- Department of Internal Medicine V, University Hospital of Schleswig-Holstein, Campus Kiel, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Patricia M Rusu
- Nutrient Metabolism & Signalling Laboratory, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria, Australia
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
| | - Adam J Rose
- Nutrient Metabolism & Signalling Laboratory, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria, Australia.
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia.
| |
Collapse
|
2
|
Kang M, Otani Y, Guo Y, Yan J, Goult BT, Howe AK. The focal adhesion protein talin is a mechanically gated A-kinase anchoring protein. Proc Natl Acad Sci U S A 2024; 121:e2314947121. [PMID: 38513099 PMCID: PMC10990152 DOI: 10.1073/pnas.2314947121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/29/2023] [Accepted: 02/22/2024] [Indexed: 03/23/2024] Open
Abstract
Protein kinase A (PKA) is a ubiquitous, promiscuous kinase whose activity is specified through subcellular localization mediated by A-kinase anchoring proteins (AKAPs). PKA has complex roles as both an effector and a regulator of integrin-mediated cell adhesion to extracellular matrix (ECM). Recent observations demonstrate that PKA is an active component of focal adhesions (FA), suggesting the existence of one or more FA AKAPs. Using a promiscuous biotin ligase fused to PKA type-IIα regulatory (RIIα) subunits and subcellular fractionation, we identify the archetypal FA protein talin1 as an AKAP. Talin is a large, mechanosensitive scaffold that directly links integrins to actin filaments and promotes FA assembly by recruiting additional components in a force-dependent manner. The rod region of talin1 consists of 62 α-helices bundled into 13 rod domains, R1 to R13. Direct binding assays and NMR spectroscopy identify helix41 in the R9 subdomain of talin as the PKA binding site. PKA binding to helix41 requires unfolding of the R9 domain, which requires the linker region between R9 and R10. Experiments with single molecules and in cells manipulated to alter actomyosin contractility demonstrate that the PKA-talin interaction is regulated by mechanical force across the talin molecule. Finally, talin mutations that disrupt PKA binding also decrease levels of total and phosphorylated PKA RII subunits as well as phosphorylation of VASP, a known PKA substrate, within FA. These observations identify a mechanically gated anchoring protein for PKA, a force-dependent binding partner for talin1, and a potential pathway for adhesion-associated mechanotransduction.
Collapse
Affiliation(s)
- Mingu Kang
- Department of Pharmacology, University of Vermont Larner College of Medicine, Burlington, VT05405
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT05405
- University of Vermont Cancer Center, Burlington, VT05405
| | - Yasumi Otani
- School of Biosciences, University of Kent, Canterbury, KentCT2 7NJ, United Kingdom
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, LiverpoolL69 7ZB, United Kingdom
| | - Yanyu Guo
- Department of Physics, Mechanobiology Institute, National University of Singapore, Singapore117542, Singapore
| | - Jie Yan
- Department of Physics, Mechanobiology Institute, National University of Singapore, Singapore117542, Singapore
| | - Benjamin T. Goult
- School of Biosciences, University of Kent, Canterbury, KentCT2 7NJ, United Kingdom
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, LiverpoolL69 7ZB, United Kingdom
| | - Alan K. Howe
- Department of Pharmacology, University of Vermont Larner College of Medicine, Burlington, VT05405
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT05405
- University of Vermont Cancer Center, Burlington, VT05405
| |
Collapse
|
3
|
Niinae T, Sugiyama N, Ishihama Y. Validity of the cell-extracted proteome as a substrate pool for exploring phosphorylation motifs of kinases. Genes Cells 2023; 28:727-735. [PMID: 37658684 PMCID: PMC11447832 DOI: 10.1111/gtc.13063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/01/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023]
Abstract
Three representative protein kinases with different substrate preferences, ERK1 (Pro-directed), CK2 (acidophilic), and PKA (basophilic), were used to investigate phosphorylation sequence motifs in substrate pools consisting of the proteomes from three different cell lines, MCF7 (human mammary carcinoma), HeLa (human cervical carcinoma), and Jurkat (human acute T-cell leukemia). Specifically, recombinant kinases were added to the cell-extracted proteomes to phosphorylate the substrates in vitro. After trypsin digestion, the phosphopeptides were enriched and subjected to nanoLC/MS/MS analysis to identify their phosphorylation sites on a large scale. By analyzing the obtained phosphorylation sites and their surrounding sequences, phosphorylation motifs were extracted for each kinase-substrate proteome pair. We found that each kinase exhibited the same set of phosphorylation motifs, independently of the substrate pool proteome. Furthermore, the identified motifs were also consistent with those found using a completely randomized peptide library. These results indicate that cell-extracted proteomes can provide kinase phosphorylation motifs with sufficient accuracy, even though their sequences are not completely random, supporting the robustness of phosphorylation motif identification based on phosphoproteome analysis of cell extracts as a substrate pool for a kinase of interest.
Collapse
Affiliation(s)
- Tomoya Niinae
- Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan
| | - Naoyuki Sugiyama
- Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan
- Laboratory of Clinical and Analytical ChemistryNational Institute of Biomedical Innovation, Health and NutritionIbarakiOsakaJapan
| |
Collapse
|
4
|
Kang M, Otani Y, Guo Y, Yan J, Goult BT, Howe AK. The focal adhesion protein talin is a mechanically-gated A-kinase anchoring protein (AKAP). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.20.554038. [PMID: 37645895 PMCID: PMC10462126 DOI: 10.1101/2023.08.20.554038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 08/31/2023]
Abstract
The cAMP-dependent protein kinase (Protein Kinase A; PKA) is a ubiquitous, promiscuous kinase whose activity is focused and specified through subcellular localization mediated by A-kinase anchoring proteins (AKAPs). PKA has complex roles as both an effector and a regulator of integrin-mediated cell adhesion to the extracellular matrix (ECM). Recent observations demonstrate that PKA is an active component of focal adhesions (FA), intracellular complexes coupling ECM-bound integrins to the actin cytoskeleton, suggesting the existence of one or more FA AKAPs. Using a combination of a promiscuous biotin ligase fused to PKA type-IIα regulatory (RIIα) subunits and subcellular fractionation, we identify the archetypal FA protein talin1 as an AKAP. Talin is a large, mechanosensitive scaffold that directly links integrins to actin filaments and promotes FA assembly by recruiting additional components in a force-dependent manner. The rod region of talin1 consists of 62 α-helices bundled into 13 rod domains, R1-R13. Direct binding assays and nuclear magnetic resonance spectroscopy identify helix41 in the R9 subdomain of talin as the PKA binding site. PKA binding to helix41 requires unfolding of the R9 domain, which requires the linker region between R9 and R10. Finally, single-molecule experiments with talin1 and PKA, and experiments in cells manipulated to alter actomyosin contractility demonstrate that the PKA-talin interaction is regulated by mechanical force across the talin molecule. These observations identify the first mechanically-gated anchoring protein for PKA, a new force-dependent binding partner for talin1, and thus a new mechanism for coupling cellular tension and signal transduction.
Collapse
|
5
|
Falquet M, Prezioso C, Ludvigsen M, Bruun JA, Passerini S, Sveinbjørnsson B, Pietropaolo V, Moens U. Regulation of Transcriptional Activity of Merkel Cell Polyomavirus Large T-Antigen by PKA-Mediated Phosphorylation. Int J Mol Sci 2023; 24:ijms24010895. [PMID: 36614338 PMCID: PMC9820997 DOI: 10.3390/ijms24010895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/25/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
Merkel cell polyomavirus (MCPyV) is the major cause of Merkel cell carcinoma (MCC), an aggressive skin cancer. MCPyV large T-antigen (LTag) and small T-antigen (sTag) are the main oncoproteins involved in MCPyV-induced MCC. A hallmark of MCPyV-positive MCC cells is the expression of a C-terminal truncated LTag. Protein kinase A (PKA) plays a fundamental role in a variety of biological processes, including transcription by phosphorylating and thereby regulating the activity of transcription factors. As MCPyV LTag has been shown to be phosphorylated and acts as a transcription factor for the viral early and late promoter, we investigated whether LTag can be phosphorylayted by PKA, and whether this affects the transcript activity of LTag. Using a phosphorylation prediction algorithm, serine 191, 203, and 265 were identified as putative phosphorylation sites for PKA. Mass spectrometry of in vitro PKA-phosphorylated peptides confirmed phosphorylation of S203 and S265, but not S191. Full-length LTag inhibited early and late promoter activity of MCPyV, whereas the truncated MKL2 LTag variant stimulated both promoters. Single non-phosphorylable, as well as phosphomimicking mutations did not alter the inhibitory effect of full-length LTag. However, the non-phosphorylable mutations abrogated transactivation of the MCPyV promoters by MKL2 LTag, whereas phosphomimicking substitutions restored the ability of MKL2 LTag to activate the promoters. Triple LTag and MKL2 LTag mutants had the same effect as the single mutants. Activation of the PKA signaling pathway did not enhance MCPyV promoter activity, nor did it affect LTag expression levels in MCPyV-positive Merkel cell carcinoma (MCC) cells. Our results show that phosphorylation of truncated LTag stimulates viral promoter activity, which may contribute to higher levels of the viral oncoproteins LTag and sTag. Interfering with PKA-induced LTag phosphorylation/activity may be a therapeutic strategy to treat MCPyV-positive MCC patients.
Collapse
Affiliation(s)
- Mar Falquet
- Molecular Inflammation Research Group, Department of Medical Biology, University of Tromsø-The Arctic University of Norway, 9037 Tromsø, Norway
| | - Carla Prezioso
- Microbiology of Chronic Neuro-Degenerative Pathologies, IRCSS San Raffaele, 00163 Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Ludvigsen
- Molecular Inflammation Research Group, Department of Medical Biology, University of Tromsø-The Arctic University of Norway, 9037 Tromsø, Norway
| | - Jack-Ansgar Bruun
- Department of Medical Biology, Proteomics Platform, University of Tromsø-The Arctic University of Norway, 9037 Tromsø, Norway
| | - Sara Passerini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Baldur Sveinbjørnsson
- Molecular Inflammation Research Group, Department of Medical Biology, University of Tromsø-The Arctic University of Norway, 9037 Tromsø, Norway
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institute, 17177 Stockholm, Sweden
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: (V.P.); (U.M.)
| | - Ugo Moens
- Microbiology of Chronic Neuro-Degenerative Pathologies, IRCSS San Raffaele, 00163 Rome, Italy
- Correspondence: (V.P.); (U.M.)
| |
Collapse
|
6
|
Adachi J, Kakudo A, Takada Y, Isoyama J, Ikemoto N, Abe Y, Narumi R, Muraoka S, Gunji D, Hara Y, Katayama R, Tomonaga T. Systematic identification of ALK substrates by integrated phosphoproteome and interactome analysis. Life Sci Alliance 2022; 5:5/8/e202101202. [PMID: 35508387 PMCID: PMC9069051 DOI: 10.26508/lsa.202101202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/19/2021] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 11/24/2022] Open
Abstract
Integrated analysis of the phosphoproteome and interactome of anaplastic lymphoma kinase (ALK)-overexpressing HEK 293 cells revealed 37 ALK substrate candidates, contributing to the improvement of kinase activity prediction. The sensitivity of phosphorylation site identification by mass spectrometry has improved markedly. However, the lack of kinase–substrate relationship (KSR) data hinders the improvement of the range and accuracy of kinase activity prediction. In this study, we aimed to develop a method for acquiring systematic KSR data on anaplastic lymphoma kinase (ALK) using mass spectrometry and to apply this method to the prediction of kinase activity. Thirty-seven ALK substrate candidates, including 34 phosphorylation sites not annotated in the PhosphoSitePlus database, were identified by integrated analysis of the phosphoproteome and crosslinking interactome of HEK 293 cells with doxycycline-induced ALK overexpression. Furthermore, KSRs of ALK were validated by an in vitro kinase assay. Finally, using phosphoproteomic data from ALK mutant cell lines and patient-derived cells treated with ALK inhibitors, we found that the prediction of ALK activity was improved when the KSRs identified in this study were used instead of the public KSR dataset. Our approach is applicable to other kinases, and future identification of KSRs will facilitate more accurate estimations of kinase activity and elucidation of phosphorylation signals.
Collapse
Affiliation(s)
- Jun Adachi
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan .,Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Laboratory of Proteomics and Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Akemi Kakudo
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Yoko Takada
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Junko Isoyama
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Narumi Ikemoto
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Yuichi Abe
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Ryohei Narumi
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Satoshi Muraoka
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Daigo Gunji
- Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yasuhiro Hara
- Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Ryohei Katayama
- Division of Experimental Chemotherapy, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| |
Collapse
|
7
|
Tsai CF, Ogata K, Sugiyama N, Ishihama Y. Motif-centric phosphoproteomics to target kinase-mediated signaling pathways. CELL REPORTS METHODS 2022; 2:100138. [PMID: 35474870 PMCID: PMC9017188 DOI: 10.1016/j.crmeth.2021.100138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 07/01/2021] [Revised: 10/08/2021] [Accepted: 12/13/2021] [Indexed: 12/27/2022]
Abstract
Identifying cellular phosphorylation pathways based on kinase-substrate relationships is a critical step to understanding the regulation of physiological functions in cells. Mass spectrometry-based phosphoproteomics workflows have made it possible to comprehensively collect information on individual phosphorylation sites in a variety of samples. However, there is still no generic approach to uncover phosphorylation networks based on kinase-substrate relationships in rare cell populations. Here, we describe a motif-centric phosphoproteomics approach combined with multiplexed isobaric labeling, in which in vitro kinase reactions are used to generate targeted phosphopeptides, which are spiked into one of the isobaric channels to increase detectability. Proof-of-concept experiments demonstrate selective and comprehensive quantification of targeted phosphopeptides by using multiple kinases for motif-centric channels. More than 7,000 tyrosine phosphorylation sites were quantified from several tens of micrograms of starting materials. This approach enables the quantification of multiple phosphorylation pathways under physiological or pathological regulation in a motif-centric manner.
Collapse
Affiliation(s)
- Chia-Feng Tsai
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Kosuke Ogata
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Naoyuki Sugiyama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
- Laboratory of Clinical and Analytical Chemistry, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
8
|
Massman LJ, Pereckas M, Zwagerman NT, Olivier-Van Stichelen S. O-GlcNAcylation Is Essential for Rapid Pomc Expression and Cell Proliferation in Corticotropic Tumor Cells. Endocrinology 2021; 162:6356179. [PMID: 34418053 PMCID: PMC8482966 DOI: 10.1210/endocr/bqab178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/08/2021] [Indexed: 12/13/2022]
Abstract
Pituitary adenomas have a staggering 16.7% lifetime prevalence and can be devastating in many patients because of profound endocrine and neurologic dysfunction. To date, no clear genomic or epigenomic markers correlate with their onset or severity. Herein, we investigate the impact of the O-GlcNAc posttranslational modification in their etiology. Found in more than 7000 human proteins to date, O-GlcNAcylation dynamically regulates proteins in critical signaling pathways, and its deregulation is involved in cancer progression and endocrine diseases such as diabetes. In this study, we demonstrated that O-GlcNAc enzymes were upregulated, particularly in aggressive adrenocorticotropin (ACTH)-secreting tumors, suggesting a role for O-GlcNAcylation in pituitary adenoma etiology. In addition to the demonstration that O-GlcNAcylation was essential for their proliferation, we showed that the endocrine function of pituitary adenoma is also dependent on O-GlcNAcylation. In corticotropic tumors, hypersecretion of the proopiomelanocortin (POMC)-derived hormone ACTH leads to Cushing disease, materialized by severe endocrine disruption and increased mortality. We demonstrated that Pomc messenger RNA is stabilized in an O-GlcNAc-dependent manner in response to corticotrophin-releasing hormone (CRH). By affecting Pomc mRNA splicing and stability, O-GlcNAcylation contributes to this new mechanism of fast hormonal response in corticotropes. Thus, this study stresses the essential role of O-GlcNAcylation in ACTH-secreting adenomas' pathophysiology, including cellular proliferation and hypersecretion.
Collapse
Affiliation(s)
- Logan J Massman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226, USA
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226, USA
| | - Michael Pereckas
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226, USA
| | - Nathan T Zwagerman
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226, USA
| | - Stephanie Olivier-Van Stichelen
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226, USA
- Correspondence: Stephanie Olivier-Van Stichelen, PhD, Department of Biochemistry, Medical College of Wisconsin, BSB355, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA.
| |
Collapse
|
9
|
Structural Insights into Protein Regulation by Phosphorylation and Substrate Recognition of Protein Kinases/Phosphatases. Life (Basel) 2021; 11:life11090957. [PMID: 34575106 PMCID: PMC8467178 DOI: 10.3390/life11090957] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/08/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 12/30/2022] Open
Abstract
Protein phosphorylation is one of the most widely observed and important post-translational modification (PTM) processes. Protein phosphorylation is regulated by protein kinases, each of which covalently attaches a phosphate group to an amino acid side chain on a serine (Ser), threonine (Thr), or tyrosine (Tyr) residue of a protein, and by protein phosphatases, each of which, conversely, removes a phosphate group from a phosphoprotein. These reversible enzyme activities provide a regulatory mechanism by activating or deactivating many diverse functions of proteins in various cellular processes. In this review, their structures and substrate recognition are described and summarized, focusing on Ser/Thr protein kinases and protein Ser/Thr phosphatases, and the regulation of protein structures by phosphorylation. The studies reviewed here and the resulting information could contribute to further structural, biochemical, and combined studies on the mechanisms of protein phosphorylation and to drug discovery approaches targeting protein kinases or protein phosphatases.
Collapse
|
10
|
Young BD, Sha J, Vashisht AA, Wohlschlegel JA. Human Multisubunit E3 Ubiquitin Ligase Required for Heterotrimeric G-Protein β-Subunit Ubiquitination and Downstream Signaling. J Proteome Res 2021; 20:4318-4330. [PMID: 34342229 DOI: 10.1021/acs.jproteome.1c00292] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Abstract
G-protein-coupled receptors (GPCRs) initiate intracellular signaling events through heterotrimeric G-protein α-subunits (Gα) and the βγ-subunit dimer (Gβγ). In this study, we utilized mass spectrometry to identify novel regulators of Gβγ signaling in human cells. This prompted our characterization of KCTD2 and KCTD5, two related potassium channel tetramerization domain (KCTD) proteins that specifically recognize Gβγ. We demonstrated that these KCTD proteins are substrate adaptors for a multisubunit CUL3-RING ubiquitin ligase, in which a KCTD2-KCTD5 hetero-oligomer associates with CUL3 through KCTD5 subunits and recruits Gβγ through both KCTD proteins in response to G-protein activation. These KCTD proteins promote monoubiquitination of lysine-23 within Gβ1/2 in vitro and in HEK-293 cells. Depletion of these adaptors from cancer cell lines sharply impairs downstream signaling. Together, our studies suggest that a KCTD2-KCTD5-CUL3-RING E3 ligase recruits Gβγ in response to signaling, monoubiquitinates lysine-23 within Gβ1/2, and regulates Gβγ effectors to modulate downstream signal transduction.
Collapse
Affiliation(s)
- Brian D Young
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States.,Molecular Biology Institute, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
| | - Jihui Sha
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
| | - Ajay A Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States.,Molecular Biology Institute, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
| |
Collapse
|
11
|
Niinae T, Imami K, Sugiyama N, Ishihama Y. Identification of Endogenous Kinase Substrates by Proximity Labeling Combined with Kinase Perturbation and Phosphorylation Motifs. Mol Cell Proteomics 2021; 20:100119. [PMID: 34186244 PMCID: PMC8325102 DOI: 10.1016/j.mcpro.2021.100119] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/05/2021] [Revised: 06/08/2021] [Accepted: 06/22/2021] [Indexed: 02/08/2023] Open
Abstract
Mass-spectrometry-based phosphoproteomics can identify more than 10,000 phosphorylated sites in a single experiment. But, despite the fact that enormous phosphosite information has been accumulated in public repositories, protein kinase–substrate relationships remain largely unknown. Here, we describe a method to identify endogenous substrates of kinases by using a combination of a proximity-dependent biotin identification method, called BioID, with two other independent methods, kinase-perturbed phosphoproteomics and phosphorylation motif matching. For proof of concept, this approach was applied to casein kinase 2 (CK2) and protein kinase A (PKA), and we identified 24 and 35 putative substrates, respectively. We also show that known cancer-associated missense mutations near phosphosites of substrates affect phosphorylation by CK2 or PKA and thus might alter downstream signaling in cancer cells bearing these mutations. This approach extends our ability to probe physiological kinase–substrate networks by providing new methodology for large-scale identification of endogenous substrates of kinases. Identification of novel kinase interactors by BioID. Applying two orthogonal filters, kinase perturbation and phosphorylation motif. Identification of novel CK2 and PKA substrates. A universal method for the identification of endogenous substrates for all kinases.
Collapse
Affiliation(s)
- Tomoya Niinae
- Department of Molecular & Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Koshi Imami
- Department of Molecular & Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan; PRESTO, Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, Japan
| | - Naoyuki Sugiyama
- Department of Molecular & Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Yasushi Ishihama
- Department of Molecular & Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan; Laboratory of Clinical and Analytical Chemistry, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan.
| |
Collapse
|
12
|
Schleicher K, Zaccolo M. Axelrod Symposium 2019: Phosphoproteomic Analysis of G-Protein-Coupled Pathways. Mol Pharmacol 2021; 99:383-391. [PMID: 32111700 DOI: 10.1124/mol.119.118869] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/11/2019] [Accepted: 02/10/2020] [Indexed: 12/13/2022] Open
Abstract
By limiting unrestricted activation of intracellular effectors, compartmentalized signaling of cyclic nucleotides confers specificity to extracellular stimuli and is critical for the development and health of cells and organisms. Dissecting the molecular mechanisms that allow local control of cyclic nucleotide signaling is essential for our understanding of physiology and pathophysiology, but mapping the dynamics and regulation of compartmentalized signaling is a challenge. In this minireview we summarize advanced imaging and proteomics techniques that have been successfully used to probe compartmentalized cAMP signaling in eukaryotic cells. Subcellularly targeted fluorescence resonance energy transfer sensors can precisely locate and measure compartmentalized cAMP, and this allows us to estimate the range of effector activation. Because cAMP effector proteins often cluster together with their targets and cAMP regulatory proteins to form discrete cAMP signalosomes, proteomics and phosphoproteomics analysis have more recently been used to identify additional players in the cAMP-signaling cascade. We propose that the synergistic use of the techniques discussed could prove fruitful in generating a detailed map of cAMP signalosomes and reveal new details of compartmentalized signaling. Compiling a dynamic map of cAMP nanodomains in defined cell types would establish a blueprint for better understanding the alteration of signaling compartments associated with disease and would provide a molecular basis for targeted therapeutic strategies. SIGNIFICANCE STATEMENT: cAMP signaling is compartmentalized. Some functionally important cellular signaling compartments operate on a nanometer scale, and their integrity is essential to maintain cellular function and appropriate responses to extracellular stimuli. Compartmentalized signaling provides an opportunity for precision medicine interventions. Our detailed understanding of the composition, function, and regulation of cAMP-signaling nanodomains in health and disease is essential and will benefit from harnessing the right combination of advanced biochemical and imaging techniques.
Collapse
Affiliation(s)
- Katharina Schleicher
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Tsumagari K, Chang CH, Ishihama Y. Exploring the landscape of ectodomain shedding by quantitative protein terminomics. iScience 2021; 24:102259. [PMID: 33796845 PMCID: PMC7995609 DOI: 10.1016/j.isci.2021.102259] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/15/2020] [Revised: 01/18/2021] [Accepted: 02/26/2021] [Indexed: 02/08/2023] Open
Abstract
Ectodomain shedding is a proteolytic process that regulates the levels and functions of membrane proteins. Dysregulated shedding is linked to severe diseases, including cancer and Alzheimer's disease. However, the exact cleavage sites of shedding substrates remain largely unknown. Here, we explore the landscape of ectodomain shedding by generating large-scale, cell-type-specific maps of shedding cleavage sites. By means of N- and C-terminal peptide enrichment and quantitative mass spectrometry, we quantified protein termini in the culture media of 10 human cell lines and identified 489 cleavage sites on 163 membrane proteins whose proteolytic terminal fragments are downregulated in the presence of a broad-spectrum metalloprotease inhibitor. A major fraction of the presented cleavage sites was identified in a cell-type-specific manner and mapped onto receptors, cell adhesion molecules, and protein kinases and phosphatases. We confidently identified 86 cleavage sites as metalloprotease substrates by means of knowledge-based scoring. Secretomes across 10 human cell lines were investigated by protein terminomics Cell-type-specific maps of shedding cleavage sites were generated Most of the cleavage sites were identified in a cell-type-specific manner Knowledge-based scoring enabled prediction of responsible sheddases
Collapse
Affiliation(s)
- Kazuya Tsumagari
- Department of Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
- Eisai-Keio Innovation Laboratory for Dementia, Center for Integrated Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Chih-Hsiang Chang
- Department of Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Yasushi Ishihama
- Department of Molecular and Cellular BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
- Department of Proteomics and Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
- Corresponding author
| |
Collapse
|
14
|
Abstract
Kinase networks are important for cellular signal transduction. Despite tremendous efforts to uncover these signaling pathways, huge numbers of uncharacterized phosphosites still remain in the human proteome. Because of the transient nature of kinase-substrate interactions in vivo, it is almost impossible to identify direct substrates. Here, we present a strategy for the rapid, accurate and high-throughput discovery of in vitro kinase substrates using quantitative proteomics. Using 385 purified kinases (354 wild-type protein kinases, 21 mutants and 10 lipid kinases), we identified a total of 175,574 potential direct kinase substrates. In addition, we identified novel kinase groups, such as one group containing 30 threonine-directed kinases and another containing 15 serine/threonine/tyrosine kinases. Surprisingly, we observed that the diversity of substrates for tyrosine kinases was much higher than that for serine-threonine kinases.
Collapse
|
15
|
Sacco F, Perfetto L, Cesareni G. Combining Phosphoproteomics Datasets and Literature Information to Reveal the Functional Connections in a Cell Phosphorylation Network. Proteomics 2019; 18:e1700311. [PMID: 29280302 DOI: 10.1002/pmic.201700311] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/16/2017] [Revised: 12/11/2017] [Indexed: 01/08/2023]
Abstract
Protein phosphorylation modulates many biological processes. However, the characterization of the complex regulatory circuits underlying cell response to external and internal stimuli is still limited by our inability to describe the phosphorylation network on a global scale. Modern MS-based phosphoproteomics allows monitoring tens of thousands of phosphorylation sites in multiple conditions, making the approach ideal to explore signaling pathways mediated by phosphorylation. Here, we review recent advances in phosphoproteomics and discuss some of the computational approaches developed to facilitate extraction of signaling information from these datasets. Finally, this review focuses on approaches that integrate prior literature information with unbiased phosphoproteomics experiments.
Collapse
Affiliation(s)
- Francesca Sacco
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome, Italy
| | - Livia Perfetto
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome, Italy
| | - Gianni Cesareni
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, Rome, Italy
| |
Collapse
|
16
|
Needham EJ, Parker BL, Burykin T, James DE, Humphrey SJ. Illuminating the dark phosphoproteome. Sci Signal 2019; 12:12/565/eaau8645. [PMID: 30670635 DOI: 10.1126/scisignal.aau8645] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/17/2022]
Abstract
Protein phosphorylation is a major regulator of protein function and biological outcomes. This was first recognized through functional biochemical experiments, and in the past decade, major technological advances in mass spectrometry have enabled the study of protein phosphorylation on a global scale. This rapidly growing field of phosphoproteomics has revealed that more than 100,000 distinct phosphorylation events occur in human cells, which likely affect the function of every protein. Phosphoproteomics has improved the understanding of the function of even the most well-characterized protein kinases by revealing new downstream substrates and biology. However, current biochemical and bioinformatic approaches have only identified kinases for less than 5% of the phosphoproteome, and functional assignments of phosphosites are almost negligible. Notably, our understanding of the relationship between kinases and their substrates follows a power law distribution, with almost 90% of phosphorylation sites currently assigned to the top 20% of kinases. In addition, more than 150 kinases do not have a single known substrate. Despite a small group of kinases dominating biomedical research, the number of substrates assigned to a kinase does not correlate with disease relevance as determined by pathogenic human mutation prevalence and mouse model phenotypes. Improving our understanding of the substrates targeted by all kinases and functionally annotating the phosphoproteome will be broadly beneficial. Advances in phosphoproteomics technologies, combined with functional screening approaches, should make it feasible to illuminate the connectivity and functionality of the entire phosphoproteome, providing enormous opportunities for discovering new biology, therapeutic targets, and possibly diagnostics.
Collapse
Affiliation(s)
- Elise J Needham
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.,Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
| | - Benjamin L Parker
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.,Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
| | - Timur Burykin
- Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
| | - David E James
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia. .,Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia.,Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Sean J Humphrey
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia. .,Charles Perkins Centre, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
17
|
Gonçalves JPL, Palmer D, Meldal M. MC4R Agonists: Structural Overview on Antiobesity Therapeutics. Trends Pharmacol Sci 2018; 39:402-423. [PMID: 29478721 DOI: 10.1016/j.tips.2018.01.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/18/2017] [Revised: 01/28/2018] [Accepted: 01/30/2018] [Indexed: 01/08/2023]
Abstract
The melanocortin-4 receptor (MC4R) regulates adipose tissue formation and energy homeostasis, and is believed to be a monogenic target for novel antiobesity therapeutics. Several research efforts targeting this receptor have identified potent and selective agonists. While viable agonists have been characterized in vitro, undesirable side effects frequently appeared during clinical trials. The most promising candidates have diverse structures, including linear peptides, cyclic peptides, and small molecules. Herein, we present a compilation of potent MC4R agonists and discuss the pivotal structural differences within those molecules that resulted in good selectivity for MC4R over other melanocortins. We provide insight on recent progress in the field and reflect on directions for development of new agonists.
Collapse
Affiliation(s)
- Juliana Pereira Lopes Gonçalves
- Center for Evolutionary Chemical Biology, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark.
| | - Daniel Palmer
- Center for Evolutionary Chemical Biology, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Morten Meldal
- Center for Evolutionary Chemical Biology, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark.
| |
Collapse
|
18
|
Evolution, dynamics and dysregulation of kinase signalling. Curr Opin Struct Biol 2018; 48:133-140. [DOI: 10.1016/j.sbi.2017.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/22/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 12/31/2022]
|
19
|
O'Banion CP, Priestman MA, Hughes RM, Herring LE, Capuzzi SJ, Lawrence DS. Design and Profiling of a Subcellular Targeted Optogenetic cAMP-Dependent Protein Kinase. Cell Chem Biol 2018; 25:100-109.e8. [PMID: 29104065 PMCID: PMC5777159 DOI: 10.1016/j.chembiol.2017.09.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/20/2017] [Revised: 08/21/2017] [Accepted: 09/27/2017] [Indexed: 11/30/2022]
Abstract
Although the cAMP-dependent protein kinase (PKA) is ubiquitously expressed, it is sequestered at specific subcellular locations throughout the cell, thereby resulting in compartmentalized cellular signaling that triggers site-specific behavioral phenotypes. We developed a three-step engineering strategy to construct an optogenetic PKA (optoPKA) and demonstrated that, upon illumination, optoPKA migrates to specified intracellular sites. Furthermore, we designed intracellular spatially segregated reporters of PKA activity and confirmed that optoPKA phosphorylates these reporters in a light-dependent fashion. Finally, proteomics experiments reveal that light activation of optoPKA results in the phosphorylation of known endogenous PKA substrates as well as potential novel substrates.
Collapse
Affiliation(s)
- Colin P O'Banion
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Melanie A Priestman
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Robert M Hughes
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Chemistry; East Carolina University, Greenville, NC 27858, USA
| | - Laura E Herring
- UNC Proteomics Core, Department of Pharmacology, UNC School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Stephen J Capuzzi
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David S Lawrence
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|