1
|
Kim M, Hyun YE, Kang SY, Kim SW, Park JH, Joung M, Jeong LS. Synthesis and biological evaluation of sugar-modified truncated carbanucleosides as A 2A and A 3 adenosine receptor ligands to explore conformational effect to the receptors. Bioorg Med Chem 2024; 115:117986. [PMID: 39504593 DOI: 10.1016/j.bmc.2024.117986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/30/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
This study investigated the impact of conformation on the binding affinity of carbanucleosides to A2A and A3 adenosine receptors (ARs). A series of nucleosides, including saturated, unsaturated, North (N)-methano, and South (S)-methanocarbanucleosides was prepared, and their binding affinities to A2AAR and A3AR were assessed. Biological evaluations revealed that all synthesized (S)-methanocarbanucleosides had negligible binding to both receptors, and most (N)-methanocarbanucleosides exhibited high binding affinities. Molecular docking analysis showed that the (N)-methanocarbanucleoside 6a exhibited favorable interactions and minimal steric clashes in both A2AAR and A3AR. Conversely, the (S)-methanocarbanucleoside 7a appears to encounter significant steric clashes, which impeded its binding to A2AAR. Furthermore, when adopting the South conformation 7a was unable to bind to A3AR. Expanding upon the (N)-methanocarba moiety, various C8-aromatic groups were introduced to convert A2AAR agonists into antagonists and these modified compounds also exhibited strong binding affinity. These results suggest that the North conformation is favored by both A2AAR and A3AR, and that (N)-methanocarbanucleosides can serve as versatile structural moieties for dual targeting of A2AAR and A3AR. These findings offer promising avenues for the development of dual ligands for therapeutic applications in obesity and immunotherapy.
Collapse
Affiliation(s)
- Minjae Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Eum Hyun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Yeon Kang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Woo Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung Hoon Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Misuk Joung
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Lak Shin Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Future Medicine Co., Ltd, 54 Changup-ro, Sujeong-gu, Seongnam, Gyeonggi-do 13449, Republic of Korea.
| |
Collapse
|
2
|
Scheeff S, Wang Y, Lyu MY, Nasiri Ahmadabadi B, Hau SCK, Hui TKC, Zhang Y, Zuo Z, Chan RWY, Ng BWL. Design and Synthesis of Bicyclo[4.3.0]nonene Nucleoside Analogues. Org Lett 2023; 25:9002-9007. [PMID: 38051027 PMCID: PMC10749478 DOI: 10.1021/acs.orglett.3c03590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
Nucleoside analogues are effective antiviral agents, and the continuous emergence of pathogenic viruses demands the development of novel and structurally diverse analogues. Here, we present the design and synthesis of novel nucleoside analogues with a carbobicyclic core, which mimics the conformation of natural ribonucleosides. Employing a divergent synthetic route featuring an intermolecular Diels-Alder reaction, we successfully synthesized carbobicyclic nucleoside analogues with high antiviral efficacy against respiratory syncytial virus.
Collapse
Affiliation(s)
- Stephan Scheeff
- School of
Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Shatin , Hong Kong
| | - Yan Wang
- Department
of Paediatrics, Faculty of Medicine, The
Chinese University of Hong Kong, Shatin , Hong Kong
- Hong Kong
Hub of Paediatric Excellence, The Chinese
University of Hong Kong, Kowloon
Bay, Hong Kong
| | - Mao-Yun Lyu
- School of
Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Shatin , Hong Kong
| | - Behzad Nasiri Ahmadabadi
- Department
of Paediatrics, Faculty of Medicine, The
Chinese University of Hong Kong, Shatin , Hong Kong
- Hong Kong
Hub of Paediatric Excellence, The Chinese
University of Hong Kong, Kowloon
Bay, Hong Kong
| | - Sam Chun Kit Hau
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin , Hong Kong
| | | | - Yufeng Zhang
- School of
Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Shatin , Hong Kong
| | - Zhong Zuo
- School of
Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Shatin , Hong Kong
| | - Renee Wan Yi Chan
- Department
of Paediatrics, Faculty of Medicine, The
Chinese University of Hong Kong, Shatin , Hong Kong
- Li Ka Shing
Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin , Hong Kong
- Hong Kong
Hub of Paediatric Excellence, The Chinese
University of Hong Kong, Kowloon
Bay, Hong Kong
- S.H. Ho Research
Centre for Infectious Diseases, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Billy Wai-Lung Ng
- School of
Pharmacy, Faculty of Medicine, The Chinese
University of Hong Kong, Shatin , Hong Kong
- Li Ka Shing
Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin , Hong Kong
| |
Collapse
|
3
|
Sung K, Aswar VR, Song J, Jarhad DB, Jeong LS. Stereoselective Approach for the Synthesis of Diverse 1'-Modified Carbanucleosides. Org Lett 2023; 25:8377-8381. [PMID: 37947427 DOI: 10.1021/acs.orglett.3c03518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
We describe an efficient and stereoselective synthesis of 1'-substituted-β-carbocylic nucleosides 5 via gem-dichlorooxirane intermediate 7, which directly condensed with weak nucleophiles such as pyrimidines or purines. The formation of gem-dichlorooxirane 7 and direct nucleobase condensation exclusively proceeded in protic polar solvents like MeOH. This method provides a general and modular route for the late-stage diversification of 1'-modified nucleosides.
Collapse
Affiliation(s)
- Kisu Sung
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Vikas R Aswar
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Jiyoon Song
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Dnyandev B Jarhad
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Lak Shin Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| |
Collapse
|