1
|
Armenia I, Cuestas Ayllón C, Torres Herrero B, Bussolari F, Alfranca G, Grazú V, Martínez de la Fuente J. Photonic and magnetic materials for on-demand local drug delivery. Adv Drug Deliv Rev 2022; 191:114584. [PMID: 36273514 DOI: 10.1016/j.addr.2022.114584] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/26/2022] [Accepted: 10/16/2022] [Indexed: 02/06/2023]
Abstract
Nanomedicine has been considered a promising tool for biomedical research and clinical practice in the 21st century because of the great impact nanomaterials could have on human health. The generation of new smart nanomaterials, which enable time- and space-controlled drug delivery, improve the limitations of conventional treatments, such as non-specific targeting, poor biodistribution and permeability. These smart nanomaterials can respond to internal biological stimuli (pH, enzyme expression and redox potential) and/or external stimuli (such as temperature, ultrasound, magnetic field and light) to further the precision of therapies. To this end, photonic and magnetic nanoparticles, such as gold, silver and iron oxide, have been used to increase sensitivity and responsiveness to external stimuli. In this review, we aim to report the main and most recent systems that involve photonic or magnetic nanomaterials for external stimulus-responsive drug release. The uniqueness of this review lies in highlighting the versatility of integrating these materials within different carriers. This leads to enhanced performance in terms of in vitro and in vivo efficacy, stability and toxicity. We also point out the current regulatory challenges for the translation of these systems from the bench to the bedside, as well as the yet unresolved matter regarding the standardization of these materials.
Collapse
Affiliation(s)
- Ilaria Armenia
- BioNanoSurf Group, Instituto de Nanociencia y Materiales de Aragón (INMA,CSIC-UNIZAR), Edificio I +D, 50018 Zaragoza, Spain.
| | - Carlos Cuestas Ayllón
- BioNanoSurf Group, Instituto de Nanociencia y Materiales de Aragón (INMA,CSIC-UNIZAR), Edificio I +D, 50018 Zaragoza, Spain
| | - Beatriz Torres Herrero
- BioNanoSurf Group, Instituto de Nanociencia y Materiales de Aragón (INMA,CSIC-UNIZAR), Edificio I +D, 50018 Zaragoza, Spain
| | - Francesca Bussolari
- BioNanoSurf Group, Instituto de Nanociencia y Materiales de Aragón (INMA,CSIC-UNIZAR), Edificio I +D, 50018 Zaragoza, Spain
| | - Gabriel Alfranca
- BioNanoSurf Group, Instituto de Nanociencia y Materiales de Aragón (INMA,CSIC-UNIZAR), Edificio I +D, 50018 Zaragoza, Spain
| | - Valeria Grazú
- BioNanoSurf Group, Instituto de Nanociencia y Materiales de Aragón (INMA,CSIC-UNIZAR), Edificio I +D, 50018 Zaragoza, Spain; Centro de Investigación Biomédica em Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| | - Jesús Martínez de la Fuente
- BioNanoSurf Group, Instituto de Nanociencia y Materiales de Aragón (INMA,CSIC-UNIZAR), Edificio I +D, 50018 Zaragoza, Spain; Centro de Investigación Biomédica em Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| |
Collapse
|
2
|
Yang Y, Bu H, Xu Y, Li S, Xu J, Xia X, Yin Z, Chen L, Chen Z, Tan W. Heat Confinement Aerogel Enables Supramagnetothermal Effect for Triggering Nitric Oxide Generation. NANO LETTERS 2022; 22:8339-8345. [PMID: 36222760 DOI: 10.1021/acs.nanolett.2c03290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Reducing heat dissipation plays an indispensable role in boosting the magnetothermal effect but has received scant attention. Herein, a magnetothermal aerogel (MA) combining an efficient magnetothermal convertor for heat generation and a highly porous aerogel for reducing heat dissipation is developed. Such a heat confinement MA shows a large thermal resistance and high infrared absorption that can effectively confine the heat by regulating interior thermal conduction and radiation, exhibiting a supramagnetothermal effect. In addition, a waterproof beeswax coated MA achieves negligible heat loss and a supramagnetothermal effect even in high-thermal-diffusion aqueous media. As a proof of concept, a synthesized heat-triggered nitric oxide (NO) precursor is integrated into an MA, and the rapid NO generation (∼22 μM/min) resulting in an antibacterial effect further verifies the supramagnetothermal effect of the MA. This work provides an efficient strategy to promote the magnetothermal effect and offers inspiration for building a heat-triggering system.
Collapse
Affiliation(s)
- Yanxia Yang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Hongxiu Bu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Yiting Xu
- Key Laboratory of Theoretical Organic Chemistry and Function Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, People's Republic of China
| | - Shengkai Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Jieqiong Xu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Xin Xia
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Zhiwei Yin
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Long Chen
- Faculty of Science and Technology, University of Macau, Macau SAR 999078, Macau
| | - Zhuo Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, People's Republic of China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, People's Republic of China
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| |
Collapse
|
3
|
Wang X, Li C, Wang Y, Chen H, Zhang X, Luo C, Zhou W, Li L, Teng L, Yu H, Wang J. Smart drug delivery systems for precise cancer therapy. Acta Pharm Sin B 2022; 12:4098-4121. [DOI: 10.1016/j.apsb.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/25/2022] [Accepted: 08/08/2022] [Indexed: 11/28/2022] Open
|
4
|
Fang D, Jin H, Huang X, Shi Y, Liu Z, Ben S. PPy@Fe 3O 4 Nanoparticles Inhibit Tumor Growth and Metastasis Through Chemodynamic and Photothermal Therapy in Non-small Cell Lung Cancer. Front Chem 2021; 9:789934. [PMID: 34820358 PMCID: PMC8606671 DOI: 10.3389/fchem.2021.789934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is considered to be a principal cause of cancer death across the world, and nanomedicine has provided promising alternatives for the treatment of NSCLC in recent years. Photothermal therapy (PTT) and chemodynamic therapy (CDT) have represented novel therapeutic modalities for cancer treatment with excellent performance. The purpose of this research was to evaluate the effects of PPy@Fe3O4 nanoparticles (NPs) on inhibiting growth and metastasis of NSCLC by combination of PTT and CDT. In this study, we synthesized PPy@Fe3O4 NPs through a very facile electrostatic absorption method. And we detected reactive oxygen species production, cell apoptosis, migration and protein expression in different groups of A549 cells and established xenograft models to evaluate the effects of PPy@Fe3O4 NPs for inhibiting the growth of NSCLC. The results showed that the PPy@Fe3O4 NPs had negligible cytotoxicity and could efficiently inhibit the cell growth and metastasis of NSCLC in vitro. In addition, the PPy@Fe3O4 NPs decreased tumor volume and growth in vivo and endowed their excellent MRI capability of observing the location and size of tumor. To sum up, our study displayed that the PPy@Fe3O4 NPs had significant synergistic effects of PTT and CDT, and had good biocompatibility and safety in vivo and in vitro. The PPy@Fe3O4 NPs may be an effective drug platform for the treatment of NSCLC.
Collapse
Affiliation(s)
- Danruo Fang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hansong Jin
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiulin Huang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongxin Shi
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zeyu Liu
- Department of Respiratory and Critical Care Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Suqin Ben
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Cazares-Cortes E, Wilhelm C, Perez JE, Espinosa A, Casale S, Michel A, Abou-Hassan A, Ménager C. Tuning the load of gold and magnetic nanoparticles in nanogels through their design for enhanced dual magneto-photo-thermia. Chem Commun (Camb) 2021; 57:5945-5948. [PMID: 34019041 DOI: 10.1039/d0cc07176e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe a novel synthesis allowing one to enhance the load of magnetic nanoparticles and gold nanorods in nanogels. Two different structures, simple cores and core-shell, were synthesized and their heating properties upon alternating magnetic field or laser exposure are compared. Remarkably, the core-shell structure showed a greater heating capacity in the two modalities.
Collapse
Affiliation(s)
- Esther Cazares-Cortes
- Sorbonne Université, CNRS UMR 8234, Physico-chimie des Électrolytes et Nanosystèmes InterfaciauX, F-75005 Paris, France.
| | - Claire Wilhelm
- Université de Paris, CNRS, UMR 7057, Laboratory MSC, 75205 Paris Cedex 13, France
| | - Jose Efrain Perez
- Université de Paris, CNRS, UMR 7057, Laboratory MSC, 75205 Paris Cedex 13, France
| | - Ana Espinosa
- Université de Paris, CNRS, UMR 7057, Laboratory MSC, 75205 Paris Cedex 13, France and IMDEA Nanociencia, c/Faraday 9, 28049 Madrid, Spain and Nanobiotecnología (IMDEA-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC), 28049, Madrid, Spain
| | - Sandra Casale
- Sorbonne Université, CNRS UMR 7197, Laboratoire de Réactivité de Surface, 4 Place Jussieu, F75005 Paris, France
| | - Aude Michel
- Sorbonne Université, CNRS UMR 8234, Physico-chimie des Électrolytes et Nanosystèmes InterfaciauX, F-75005 Paris, France.
| | - Ali Abou-Hassan
- Sorbonne Université, CNRS UMR 8234, Physico-chimie des Électrolytes et Nanosystèmes InterfaciauX, F-75005 Paris, France.
| | - Christine Ménager
- Sorbonne Université, CNRS UMR 8234, Physico-chimie des Électrolytes et Nanosystèmes InterfaciauX, F-75005 Paris, France.
| |
Collapse
|
6
|
Mirvakili SM, Leroy A, Sim D, Wang EN. Solar-Driven Soft Robots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004235. [PMID: 33898194 PMCID: PMC8061385 DOI: 10.1002/advs.202004235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/06/2021] [Indexed: 05/22/2023]
Abstract
Stimuli-responsive materials have been lately employed in soft robotics enabling new classes of robots that can emulate biological systems. The untethered operation of soft materials with high power light, magnetic field, and electric field has been previously demonstrated. While electric and magnetic fields can be stimulants for untethered actuation, their rapid decay as a function of distance limits their efficacy for long-range operations. In contrast, light-in the form of sunlight or collimated from an artificial source (e.g., laser, Xenon lamps)-does not decay rapidly, making it suitable for long-range excitation of untethered soft robots. In this work, an approach to harnessing sunlight for the untethered operation of soft robots is presented. By employing a selective solar absorber film and a low-boiling point (34 °C) fluid, light-operated soft robotic grippers are demonstrated, grasping and lifting objects almost 25 times the mass of the fluid in a controllable fashion. The method addresses one of the salient challenges in the field of untethered soft robotics. It precludes the use of bulky peripheral components (e.g., compressors, valves, or pressurized gas tank) and enables the untethered long-range operation of soft robots.
Collapse
Affiliation(s)
| | - Arny Leroy
- Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Douglas Sim
- Electrical and Computer Engineering DepartmentUniversity of British ColumbiaVancouverBCV6T 1Z2Canada
| | - Evelyn N. Wang
- Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| |
Collapse
|
7
|
Zharkov MN, Brodovskaya EP, Kulikov OA, Gromova EV, Ageev VP, Atanova AV, Kozyreva ZV, Tishin AM, Pyatakov AP, Pyataev NA, Sukhorukov GB. Enhanced cytotoxicity caused by AC magnetic field for polymer microcapsules containing packed magnetic nanoparticles. Colloids Surf B Biointerfaces 2021; 199:111548. [DOI: 10.1016/j.colsurfb.2020.111548] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/28/2020] [Accepted: 12/19/2020] [Indexed: 12/11/2022]
|