1
|
Penchev H, Dimitrov E, Novakov C, Haladjova E, Veleva R, Moskova-Doumanova V, Topouzova-Hristova T, Rangelov S. Water-Soluble Polyglycidol-Grafted Ladder Calix Resorcinarene Oligomers with Open Chain and Cyclic Topologies: Synthesis, Characteristics, and Biological Evaluation. Polymers (Basel) 2024; 16:3219. [PMID: 39599309 PMCID: PMC11598056 DOI: 10.3390/polym16223219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024] Open
Abstract
Ladder oligomers containing calixarene skeletons in the main chain-calix[4]resorcinarene (CRA) ladder macromolecules with open chain and cyclic macromolecules with double ring-like (Noria-type) topologies-bring particular research attention as functional materials with various applications. However, there is still a remarkable lack of studies into the synthesis of fully water-soluble derivatives of these interesting macromolecules. Research on this topic would allow their bio-based research and application niche to be at least revealed. In the present study, a strategy for the synthesis of water-soluble polyglycidol-derivatized calix resorcinarene ladder oligomers with open chain and cyclic structures is introduced. A grafting from approach was used to build branched or linear polyglycidol chains from the ladder scaffolds. The novel structures were synthesized in quantitative yields and fully characterized by NMR, FTIR and UV-vis spectroscopy, gel permeation chromatography, MALDI-TOF mass spectrometry, analytical ultracentrifugation, and static light scattering to obtain the molar mass characteristics and composition. The biocompatibility and toxicity of the two polyglycidol-derivatized oligomers were investigated and the concentration dependence of the survival of three cell lines of human origin determined. The selective apoptosis effect at relatively low dissolve concentrations toward two kinds of cancerous cell lines was found.
Collapse
Affiliation(s)
- Hristo Penchev
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St., Block 103A, 1113 Sofia, Bulgaria; (E.D.); (C.N.); (E.H.)
| | - Erik Dimitrov
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St., Block 103A, 1113 Sofia, Bulgaria; (E.D.); (C.N.); (E.H.)
| | - Christo Novakov
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St., Block 103A, 1113 Sofia, Bulgaria; (E.D.); (C.N.); (E.H.)
- Centre of Competence “Sustainable Utilization of Bio-Resources and Waste of Medicinal and Aromatic Plants for Innovative Bioactive Products” (CoC BioResources), 1000 Sofia, Bulgaria; (R.V.); (V.M.-D.); (T.T.-H.)
| | - Emi Haladjova
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St., Block 103A, 1113 Sofia, Bulgaria; (E.D.); (C.N.); (E.H.)
- Centre of Competence “Sustainable Utilization of Bio-Resources and Waste of Medicinal and Aromatic Plants for Innovative Bioactive Products” (CoC BioResources), 1000 Sofia, Bulgaria; (R.V.); (V.M.-D.); (T.T.-H.)
| | - Ralitsa Veleva
- Centre of Competence “Sustainable Utilization of Bio-Resources and Waste of Medicinal and Aromatic Plants for Innovative Bioactive Products” (CoC BioResources), 1000 Sofia, Bulgaria; (R.V.); (V.M.-D.); (T.T.-H.)
- Department of Cellular and Developmental Biology, Faculty of Biology, Sofia University St Kliment Ohridski, 8 Dragan Tzankov Blv, 1164 Sofia, Bulgaria
| | - Veselina Moskova-Doumanova
- Centre of Competence “Sustainable Utilization of Bio-Resources and Waste of Medicinal and Aromatic Plants for Innovative Bioactive Products” (CoC BioResources), 1000 Sofia, Bulgaria; (R.V.); (V.M.-D.); (T.T.-H.)
- Department of Cellular and Developmental Biology, Faculty of Biology, Sofia University St Kliment Ohridski, 8 Dragan Tzankov Blv, 1164 Sofia, Bulgaria
| | - Tanya Topouzova-Hristova
- Centre of Competence “Sustainable Utilization of Bio-Resources and Waste of Medicinal and Aromatic Plants for Innovative Bioactive Products” (CoC BioResources), 1000 Sofia, Bulgaria; (R.V.); (V.M.-D.); (T.T.-H.)
- Department of Cellular and Developmental Biology, Faculty of Biology, Sofia University St Kliment Ohridski, 8 Dragan Tzankov Blv, 1164 Sofia, Bulgaria
| | - Stanislav Rangelov
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St., Block 103A, 1113 Sofia, Bulgaria; (E.D.); (C.N.); (E.H.)
- Centre of Competence “Sustainable Utilization of Bio-Resources and Waste of Medicinal and Aromatic Plants for Innovative Bioactive Products” (CoC BioResources), 1000 Sofia, Bulgaria; (R.V.); (V.M.-D.); (T.T.-H.)
| |
Collapse
|
2
|
Kunkel GE, Treacy JW, Montgomery HR, Puente EG, Doud EA, Spokoyny AM, Maynard HD. Efficient end-group functionalization and diblock copolymer synthesis via Au(III) polymer reagents. Chem Commun (Camb) 2023; 60:79-82. [PMID: 38055326 PMCID: PMC11149381 DOI: 10.1039/d3cc05350d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Herein, we describe the synthesis of bench-stable organometallic Au(III) terminated polymer reagents. These reagents mediate the chemoselective S-arylation of thiol-containing small molecules and polymers to yield functionalized mono-telechelic polymers and diblock copolymers, respectively. These transformations proceed rapidly within minutes and produce conjugates in quantitative conversion, making this strategy a robust addition to the polymer functionalization toolbox.
Collapse
Affiliation(s)
- Grace E Kunkel
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, USA.
| | - Joseph W Treacy
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, USA.
| | - Hayden R Montgomery
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, USA.
| | - Ellie G Puente
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, USA.
| | - Evan A Doud
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, USA.
| | - Alexander M Spokoyny
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, USA.
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, USA
| | - Heather D Maynard
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, USA.
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, USA
| |
Collapse
|
3
|
Gugleva V, Ahchiyska K, Georgieva D, Mihaylova R, Konstantinov S, Dimitrov E, Toncheva-Moncheva N, Rangelov S, Forys A, Trzebicka B, Momekova D. Development, Characterization and Pharmacological Evaluation of Cannabidiol-Loaded Long Circulating Niosomes. Pharmaceutics 2023; 15:2414. [PMID: 37896174 PMCID: PMC10609774 DOI: 10.3390/pharmaceutics15102414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Cannabidiol (CBD) is a promising drug candidate with pleiotropic pharmacological activity, whose low aqueous solubility and unfavorable pharmacokinetics have presented obstacles to its full clinical implementation. The rational design of nanocarriers, including niosomes for CBD encapsulation, can provide a plausible approach to overcoming these limitations. The present study is focused on exploring the feasibility of copolymer-modified niosomes as platforms for systemic delivery of CBD. To confer steric stabilization, the niosomal membranes were grafted with newly synthesized amphiphilic linear or star-shaped 3- and 4-arm star-shaped copolymers based on polyglycidol (PG) and poly(ε-caprolactone) (PCL) blocks. The niosomes were prepared by film hydration method and were characterized by DLS, cryo-TEM, encapsulation efficacy, and in vitro release. Free and formulated cannabidiol were further investigated for cytotoxicity and pro-apoptotic and anti-inflammatory activities in vitro in three human tumor cell lines. The optimal formulation, based on Tween 60:Span60:Chol (3.5:3.5:3 molar ration) modified with 2.5 mol% star-shaped 3-arm copolymer, is characterized by a size of 235 nm, high encapsulation of CBD (94%), and controlled release properties. Niosomal cannabidiol retained the antineoplastic activity of the free agent, but noteworthy superior apoptogenic and inflammatory biomarker-modulating effects were established at equieffective exposure vs. the free drug. Specific alterations in key signaling molecules, implicated in programmed cell death, cancer cell biology, and inflammation, were recorded with the niosomal formulations.
Collapse
Affiliation(s)
- Viliana Gugleva
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 84 Tsar Osvoboditel Str., 9000 Varna, Bulgaria;
| | - Katerina Ahchiyska
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (K.A.); (D.G.)
| | - Dilyana Georgieva
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (K.A.); (D.G.)
| | - Rositsa Mihaylova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (R.M.); (S.K.)
| | - Spiro Konstantinov
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (R.M.); (S.K.)
| | - Erik Dimitrov
- Institute of Polymers, Bulgarian Academy of Sciences, bl.103 Akad. G. Bonchev Str., 1113 Sofia, Bulgaria; (E.D.); (N.T.-M.); (S.R.)
| | - Natalia Toncheva-Moncheva
- Institute of Polymers, Bulgarian Academy of Sciences, bl.103 Akad. G. Bonchev Str., 1113 Sofia, Bulgaria; (E.D.); (N.T.-M.); (S.R.)
| | - Stanislav Rangelov
- Institute of Polymers, Bulgarian Academy of Sciences, bl.103 Akad. G. Bonchev Str., 1113 Sofia, Bulgaria; (E.D.); (N.T.-M.); (S.R.)
| | - Aleksander Forys
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland; (A.F.); (B.T.)
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, ul. M. Curie-Skłodowskiej 34, 41-819 Zabrze, Poland; (A.F.); (B.T.)
| | - Denitsa Momekova
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; (K.A.); (D.G.)
| |
Collapse
|
4
|
Toncheva-Moncheva N, Dimitrov E, Grancharov G, Momekova D, Petrov P, Rangelov S. Cinnamyl-Modified Polyglycidol/Poly(ε-Caprolactone) Block Copolymer Nanocarriers for Enhanced Encapsulation and Prolonged Release of Cannabidiol. Pharmaceutics 2023; 15:2128. [PMID: 37631342 PMCID: PMC10459144 DOI: 10.3390/pharmaceutics15082128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The present study describes the development of novel block copolymer nanocarriers of the phytocannabinoid cannabidiol (CBD), designed to enhance the solubility of the drug in water while achieving high encapsulation efficiency and prolonged drug release. Firstly, a well-defined amphiphilic block copolymer consisting of two outer hydrophilic polyglycidol (PG) blocks and a middle hydrophobic block of poly(ε-caprolactone) bearing pendant cinnamyl moieties (P(CyCL-co-CL)) were synthesized by the click coupling reaction of PG-monoalkyne and P(CyCL-co-CL)-diazide functional macroreagents. A non-modified polyglycidol/poly(ε-caprolactone) amphiphilic block copolymer was obtained as a referent system. Micellar carriers based on the two block copolymers were formed via the solvent evaporation method and loaded with CBD following two different protocols-loading during micelle formation and loading into preformed micelles. The key parameters/characteristics of blank and CBD-loaded micelles such as size, size distribution, zeta potential, molar mass, critical micelle concentration, morphology, and encapsulation efficiency were determined by using dynamic and static multiangle and electrophoretic light scattering, transmission electron microscopy, and atomic force microscopy. Embedding CBD into the micellar carriers affected their hydrodynamic radii to some extent, while the spherical morphology of particles was not changed. The nanoformulation based on the copolymer bearing cinnamyl moieties possessed significantly higher encapsulation efficiency and a slower rate of drug release than the non-modified copolymer. The comparative assessment of the antiproliferative effect of micellar CBD vs. the free drug against the acute myeloid leukemia-derived HL-60 cell line and Sezary Syndrome HUT-78 demonstrated that the newly developed systems have pronounced antitumor activity.
Collapse
Affiliation(s)
- Natalia Toncheva-Moncheva
- Institute of Polymers, Bulgarian Academy of Sciences, “Akad. G. Bonchev” Street., bl. 103A, 1113 Sofia, Bulgaria; (E.D.); (G.G.); (P.P.)
| | - Erik Dimitrov
- Institute of Polymers, Bulgarian Academy of Sciences, “Akad. G. Bonchev” Street., bl. 103A, 1113 Sofia, Bulgaria; (E.D.); (G.G.); (P.P.)
| | - Georgi Grancharov
- Institute of Polymers, Bulgarian Academy of Sciences, “Akad. G. Bonchev” Street., bl. 103A, 1113 Sofia, Bulgaria; (E.D.); (G.G.); (P.P.)
| | - Denitsa Momekova
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University-Sofia, 2 Dunav Street, 1000 Sofia, Bulgaria;
| | - Petar Petrov
- Institute of Polymers, Bulgarian Academy of Sciences, “Akad. G. Bonchev” Street., bl. 103A, 1113 Sofia, Bulgaria; (E.D.); (G.G.); (P.P.)
| | - Stanislav Rangelov
- Institute of Polymers, Bulgarian Academy of Sciences, “Akad. G. Bonchev” Street., bl. 103A, 1113 Sofia, Bulgaria; (E.D.); (G.G.); (P.P.)
| |
Collapse
|
5
|
Plank M, Frieß FV, Bitsch CV, Pieschel J, Reitenbach J, Gallei M. Modular Synthesis of Functional Block Copolymers by Thiol–Maleimide “Click” Chemistry for Porous Membrane Formation. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Martina Plank
- Ernst-Berl Institute of Technical and Macromolecular Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Florian Volker Frieß
- Chair in Polymer Chemistry, Universität des Saarlandes, Campus Saarbrücken, 66123 Saarbrücken, Germany
| | - Carina Vera Bitsch
- Ernst-Berl Institute of Technical and Macromolecular Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Jens Pieschel
- Chair in Polymer Chemistry, Universität des Saarlandes, Campus Saarbrücken, 66123 Saarbrücken, Germany
| | - Julija Reitenbach
- Ernst-Berl Institute of Technical and Macromolecular Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 4, 64287 Darmstadt, Germany
| | - Markus Gallei
- Chair in Polymer Chemistry, Universität des Saarlandes, Campus Saarbrücken, 66123 Saarbrücken, Germany
- Saarene, Saarland Center for Energy Materials and Sustainability, Campus C4 2, 66123 Saarbrücken, Germany
| |
Collapse
|
6
|
Balzade Z, Sharif F, Ghaffarian Anbaran SR. Tailor-Made Functional Polyolefins of Complex Architectures: Recent Advances, Applications, and Prospects. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zahra Balzade
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran 158754413, Iran
| | - Farhad Sharif
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran 158754413, Iran
| | | |
Collapse
|
7
|
Fully Chemical Recyclable Poly(γ-butyrolactone)-based Copolymers with Tunable Structures and Properties. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2685-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Click chemistry strategies for the accelerated synthesis of functional macromolecules. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210126] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Liu Y, Wu J, Hu X, Zhu N, Guo K. Advances, Challenges, and Opportunities of Poly(γ-butyrolactone)-Based Recyclable Polymers. ACS Macro Lett 2021; 10:284-296. [PMID: 35570792 DOI: 10.1021/acsmacrolett.0c00813] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The discovery and prosperous growth of synthetic polymers have presented both significant advantages and daunting challenges in the last century. To address the issues of environmental pollution and fossil consumption, recyclable, degradable, and/or biobased polymers have been given much attention in the polymer science community. This viewpoint focuses on the emerging fully chemical recyclable poly(γ-butyrolactone)-based polymers. The breakthrough from nonpolymerizable to efficient polymerization is highlighted by the benefits of the development of a series of catalysis for ring-opening polymerization of γ-butyrolactone. Subsequently, the design of γ-butyrolactone derivatives and synthesis of more recyclable polymers are summarized together with the discussions about the structure and property relationship. Finally, the remaining challenges and promising opportunities are suggested in order to provide insights into the further direction for sustainable polymers.
Collapse
Affiliation(s)
- Yihuan Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Jiaqi Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Xin Hu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Ning Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211800, China
| |
Collapse
|
10
|
Wehr R, Gaitzsch J, Daubian D, Fodor C, Meier W. Deepening the insight into poly(butylene oxide)- block-poly(glycidol) synthesis and self-assemblies: micelles, worms and vesicles. RSC Adv 2020; 10:22701-22711. [PMID: 35514604 PMCID: PMC9054609 DOI: 10.1039/d0ra04274a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 06/05/2020] [Indexed: 11/21/2022] Open
Abstract
Aqueous self-assembly of amphiphilic block copolymers is studied extensively for biomedical applications like drug delivery and nanoreactors. The commonly used hydrophilic block poly(ethylene oxide) (PEO), however, suffers from several drawbacks. As a potent alternative, poly(glycidol) (PG) has gained increasing interest, benefiting from its easy synthesis, high biocompatibility and flexibility as well as enhanced functionality compared to PEO. In this study, we present a quick and well-controlled synthesis of poly(butylene oxide)-block-poly(glycidol) (PBO-b-PG) amphiphilic diblock copolymers together with a straight-forward self-assembly protocol. Depending on the hydrophilic mass fraction of the copolymer, nanoscopic micelles, worms and polymersomes were formed as well as microscopic giant unilamellar vesicles. The particles were analysed regarding their size and shape, using dynamic and static light scattering, TEM and Cryo-TEM imaging as well as confocal laser scanning microscopy. We have discovered a strong dependence of the formed morphology on the self-assembly method and show that only solvent exchange leads to the formation of homogenous phases. Thus, a variety of different structures can be obtained from a highly flexible copolymer, justifying a potential use in biomedical applications.
Collapse
Affiliation(s)
- Riccardo Wehr
- University of Basel, Department of Chemistry Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland
| | - Jens Gaitzsch
- University of Basel, Department of Chemistry Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland
- Leibniz-Institut für Polymerforschung Dresden e.V. Hohe Strasse 6 01069 Dresden Germany
| | - Davy Daubian
- University of Basel, Department of Chemistry Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland
| | - Csaba Fodor
- University of Basel, Department of Chemistry Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland
| | - Wolfgang Meier
- University of Basel, Department of Chemistry Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland
| |
Collapse
|
11
|
Valverde C, Lligadas G, Ronda JC, Galià M, Cádiz V. Synthesis and characterization of castor oil-derived oxidation-responsive amphiphilic block copolymers: Poly(ethylene glycol)-b-poly(11-((2-hydroxyethyl)thio)undecanoate). Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Bakardzhiev P, Toncheva-Moncheva N, Mladenova K, Petrova S, Videv P, Moskova-Doumanova V, Topouzova-Hristova T, Doumanov J, Rangelov S. Assembly of amphiphilic nucleic acid-polymer conjugates into complex superaggregates: Preparation, properties, and in vitro performance. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109692] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
13
|
Otulakowski L, Dworak A, Forys A, Gadzinowski M, Slomkowski S, Basinska T, Trzebicka B. Micellization of Polystyrene- b-Polyglycidol in Dioxane and Water/Dioxane Solutions. Polymers (Basel) 2020; 12:E200. [PMID: 31941035 PMCID: PMC7023586 DOI: 10.3390/polym12010200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/02/2020] [Accepted: 01/10/2020] [Indexed: 12/29/2022] Open
Abstract
In this work, the self-assembly of a series of amphiphilic polystyrene-b-polyglycidol (PS-b-PGL) diblock copolymers in dioxane and dioxane/water mixtures is presented. The PS-b-PGL have an average degree of polymerization (DP) of PS block equal to 29 units and varied degrees of polymerization for the glycidol segments with DPs of 13, 42, 69 and 117. In dioxane, amphiphilic diblock copolymers form micelles with the hydrophilic PGL placed in the core. Critical micelle concentration (CMC) was determined based on the intensity of scattered light vs. concentration. The micelle size was measured by dynamic light scattering and transmission electron microscopy. Also, the behaviour of the copolymer was studied in water/dioxane solutions by following the changes of scattered light intensity with the addition of water to the system. Critical water content (CWC) of the studied systems decreased as the initial PS-b-PGL concentration in dioxane increased. This process was accompanied by a decrease in the size of aggregate formed. For a given initial copolymer concentration, the size of copolymer aggregates decreased linearly with increasing the length of the PGL block.
Collapse
Affiliation(s)
- Lukasz Otulakowski
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland; (L.O.); (A.D.); (A.F.)
| | - Andrzej Dworak
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland; (L.O.); (A.D.); (A.F.)
| | - Aleksander Forys
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland; (L.O.); (A.D.); (A.F.)
| | - Mariusz Gadzinowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (M.G.); (S.S.); (T.B.)
| | - Stanislaw Slomkowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (M.G.); (S.S.); (T.B.)
| | - Teresa Basinska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (M.G.); (S.S.); (T.B.)
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland; (L.O.); (A.D.); (A.F.)
| |
Collapse
|