1
|
Gong F, Xiao Y, He G, Zhang T, Hu S, Chen J, Liu W, Chen S. Bond-Engineered MoSe 2 Nanosheets with Expanded Layers and an Enriched 1T Phase for Highly Efficient Na + Storage. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39437-39446. [PMID: 39031502 DOI: 10.1021/acsami.4c08480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
MoSe2 has attracted significant interest for Na+ storage due to its large interlayer distance, favorable band gap structure, and satisfying theoretical specific capacity. Nevertheless, the poor conductivity and large volume stress/strain always lead to poor cycle stability and limited rate capability. Herein, the P-Se bond and phase engineering strategies are proposed to enhance the stability of MoSe2 with the assistance of carbon compositing. Systematical characterizations confirm that the presence of a strong P-Se bond can ensure the good structural stability and enlarge the layer distance of the MoSe2 anode. 1T phase-enriched composition endows excellent conductivity and thus fast Na+ transport kinetics. Additionally, the combination of carbon contributes to the improvement of electron conductivity, further enhancing the reversible Na+ storage and cyclic stability. Consequently, an ultrastable reversible specific capacity of 347.8 mAh g-1 with a high retention ratio of 99.1% can be maintained after 1000 cycles at 1 A g-1, which is superior to the previous reports of MoSe2 nanosheets. The presented strategy is ingenious, offering an effective guidance to designing advanced electrodes to be applied in rechargeable batteries with a long lifespan.
Collapse
Affiliation(s)
- Fenglian Gong
- Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Ying Xiao
- Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Gang He
- Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Tonghui Zhang
- Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Shilin Hu
- Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jun Chen
- Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Wei Liu
- Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Shimou Chen
- Key Laboratory of Organic-Inorganic Composites, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
2
|
Guo J, Liu Q, Li K, Chen X, Feng Y, Yao X, Wei B, Yang J. Morphology design and electronic configuration of MoSe 2 anchored on TiO 2 nanospheres for high energy density sodium-ion half/full batteries. J Colloid Interface Sci 2024; 660:943-952. [PMID: 38281475 DOI: 10.1016/j.jcis.2024.01.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/28/2023] [Accepted: 01/21/2024] [Indexed: 01/30/2024]
Abstract
Molybdenum selenide (MoSe2) has shown potential sodium storage properties due to its large layer spacing (0.646 nm) and high theoretical capacity and narrow band gap. However, as the anode material of sodium ion batteries (SIBs), the MoSe2's performance is not ideal, especially due to the layer agglomeration and stacking caused by volume expansion and low intrinsic conductivity. Hence, morphology design and electronic configuration of MoSe2 is proposed via building MoSe2 nanosheets and auxiliary sulfur doping on the surface of the TiO2 hollow nanosphere (S-MoSe2@TiO2). The hierarchical shaped S-MoSe2@TiO2 effectively overcomes the shortcomings of high surface energy and weak interlayer van der Waals force of MoSe2. As anode for SIBs, S-MoSe2@TiO2 delivers enhanced cycling life and rate capability (308 mAh/g at 10 A/g after 1000 cycles) with the comparison of MoSe2@TiO2 or pure MoSe2 and TiO2. Such excellent sodium storage performance is due to the fast diffusion kinetics of Na+. When it is applied in sodium ion full batteries, the S-MoSe2@TiO2 anode based cell can reach a high energy density of 187.8 W h kg-1 at 148.3 W kg-1. The design of the new MoSe2-based hybrid provides a novel scheme for the preparation of advanced anode in SIBs.
Collapse
Affiliation(s)
- Jia Guo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China; School of Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Quan Liu
- School of Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu, Jiangsu 215500, China.
| | - Kaiyang Li
- School of Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Xinhe Chen
- School of Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Yubo Feng
- School of Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Xiaxi Yao
- School of Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Bo Wei
- School of Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu, Jiangsu 215500, China.
| | - Jun Yang
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China.
| |
Collapse
|
3
|
Ghahari A, Raissi H. Architectural design of anode materials for superior alkali-ion (Li/Na/K) batteries storage. Sci Rep 2024; 14:3959. [PMID: 38368483 PMCID: PMC10874405 DOI: 10.1038/s41598-024-54214-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/09/2024] [Indexed: 02/19/2024] Open
Abstract
Developing high-performance anode materials remains a significant challenge for clean energy storage systems. Herein, we investigated the (MXene/MoSe2@C) heterostructure hybrid nanostructure as a superior anode material for application in lithium, sodium, and potassium ion batteries (LIBs, SIBs, and PIBs). Moreover, the anode structure's stability was examined via the open-source Large-scale atomic/molecular massively Parallel Simulator code. Our results indicated that the migration of SIBs toward the anode material is significantly greater than other ions during charge and discharge cycles. Therefore, SIBs systems can be competitive with PIBs and LIBs systems. In addition, the average values of the potential energies for the anode materials/ions complexes are about ~ - 713.65, ~ - 2030.41, and ~ - 912.36 kcal mol-1 in systems LIBs, SIBs, and PIBs, respectively. This study provides a rational design strategy to develop high-performance anode materials in SIBs/PIBs/LIBs systems, which can be developed for other transition metal chalcogenide-based composites as a superior anode of alkali metal ion battery storage systems.
Collapse
Affiliation(s)
- Afsaneh Ghahari
- Department of Chemistry, University of Birjand, Birjand, Iran
| | - Heidar Raissi
- Department of Chemistry, University of Birjand, Birjand, Iran.
| |
Collapse
|
4
|
Li J, Zhang W, Zheng W. Metal Selenides Find Plenty of Space in Architecting Advanced Sodium/Potassium Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305021. [PMID: 37712116 DOI: 10.1002/smll.202305021] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/27/2023] [Indexed: 09/16/2023]
Abstract
The rapid evolution of smart grid system urges researchers on exploiting systems with properties of high-energy, low-cost, and eco-friendly beyond lithium-ion batteries. Under the circumstances, sodium- and potassium-ion batteries with the semblable work mechanism to commercial lithium-ion batteries, hold the merits of cost-effective and earth-abundant. As a result, it is deemed a promising candidate for large-scale energy storage devices. Exploiting appropriate active electrode materials is in the center of the spotlight for the development of batteries. Metal selenides with special structures and relatively high theoretical capacity have aroused broad interest and achieved great achievements. To push the smooth development of metal selenides and enhancement of the electrochemical performance of sodium- and potassium-ion batteries, it is vital to grasp the inherent properties and electrochemical mechanisms of these materials. Herein, the state-of-the-art development and challenges of metal selenides are summarized and discussed. Meanwhile, the corresponding electrochemical mechanism and future development directions are also highlighted.
Collapse
Affiliation(s)
- Jingjuan Li
- Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, and Electron Microscopy Center, and International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Wei Zhang
- Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, and Electron Microscopy Center, and International Center of Future Science, Jilin University, Changchun, 130012, China
| | - Weitao Zheng
- Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, and Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, and Electron Microscopy Center, and International Center of Future Science, Jilin University, Changchun, 130012, China
| |
Collapse
|
5
|
Tao S, Zhang X, Gao Z, Chen TY, Min H, Yang H, Chen HY, Shen X, Wang J, Yang H. Dynamic Electronic and Ionic Transport Actuated by Cobalt-Doped MoSe 2 /rGO for Superior Potassium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304200. [PMID: 37525334 DOI: 10.1002/smll.202304200] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/14/2023] [Indexed: 08/02/2023]
Abstract
Molybdenum selenium (MoSe2 ) has tremendous potential in potassium-ion batteries (PIBs) due to its large interlayer distance, favorable bandgap, and high theoretical specific capacity. However, the poor conductivity and large K+ insertion/extraction in MoSe2 inevitably leads to sluggish reaction kinetics and poor structural stability. Herein, Coinduced engineering is employed to illuminate high-conductivity electron pathway and mobile ion diffusion of MoSe2 nanosheets anchored on reduced graphene oxide substrate (Co-MoSe2 /rGO). Benefiting from the activated electronic conductivity and ion diffusion kinetics, and an expanded interlayer spacing resulting from Co doping, combined with the interface coupling with highly conductive reduced graphene oxide (rGO) substrate through Mo-C bonding, the Co-MoSe2 /rGO anode demonstrates remarkable reversible capacity, superior rate capability, and stable long-term cyclability for potassium storage, as well as superior energy density and high power density for potassium-ion capacitors. Systematic performance measurement, dynamic analysis, in-situ/ex-situ measurements, and density functional theory (DFT) calculations elucidate the performance-enhancing mechanism of Co-MoSe2 /rGO in view of the electronic and ionic transport kinetics. This work offers deep atomic insights into the fundamental factors of electrodes for potassium-ion batteries/capacitors with superior electrochemical performance.
Collapse
Affiliation(s)
- Song Tao
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Xinyue Zhang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Zhaoyang Gao
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Tsung-Yi Chen
- Department of Materials Science and Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan
| | - Huihua Min
- Electron Microscope Lab, Nanjing Forestry University, Nanjing, Jiangsu, 210037, P. R. China
| | - Hao Yang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Han-Yi Chen
- Department of Materials Science and Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu, 300044, Taiwan
| | - Xiaodong Shen
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Jin Wang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Hui Yang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| |
Collapse
|
6
|
Wang Y, Kang W, Sun D. Metal-Organic Assembly Strategy for the Synthesis of Layered Metal Chalcogenide Anodes for Na + /K + -Ion Batteries. CHEMSUSCHEM 2023; 16:e202202332. [PMID: 36823442 DOI: 10.1002/cssc.202202332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 05/20/2023]
Abstract
Layered transition metal chalcogenides (MX, M=Mo, W, Sn, V; X=S, Se, Te) have large ion transport channels and high specific capacity, making them promising for large-sized Na+ /K+ energy-storage technologies. Nevertheless, slow reaction kinetics and huge volume expansion will induce an undesirable electrochemical performance. Numerous efforts have been devoted to designing MX anodes and enhancing their electrochemical performance. Based on the metal-organic assembly strategy, nanostructural engineering, combination with carbon materials, and component regulation can be easily realized, which effectively boost the performance of MX anodes. In this Review, we present a comprehensive overview on the synthesis of MX nanostructure using the metal-organic assembly strategy, which can realize the design of MX nanostructures, based on self-sacrificial templates, host@guest tailored templates, post-modified layer and derivative templates. The preparation routes and structure evolution are mainly discussed. Then, Mo-, W-, Sn-, V-based chalcogenides used for Na+ /K+ energy storage are reviewed, and the relationship between the structure and the electrochemical performance, as well as the energy storage mechanism are emphasized. In addition, existing challenges and future perspectives are also presented.
Collapse
Affiliation(s)
- Yuyu Wang
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, Shandong, 266590, P. R. China
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| | - Wenpei Kang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| | - Daofeng Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China
| |
Collapse
|
7
|
Du J, Xing W, Yu J, Feng J, Tang L, Tang W. Synergistic effect of intercalation and EDLC electrosorption of 2D/3D interconnected architectures to boost capacitive deionization for water desalination via MoSe 2/mesoporous carbon hollow spheres. WATER RESEARCH 2023; 235:119831. [PMID: 36893590 DOI: 10.1016/j.watres.2023.119831] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Transition-metal dichalcogenides can be used for capacitive deionization (CDI) via pseudocapacitive ion intercalation/de-intercalation due to their unique two-dimensional (2D) laminar structure. MoS2 has been extensively studied in the hybrid capacitive deionization (HCDI), but the desalination performance of MoS2-based electrodes remains only 20-35 mg g-1 on average. Benefiting from the higher conductivity and larger layer spacing of MoSe2 than MoS2, it is expected that MoSe2 would exhibit a superior HCDI desalination performance. Herein, for the first time, we explored the use of MoSe2 in HCDI and synthesized a novel MoSe2/MCHS composite material by utilizing mesoporous carbon hollow spheres (MCHS) as the growth substrate to inhibit the aggregation and improve the conductivity of MoSe2. The as-obtained MoSe2/MCHS presented unique 2D/3D interconnected architectures, allowing for synergistic effects of intercalation pseudocapacitance and electrical double layer capacitance (EDLC). An excellent salt adsorption capacity of 45.25 mg g- 1 and a high salt removal rate of 7.75 mg g- 1 min-1 were achieved in 500 mg L- 1 NaCl feed solution at an applied voltage of 1.2 V in batch-mode tests. Moreover, the MoSe2/MCHS electrode exhibited outstanding cycling performance and low energy consumption, making it suitable for practical applications. This work demonstrates the promising application of selenides in CDI and provides new insights for ration design of high-performance composite electrode materials.
Collapse
Affiliation(s)
- Jiaxin Du
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Wenle Xing
- School of Resources and Environment, Hunan University of Technology and Business, Changsha 410205, China
| | - Jiaqi Yu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Jing Feng
- PowerChina Zhongnan Engineering Corporation Limited, Changsha 410014, China
| | - Lin Tang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China
| | - Wangwang Tang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha 410082, China.
| |
Collapse
|
8
|
Wang H, Yu K, Wang P, Jia P, Yuan Y, Liang C. ZIF-67-derived Co/CoSe ultrafine nanocrystal Schottky heterojunction decorated hollow carbon nanospheres as new-type anodes for potassium-ion batteries. J Colloid Interface Sci 2023; 645:55-65. [PMID: 37146379 DOI: 10.1016/j.jcis.2023.04.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/13/2023] [Accepted: 04/19/2023] [Indexed: 05/07/2023]
Abstract
Metal-organic frameworks (MOFs) have the advantages of controllable chemical properties, rich pore structures and reaction sites and are expected to be high-performance anode materials for the next generation of potassium-ion batteries (PIBs). However, due to the large radius of potassium ions, the pure MOF crystal structure is prone to collapse during ion insertion and processing, so its electrochemical performance is quite limited. In this work, a hollow carbon sphere-supported MOF-derived Co/CoSe heterojunction anode material for potassium-ion batteries was developed by a hydrothermal method. The anode has high potassium storage capacity (461.9 mA h/g after 200 cycles at 1 A/g), excellent cycling stability and superior rate performance. It is worth noting that the potassium ion storage capacity of the anode material shows a gradual upward trend with the charge-discharge cycle, which is 145.9 mA h/g after 3000 cycles at a current density of 10 A/g. This work demonstrates that MOF-derived CoSe anodes with high capacity and low cost may be promising candidates for the introduction of potassium ion storage.
Collapse
Affiliation(s)
- Haonan Wang
- Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130025, China
| | - Kaifeng Yu
- Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130025, China
| | - Pengtao Wang
- Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130025, China
| | - Pengcheng Jia
- Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130025, China
| | - Yongzhi Yuan
- Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130025, China
| | - Ce Liang
- Key Laboratory of Automobile Materials, Ministry of Education, and College of Materials Science and Engineering, Jilin University, Changchun 130025, China.
| |
Collapse
|
9
|
Zhu Q, Xu A, Chen H, Liu C, Yan Y, Wu S. CuSe 2 Nanocubes Enabling Efficient Sodium Storage. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12976-12985. [PMID: 36862658 DOI: 10.1021/acsami.2c20655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
As the most promising candidate for lithium-ion batteries (LIBs), the electrochemical performance of sodium-ion batteries (SIBs) is highly dependent on the electrode materials. Copper selenides have established themselves as potential anode materials for SIBs due to their high theoretical capacity and good conductivity. However, the poor rate performance and fast capacity fading are the major challenges to their practical application in SIBs. Herein, single-crystalline CuSe2 nanocubes (CuSe2 NCs) are successfully synthesized via a solvothermal method. As an anode of SIBs, the CuSe2 NCs render an almost 100% initial Coulombic efficiency, an outstanding long cycle life, e.g., 380 mA h g-1 after 1700 cycles at 10 A g-1, and an unprecedented rate performance of 344 mA h g-1 at 50 A g-1. Ex situ X-ray diffraction (XRD) patterns reveal the crystalline transformation of energy-storage materials, and the density functional theory (DFT) conclusion suggests that fast and stable ion diffusion kinetics enhances their electrochemical performance upon sodiation/desodiaton. The investigation into the mechanism provides a theoretical basis for subsequent practical applications.
Collapse
Affiliation(s)
- Qi Zhu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Key Laboratory of Fuel Cell Technology, Guangzhou 510641, China
| | - Anding Xu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Huaming Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Key Laboratory of Fuel Cell Technology, Guangzhou 510641, China
| | - Chenxi Liu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Key Laboratory of Fuel Cell Technology, Guangzhou 510641, China
| | - Yurong Yan
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Songping Wu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Key Laboratory of Fuel Cell Technology, Guangzhou 510641, China
| |
Collapse
|
10
|
Cui L, Wang Z, Kang S, Fang Y, Chen Y, Gao W, Zhang Z, Gao X, Song C, Chen X, Wang Y, Wang G. N, P Codoped Hollow Carbon Nanospheres Decorated with MoSe 2 Ultrathin Nanosheets for Efficient Potassium-Ion Storage. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12551-12561. [PMID: 35257574 DOI: 10.1021/acsami.1c24989] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Potassium-ion batteries (KIBs) are gradually being considered as an alternative for lithium-ion batteries because of their non-negligible advantages such as abundance and low expenditure of K, as well as higher electrochemical potential than another alternative─sodium-ion batteries. Nevertheless, when the electrode materials are inserted and extracted with large-sized K+ ions, the tremendous volume change will cause the collapse of the microstructures of electrodes and make the charging/discharging process irreversible, thus disapproving their extended application. In response to this, we put forward a feasible strategy to realize the in situ assembly of layered MoSe2 nanosheets onto N, P codoped hollow carbon nanospheres (MoSe2/NP-HCNSs) through thermal annealing and heteroatom doping strategies, and the resulting nanoengineered material can function well as an anode for KIBs. This cleverly designed nanostructure of MoSe2/NP-HCNS can broaden the interlayer spacing of MoSe2 to boost the efficiency of the insertion/extraction of K ions and also can accommodate large volume change-caused mechanical strain, facilitate electrolyte penetration, and prevent the aggregation of MoSe2 nanosheets. This synthetic method generates abundant defects to increase the amounts of active sites, as well as conductivity. The hierarchical nanostructure can effectively increase the proportion of pseudo-capacitance and promote interfacial electronic transfer and K+ diffusion, thus imparting great electrochemical performance. The MoSe2/NP-HCNS anode exhibits a high reversible capacity of 239.9 mA h g-1 at 0.1 A g-1 after 200 cycles and an ultralong cycling life of 161.1 mA h g-1 at 1 A g-1 for a long period of 1000 cycles. This nanoengineering method opens up new insights into the development of promising anode materials for KIBs.
Collapse
Affiliation(s)
- Lifeng Cui
- College of Smart Energy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Zhide Wang
- College of Smart Energy, Shanghai Jiao Tong University, Shanghai 200240, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524000, PR China
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Shifei Kang
- College of Smart Energy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Yanyan Fang
- Industrial Bio-Technology Research Center of Guangxi, Guangxi Academy of Science, Nanning 530007, PR China
| | - Ya Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, PR China
| | - Weikang Gao
- College of Smart Energy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Zhiyuan Zhang
- College of Smart Energy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xin Gao
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524000, PR China
| | - Chunyu Song
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524000, PR China
| | - Xiaodong Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524000, PR China
| | - Yangang Wang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, PR China
| | - Guoxiu Wang
- Center for Clean Energy Technology, School of Mathematical and Physical Science, Faculty of Science, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| |
Collapse
|