1
|
Ouyang Q, Qin R, Li Q, Huang P, Lin C, Xu Q, Quan W, Fang F, Zhu Y, Liao J, Wu K. A novel m-xylylene-diamine/glucose based-supramolecular eutectogels with tissue clearing for three dimensional histological imaging. Colloids Surf B Biointerfaces 2024; 245:114262. [PMID: 39303383 DOI: 10.1016/j.colsurfb.2024.114262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/13/2024] [Revised: 05/27/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Hydrogel-based tissue clearing technologies have shown significant promise for deep-tissue imaging and subcellular-level optical 3D reconstruction of whole organs. This study proposes a novel approach utilizing a deep eutectic solvent (DES) formulated with glucose and m-xylylene-diamine (MXDA) to create a highly efficient tissue-clearing hydrogel system named the passive hydrogel clearing system (PHCS). PHCS achieved efficient tissue clearing through a single-step tissue gelation process. The resulting hydrogel-tissue complex exhibited thermoreversible properties, transitioning into a sol state upon heating and vice versa upon cooling. Notably, PHCS enabled media embedding, facilitating immunofluorescence histopathology. Additionally, the system demonstrated compatibility with various fluorescent probes, particularly lipophilic dyes. Our study successfully employed PHCS for the reconstruction of vascular structures within the intestine, enabling the generation of a 3D pathology model. These findings suggest that PHCS is a promising novel method for fabricating hydrogels for tissue clearing and holds great potential for application as a mounting medium for morphological imaging.
Collapse
Affiliation(s)
- Qianqian Ouyang
- The second Affiliated Hospital of Guangdong Medical University, Zhanjiang 524023, China; Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, PR China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, PR China
| | - Ruixiu Qin
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, PR China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, PR China
| | - Qian Li
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, PR China
| | - Peixin Huang
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, PR China
| | - Changmei Lin
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, PR China
| | - Qingbao Xu
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, PR China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, PR China
| | - Weiyan Quan
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, PR China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, PR China
| | - Fang Fang
- The second Affiliated Hospital of Guangdong Medical University, Zhanjiang 524023, China
| | - Yuzhen Zhu
- Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, PR China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, PR China
| | - Jing Liao
- The Affiliated Hospital of Guangdong Medical University, Zhanjiang 524002, PR China.
| | - Kefeng Wu
- The second Affiliated Hospital of Guangdong Medical University, Zhanjiang 524023, China; Marine Biomedical Research Institution, Guangdong Medical University, Zhanjiang 524023, PR China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, PR China.
| |
Collapse
|
2
|
Swebocki T, Kocot AM, Barras A, Arellano H, Bonnaud L, Haddadi K, Fameau AL, Szunerits S, Plotka M, Boukherroub R. Comparison of the Antibacterial Activity of Selected Deep Eutectic Solvents (DESs) and Deep Eutectic Solvents Comprising Organic Acids (OA-DESs) Toward Gram-Positive and Gram-Negative Species. Adv Healthc Mater 2024; 13:e2303475. [PMID: 38310366 DOI: 10.1002/adhm.202303475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/11/2023] [Revised: 12/30/2023] [Indexed: 02/05/2024]
Abstract
Deep eutectic solvents (DESs) have been intensively investigated in recent years for their antibacterial properties, with DESs that comprise organic acids (OA-DESs) showing promising antibacterial action. However a majority of the reports focused only on a limited number strains and techniques, which is not enough to determine the antibacterial potential of a substance. To bridge this gap, the antibacterial activity of classical DESs and OA-DESs is assessed on twelve Gram-negative and Gram-positive bacteria strains, with some of them exhibiting specific resistance toward antibiotics. The investigated formulations of OA-DESs comprise glycolic, malic, malonic, and oxalic acids as representatives of this group. Using a range of microbiological assays as well as physicochemical characterization methods, a major difference of the effectiveness between the two groups is demonstrated, with OA-DESs exhibiting, as expected, greater antibacterial effectiveness than classical DESs. Most interestingly, slight differences in the minimum inhibitory and bactericidal concentration values as well as time-kill kinetics profiles are observed between Gram-positive and Gram-negative strains. Transmission electron microscopy analysis reveals the effect of the treatment of the bacteria with the representatives of both groups of DESs, which allows us to better understand the possible mechanism-of-action of these novel materials.
Collapse
Affiliation(s)
- Tomasz Swebocki
- Université de Lille, CNRS, Université Polytechnique Hauts-de-France, UMR 8520 - IEMN - Institut d'Electronique de Microélectronique et de Nanotechnologie, Lille, 59000, France
| | - Aleksandra M Kocot
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, Gdańsk, 80-308, Poland
| | - Alexandre Barras
- Université de Lille, CNRS, Université Polytechnique Hauts-de-France, UMR 8520 - IEMN - Institut d'Electronique de Microélectronique et de Nanotechnologie, Lille, 59000, France
| | - Helena Arellano
- Université de Lille, CNRS, INRAe, UMR 8207 - UMET - Unité Matériaux et Transformations, Centrale Lille, Lille, 59000, France
| | - Leila Bonnaud
- Laboratory of Polymeric and Composite Materials, Materia Nova Innovation Center in Materials of the University of Mons, 3 Avenue Nicolas Copernic, Mons, B-7000, Belgium
| | - Kamel Haddadi
- Université de Lille, CNRS, Université Polytechnique Hauts-de-France, UMR 8520 - IEMN - Institut d'Electronique de Microélectronique et de Nanotechnologie, Lille, 59000, France
| | - Anne-Laure Fameau
- Université de Lille, CNRS, INRAe, UMR 8207 - UMET - Unité Matériaux et Transformations, Centrale Lille, Lille, 59000, France
| | - Sabine Szunerits
- Université de Lille, CNRS, Université Polytechnique Hauts-de-France, UMR 8520 - IEMN - Institut d'Electronique de Microélectronique et de Nanotechnologie, Lille, 59000, France
| | - Magdalena Plotka
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, Gdańsk, 80-308, Poland
| | - Rabah Boukherroub
- Université de Lille, CNRS, Université Polytechnique Hauts-de-France, UMR 8520 - IEMN - Institut d'Electronique de Microélectronique et de Nanotechnologie, Lille, 59000, France
| |
Collapse
|
3
|
Svigelj R, Toniolo R, Bertoni C, Fraleoni-Morgera A. Synergistic Applications of Graphene-Based Materials and Deep Eutectic Solvents in Sustainable Sensing: A Comprehensive Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:2403. [PMID: 38676019 PMCID: PMC11054382 DOI: 10.3390/s24082403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/06/2024] [Revised: 03/19/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
The recently explored synergistic combination of graphene-based materials and deep eutectic solvents (DESs) is opening novel and effective avenues for developing sensing devices with optimized features. In more detail, remarkable potential in terms of simplicity, sustainability, and cost-effectiveness of this combination have been demonstrated for sensors, resulting in the creation of hybrid devices with enhanced signal-to-noise ratios, linearities, and selectivity. Therefore, this review aims to provide a comprehensive overview of the currently available scientific literature discussing investigations and applications of sensors that integrate graphene-based materials and deep eutectic solvents, with an outlook for the most promising developments of this approach.
Collapse
Affiliation(s)
- Rossella Svigelj
- Department of Agrifood, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy
| | - Rosanna Toniolo
- Department of Agrifood, Environmental and Animal Sciences, University of Udine, 33100 Udine, Italy
| | | | | |
Collapse
|
4
|
Jin HF, Shi Y, Jiao YH, Cao J. Separation and determination of phenolic compounds using novel deep eutectic solvent-in-water microemulsion electrokinetic chromatography. Anal Chim Acta 2024; 1297:342359. [PMID: 38438236 DOI: 10.1016/j.aca.2024.342359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/23/2023] [Revised: 01/13/2024] [Accepted: 02/06/2024] [Indexed: 03/06/2024]
Abstract
BACKGROUND Microemulsion electrokinetic chromatography (MEEKC) is a mode of capillary electrophoresis with a wide range of applications in which microemulsion is utilized as background electrolyte to achieve the separation of analytes. Microemulsions are composed of oil droplets, aqueous buffer, surfactant, and co-surfactant. Currently, conventional organic reagents act as the most commonly used oil phase in microemulsions, which are unfriendly to the environment. Recently, deep eutectic solvent (DES) has become a new type of eco-friendly solvent due to its non-toxicity. Therefore, it is of great value to establish a new MEEKC method by replacing conventional organic reagents as the oil phase with DES. RESULTS The novel DES/W MEEKC method was established for phenolic compounds in Senecio scandens samples. Single-factor experiments and response surface methodology were performed to systematically optimize the crucial parameters for the method, including the type and content of the oil phase, surfactant content, concentration of borax buffer, and pH of the background solution. Under the optimized conditions, satisfactory regression curves were established for all standard analytes with correlation coefficients ≥0.9990. The method featured high sensitivity and favorable accuracy, with the instrumental detection limit in the range of 0.22-1.04 μg/mL, and intraday and interday precision for migration time expressed as relative standard deviations of 0.18-0.82% and 1.25-2.50%, respectively. The DES/W MEEKC method was successfully applied to Senecio scandens with good recoveries of 87.72-106.99%. In conclusion, the newly established DES/W MEEKC method is highly efficient, green and environmentally friendly. SIGNIFICANCE DES is considered a green and efficient solvent. The DES/W MEEKC method is highly efficient and environmentally friendly. Actually, the method provides a novel and effective analytical tool for the simultaneous separation and determination of multiple phenolic compounds, especially in complex plant matrices. In the future, the DES/W MEEKC method still has the prospect of being widely used in the separation of other complex phytochemicals.
Collapse
Affiliation(s)
- Huang-Fei Jin
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Ying Shi
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yan-Hua Jiao
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jun Cao
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
5
|
Wang W, Sabugaa MM, Chandra S, Asmara YP, Alreda BA, Ulloa N, Elmasry Y, Kadhim MM. Choline chloride-based deep eutectic solvents as electrolytes for wide temperature range supercapacitors. JOURNAL OF ENERGY STORAGE 2023; 71:108141. [DOI: 10.1016/j.est.2023.108141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 09/02/2023]
|
6
|
Qiao X, Vezzoli A, Smith S, Higgins SJ, Davidson RJ, Beeby A, Nichols RJ. Single-Molecule Junction Formation in Deep Eutectic Solvents with Highly Effective Gate Coupling. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:12802-12810. [PMID: 37435408 PMCID: PMC10331827 DOI: 10.1021/acs.jpcc.3c03129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 05/11/2023] [Revised: 06/07/2023] [Indexed: 07/13/2023]
Abstract
The environment surrounding a molecular junction affects its charge-transport properties and, therefore, must be chosen with care. In the case of measurements in liquid media, the solvent must provide good solvation, grant junction stability, and, in the case of electrolyte gating experiments, allow efficient electrical coupling to the gate electrodes through control of the electrical double layer. We evaluated in this study the deep eutectic solvent mixture (DES) ethaline, which is a mixture of choline chloride and ethylene glycol (1:2), for single-molecule junction fabrication with break-junction techniques. In ethaline, we were able to (i) measure challenging and poorly soluble molecular wires, exploiting the improved solvation capabilities offered by DESs, and (ii) efficiently apply an electrostatic gate able to modulate the conductance of the junction by approximately an order of magnitude within a ∼1 V potential window. The electrochemical gating results on a Au-VDP-Au junction follow exceptionally well the single-level modeling with strong gate coupling (where VDP is 1,2-di(pyridine-4-yl)ethene). Ethaline is also an ideal solvent for the measurement of very short molecular junctions, as it grants a greatly reduced snapback distance of the metallic electrodes upon point-contact rupture. Our work demonstrates that DESs are viable alternatives to often relatively expensive ionic liquids, offering good versatility for single-molecule electrical measurements.
Collapse
Affiliation(s)
- Xiaohang Qiao
- Department
of Chemistry, University of Liverpool, Crown St, Liverpool L69 7ZD, U.K.
| | - Andrea Vezzoli
- Department
of Chemistry, University of Liverpool, Crown St, Liverpool L69 7ZD, U.K.
| | - Shaun Smith
- Department
of Chemistry, University of Liverpool, Crown St, Liverpool L69 7ZD, U.K.
| | - Simon J. Higgins
- Department
of Chemistry, University of Liverpool, Crown St, Liverpool L69 7ZD, U.K.
| | - Ross J. Davidson
- Department
of Chemistry, Durham University, South Rd, Durham DH1 3LE, U.K.
| | - Andrew Beeby
- Department
of Chemistry, Durham University, South Rd, Durham DH1 3LE, U.K.
| | - Richard J. Nichols
- Department
of Chemistry, University of Liverpool, Crown St, Liverpool L69 7ZD, U.K.
| |
Collapse
|
7
|
Kumar R, Sahoo S, Joanni E, Pandey R, Shim JJ. Vacancy designed 2D materials for electrodes in energy storage devices. Chem Commun (Camb) 2023; 59:6109-6127. [PMID: 37128726 DOI: 10.1039/d3cc00815k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 05/03/2023]
Abstract
Vacancies are ubiquitous in nature, usually playing an important role in determining how a material behaves, both physically and chemically. As a consequence, researchers have introduced oxygen, sulphur and other vacancies into bi-dimensional (2D) materials, with the aim of achieving high performance electrodes for electrochemical energy storage. In this article, we focused on the recent advances in vacancy engineering of 2D materials for energy storage applications (supercapacitors and secondary batteries). Vacancy defects can effectively modify the electronic characteristics of 2D materials, enhancing the charge-transfer processes/reactions. These atomic-scale defects can also serve as extra host sites for inserted protons or small cations, allowing easier ion diffusion during their operation as electrodes in supercapacitors and secondary batteries. From the viewpoint of materials science, this article summarises recent developments in the exploitation of vacancies (which are surface defects, for these materials), including various defect creation approaches and cutting-edge techniques for detection of vacancies. The crucial role of defects for improvement in the energy storage performance of 2D electrode materials in electrochemical devices has also been highlighted.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Mechanical Engineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India.
| | - Sumanta Sahoo
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Ednan Joanni
- Center for Information Technology Renato Archer (CTI), Campinas 13069-901, Brazil
| | - Raghvendra Pandey
- Department of Physics, ARSD College, University of Delhi, New Delhi, 110021, India
| | - Jae-Jin Shim
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
8
|
Wu JD, Ding Y, Zhu F, Gu Y, Wang WW, Sun L, Mao BW, Yan JW. The Role of Water Content of Deep Eutectic Solvent Ethaline in the Anodic Process of Gold Electrode. Molecules 2023; 28:molecules28052300. [PMID: 36903545 PMCID: PMC10005209 DOI: 10.3390/molecules28052300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/03/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Traditional coupling of ligands for gold wet etching makes large-scale applications problematic. Deep eutectic solvents (DESs) are a new class of environment-friendly solvents, which could possibly overcome the shortcomings. In this work, the effect of water content on the Au anodic process in DES ethaline was investigated by combining linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS). Meanwhile, we employed atomic force microscopy (AFM) to image the evolution of the surface morphology of the Au electrode during its dissolution and passivation process. The obtained AFM data help to explain the observations about the effect of water content on the Au anodic process from the microscopic perspective. High water contents make the occurrence of anodic dissolution of gold at higher potential, but enhances the rate of the electron transfer and gold dissolution. AFM results reveal the occurrence of massive exfoliation, which confirms that the gold dissolution reaction is more violent in ethaline with higher water contents. In addition, AFM results illustrate that the passive film and its average roughness could be tailored by changing the water content of ethaline.
Collapse
Affiliation(s)
- Jie-Du Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yu Ding
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Feng Zhu
- College of Chemistry and Bioengineering, Yichun University, Yichun 336000, China
| | - Yu Gu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Wei-Wei Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lan Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bing-Wei Mao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Correspondence: (B.-W.M.); (J.-W.Y.)
| | - Jia-Wei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Correspondence: (B.-W.M.); (J.-W.Y.)
| |
Collapse
|
9
|
Antenucci A, Bonomo M, Ghinato S, Blangetti M, Dughera S. Design of a New Chiral Deep Eutectic Solvent Based on 3-Amino-1,2-propanediol and Its Application in Organolithium Chemistry. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238566. [PMID: 36500673 PMCID: PMC9738533 DOI: 10.3390/molecules27238566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 11/03/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
A chiral glycerol derivative, namely 3-amino-1,2-propanediol, was employed for as the hydrogen bond donor (HBD) in the design of a new deep eutectic solvent (DES) with choline chloride acting as the hydrogen bond acceptor (HBA). The novel mixture was characterized and unambiguously classified as a DES. Furthermore, its synthetic usefulness was demonstrated in the room-temperature n-butyllithium-addition under air to carbonyl compounds and benzyl chloride. In some cases, pure products (100% conversion) were obtained by a simple extractive work-up in up to 72% isolated yield, thus suggesting the potential practical usefulness of this procedure as a green alternative to the classical Schenk procedure in volatile organic solvents for the synthesis of tertiary alcohols. The chirality of the HBD, bearing an interesting basic primary amino group, is an intriguing feature currently under investigation for further exploitation.
Collapse
Affiliation(s)
- Achille Antenucci
- Department of Chemistry, Università degli Studi di Torino, Via Pietro Giuria 7, 10125 Torino, Italy
- Centro Ricerche per la Chimica Fine s.r.l. for Silvateam s.p.a., Via Torre 7, 12080 San Michele Mondovì, Italy
- Correspondence: (A.A.); (M.B.); (S.D.)
| | - Matteo Bonomo
- Department of Chemistry, Università degli Studi di Torino, Via Pietro Giuria 7, 10125 Torino, Italy
- NIS Interdepartmental Centre and INSTM Reference Centre, Università degli Studi di Torino, Via Gioacchino Quarello 15/a, 10125 Torino, Italy
- Correspondence: (A.A.); (M.B.); (S.D.)
| | - Simone Ghinato
- Department of Chemistry, Università degli Studi di Torino, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Marco Blangetti
- Department of Chemistry, Università degli Studi di Torino, Via Pietro Giuria 7, 10125 Torino, Italy
| | - Stefano Dughera
- Department of Chemistry, Università degli Studi di Torino, Via Pietro Giuria 7, 10125 Torino, Italy
- Correspondence: (A.A.); (M.B.); (S.D.)
| |
Collapse
|
10
|
Liu JZ, Lin ZX, Kong WH, Zhang CC, Yuan Q, Fu YJ, Cui Q. Ultrasonic-assisted extraction-synergistic deep eutectic solvents for green and efficient incremental extraction of Paris polyphylla saponins. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/09/2022]
|
11
|
Aguilar N, Barros R, Antonio Tamayo-Ramos J, Martel S, Bol A, Atilhan M, Aparicio S. Carbon nanomaterials with Thymol + Menthol Type V natural deep eutectic solvent: From surface properties to nano-Venturi effect through nanopores. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022]
|
12
|
Lu H, Tan X, Huang G, Wu S, Zhou Y, Zhang J, Zheng Q, Chen T, Li F, Cai Z, Zeng J, Zhang M. Green synthesis of highly stable CsPbBr 3 perovskite nanocrystals using natural deep eutectic solvents as solvents and surface ligands. NANOSCALE 2022; 14:17222-17229. [PMID: 36250272 DOI: 10.1039/d2nr04173a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/16/2023]
Abstract
Perovskite nanocrystals (PNCs) have attracted widespread attention as promising materials for the optoelectronic field due to their remarkable photophysical properties and structural tunability. However, their poor stability and the use of toxic organic solvents in the preparation process have severely restricted their practical applications. Herein, a facile, rapid and toxic organic solvent-free synthesis strategy of CsPbBr3 PNCs was developed for the first time via the ligand-assisted reprecipitation (LARP) method using natural deep eutectic solvents (NADESs) as solvents and surface ligands. In this method, the NADESs not only functioned as solvents for green synthesis, but also served simultaneously as surface ligands of CsPbBr3 PNCs to significantly improve their optical properties and stability. The as-synthesized CsPbBr3 PNCs exhibited high photoluminescence quantum yield (PLQY, ∼96.8%), narrow full width at half-maximum (FWHM, ∼18.8 nm) and a high stability that retained 82.9% of PL intensity after 70 days. This work provides a new strategy for the green synthesis of PNCs, which promises feasibility for the industrial large-scale synthesis of high-quality PNCs.
Collapse
Affiliation(s)
- Heng Lu
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China.
| | - Xiaohong Tan
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China.
| | - Guobin Huang
- Institute of Food Safety and Environment Monitoring, Fuzhou University, Fuzhou 350108, China
| | - Shaoru Wu
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China.
| | - Yanmei Zhou
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China.
| | - Junying Zhang
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China.
| | - Qiaowen Zheng
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China.
| | - Tianju Chen
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China.
| | - Feiming Li
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China.
- Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Zhixiong Cai
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China.
- Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Jingbin Zeng
- College of Science, China University of Petroleum (East China), Qingdao 266580, China
| | - Maosheng Zhang
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China.
- Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China
| |
Collapse
|
13
|
Studying the Formation of Choline Chloride- and Glucose-Based Natural Deep Eutectic Solvent at the Molecular Level. J Mol Model 2022; 28:235. [PMID: 35900597 DOI: 10.1007/s00894-022-05220-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/26/2021] [Accepted: 07/07/2022] [Indexed: 10/16/2022]
Abstract
The liquid waste is the major source of waste, which usually generated from academic laboratories and industry during the extraction, separation, chemical synthesis, and pretreatment processes. These chemical and engineering processes require more solvents. In this regard, there is a need to develop more environmentally friendly, cheaper, non-toxic solvents that are harmless to humans and the environment. In this regard, deep eutectic solvents (DES) and their derivatives so-called natural deep eutectic solvents (NADES) are a new field in the search for green alternative solvents. In our work, the formation of choline chloride-based NADESs using density functional theory (DFT) calculations, and classical all-atom molecular dynamics (MD) simulation was studied in detail using Gaussian09 and Gromacs software's. Next, the ground state geometry optimizations were performed in the gas phase using DFT B3LYP 6-31 + G(d) level of theory. Moreover, classical all-atom MD simulations were implemented using Gromos force field. After the modeling and simulations, the DFT calculation results revealed the formation of NADESs via formation (creation) of binding between chlorine and choline, and chlorine and glucose. At the same time, the results of classical all-atom MD simulations, based on the time average of the equilibrated production run of MD simulations, stated that the nitrogen atom of choline ion and chloride ion has greater interactions, while chloride ion has also greater interaction with glucose during formation of NADES. The outcomes of both DFT and classical all-atom MD simulations are in good agreements.
Collapse
|
14
|
Self-assembled nanostructure induced in deep eutectic solvents via an amphiphilic hydrogen bond donor. J Colloid Interface Sci 2022; 616:121-128. [DOI: 10.1016/j.jcis.2022.02.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/17/2022] [Revised: 02/01/2022] [Accepted: 02/06/2022] [Indexed: 12/19/2022]
|
15
|
Kim KI, Tang L, Muratli JM, Fang C, Ji X. A Graphite∥PTCDI Aqueous Dual-Ion Battery. CHEMSUSCHEM 2022; 15:e202102394. [PMID: 35132831 DOI: 10.1002/cssc.202102394] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/09/2021] [Revised: 12/05/2021] [Indexed: 06/14/2023]
Abstract
A full cell chemistry of aqueous dual-ion battery (DIB) was reported, comprising the graphite cathode and 3,4,9,10-perylenetetracarboxylic diimide (PTCDI) as the anode. This DIB employed a mixture aqueous electrolyte: 5 m tributylmethylammonium (TBMA) chloride plus 5 m MgCl2 , where [MgCl3 ]- and TBMA+ serve as the charge carriers for cathode and anode of the DIB, respectively. This novel full cell exhibited a specific capacity of around 41 mAh g-1 based on the total active mass of both electrodes with an average operation voltage of 1.45 V and stable cycling for 400 cycles.
Collapse
Affiliation(s)
- Keun-Il Kim
- Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331-4003, United States
| | - Longteng Tang
- Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331-4003, United States
| | - Jesse M Muratli
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331-5503, United States
| | - Chong Fang
- Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331-4003, United States
| | - Xiulei Ji
- Department of Chemistry, Oregon State University, Corvallis, Oregon, 97331-4003, United States
| |
Collapse
|
16
|
Hydrogen Bond Donors Influence on the Electrochemical Performance of Composite Graphene Electrodes/Deep Eutectic Solvents Interface. ELECTROCHEM 2022. [DOI: 10.3390/electrochem3010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022] Open
Abstract
The development of energy storage devices with better performance relies on the use of innovative materials and electrolytes, aiming to reduce the carbon footprint through the screening of low toxicity electrolytes and solvent-free electrode design protocols. The application of nanostructured carbon materials with high specific surface area, to prepare composite electrodes, is being considered as a promising starting point towards improving the power and energy efficiency of energy storage devices. Non-aqueous electrolytes synthesized using greener approaches with lower environmental impact make deep eutectic solvents (DES) promising alternatives for electrochemical energy storage and conversion applications. Accordingly, this work proposes a systematic study on the effect of the composition of DES containing a diol and an amide as HBD (hydrogen bond donor: 1,2-propylene glycol and urea), on the electrochemical performance of graphene and graphite composite electrodes/DES electrolyte interface. Glassy carbon (GC) was selected as the bare electrode material substrate to prepare the composite formulations since it provides an electrochemically reproducible surface. Gravimetric capacitance was measured for commercial graphene and commercial graphite/GC composite electrodes in contact with choline chloride, complexed with 1,2-propylene glycol, and urea as the HBD in 1:2 molar ratio. The electrochemical stability was followed by assessing the charge/discharge curves at 1, 2, and 4 A g−1. For comparison purposes, a parallel study was performed using commercial graphite. A four-fold increase in gravimetric capacitance was obtained when replacing commercial graphite (1.70 F g−1) by commercial graphene (6.19 F g−1) in contact with 1,2-propylene glycol-based DES. When using urea based DES no significant change in gravimetric capacitance was observed when commercial graphite is replaced by commercial graphene.
Collapse
|
17
|
Moradi K, Rahimi S, Ebrahimi S, Salimi A. Understanding of Bulk and Interfacial Structures Ternary and Binary Deep Eutectic Solvents with a Constant Potential Method: A Molecular Dynamics Study. Phys Chem Chem Phys 2022; 24:10962-10973. [DOI: 10.1039/d2cp01014c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
In the last decade, deep eutectic solvents (DESs) emerge as promising electrolytes in supercapacitors and rechargeable batteries due to their unique properties, wide electrochemical window, low viscosity, and high ionic...
Collapse
|
18
|
Antenucci A, Bonomo M, Ghigo G, Gontrani L, Barolo C, Dughera S. How do arenediazonium salts behave in deep eutectic solvents? A combined experimental and computational approach. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/21/2022]
|
19
|
Hou X, Yu L, He C, Wu K. Group and
group‐interaction
contribution method for estimating the melting temperatures of deep eutectic solvents. AIChE J 2021. [DOI: 10.1002/aic.17408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiao‐Jing Hou
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
- Institute of Zhejiang University‐Quzhou Quzhou China
| | - Liu‐Ying Yu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
- Institute of Zhejiang University‐Quzhou Quzhou China
| | - Chao‐Hong He
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
- Institute of Zhejiang University‐Quzhou Quzhou China
| | - Ke‐Jun Wu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering Zhejiang University Hangzhou China
- Institute of Zhejiang University‐Quzhou Quzhou China
- School of Chemical and Process Engineering University of Leeds Leeds UK
| |
Collapse
|
20
|
|
21
|
Svigelj R, Dossi N, Grazioli C, Toniolo R. Deep Eutectic Solvents (DESs) and Their Application in Biosensor Development. SENSORS (BASEL, SWITZERLAND) 2021; 21:4263. [PMID: 34206344 PMCID: PMC8271379 DOI: 10.3390/s21134263] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 05/06/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 12/29/2022]
Abstract
Deep Eutectic Solvents (DESs) are a new class of solvents characterized by a remarkable decrease in melting point compared to those of the starting components. The eutectic mixtures can be simply prepared by mixing a Hydrogen Bond Acceptor (HBA) with a Hydrogen Bond Donor (HBD) at a temperature of about 80 °C. They have found applications in different research fields; for instance, they have been employed in organic synthesis, electrochemistry, and bio-catalysis, showing improved biodegradability and lower toxicity compared to other solvents. Herein, we review the use of DESs in biosensor development. We consider the emerging interest in different fields of this green class of solvents and the possibility of their use for the improvement of biosensor performance. We point out some promising examples of approaches for the assembly of biosensors exploiting their compelling characteristics. Furthermore, the extensive ability of DESs to solubilize a wide range of molecules provides the possibility to set up new devices, even for analytes that are usually insoluble and difficult to quantify.
Collapse
Affiliation(s)
- Rossella Svigelj
- Department of Agrifood, Environmental and Animal Science, University of Udine, Via Cotonificio 108, 33100 Udine, Italy; (N.D.); (C.G.)
| | | | | | - Rosanna Toniolo
- Department of Agrifood, Environmental and Animal Science, University of Udine, Via Cotonificio 108, 33100 Udine, Italy; (N.D.); (C.G.)
| |
Collapse
|