1
|
Nasiri-Tabrizi B, Basirun WJ, Walvekar R, Yeong CH, Phang SW. Exploring the potential of intermetallic alloys as implantable biomaterials: A comprehensive review. BIOMATERIALS ADVANCES 2024; 161:213854. [PMID: 38703541 DOI: 10.1016/j.bioadv.2024.213854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 05/06/2024]
Abstract
This review delves into the utilization of intermetallic alloys (IMAs) as advanced biomaterials for medical implants, scrutinizing their conceptual framework, fabrication challenges, and diverse manufacturing techniques such as casting, powder metallurgy, and additive manufacturing. Manufacturing techniques such as casting, powder metallurgy, additive manufacturing, and injection molding are discussed, with specific emphasis on achieving optimal grain sizes, surface roughness, and mechanical properties. Post-treatment methods aimed at refining surface quality, dimensional precision, and mechanical properties of IMAs are explored, including the use of heat treatments to enhance biocompatibility and corrosion resistance. The review presents an in-depth examination of IMAs-based implantable biomaterials, covering lab-scale developments and commercial-scale implants. Specific IMAs such as Nickel Titanium, Titanium Aluminides, Iron Aluminides, Magnesium-based IMAs, Zirconium-based IMAs, and High-entropy alloys (HEAs) are highlighted, with detailed discussions on their mechanical properties, including strength, elastic modulus, and corrosion resistance. Future directions are outlined, with an emphasis on the anticipated growth in the orthopedic devices market and the role of IMAs in meeting this demand. The potential of porous IMAs in orthopedics is explored, with emphasis on achieving optimal pore sizes and distributions for enhanced osseointegration. The review concludes by highlighting the ongoing need for research and development efforts in IMAs technologies, including advancements in design and fabrication techniques.
Collapse
Affiliation(s)
- Bahman Nasiri-Tabrizi
- Faculty of Innovation and Technology, School of Engineering, Chemical Engineering Programme, No.1 Jalan Taylor's, Taylor's University Malaysia, 47500 Subang Jaya, Selangor, Malaysia.
| | - Wan Jefrey Basirun
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Rashmi Walvekar
- Faculty of Innovation and Technology, School of Engineering, Chemical Engineering Programme, No.1 Jalan Taylor's, Taylor's University Malaysia, 47500 Subang Jaya, Selangor, Malaysia; Chitkara Centre for Research and Development, Chitkara University, Himachal Pradesh 174103, India
| | - Chai Hong Yeong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 47500 Subang Jaya, Malaysia
| | - Siew Wei Phang
- Faculty of Innovation and Technology, School of Engineering, Chemical Engineering Programme, No.1 Jalan Taylor's, Taylor's University Malaysia, 47500 Subang Jaya, Selangor, Malaysia
| |
Collapse
|
2
|
Zhou Y, Zhang A, Wu J, Guo S, Sun Q. Application and Perspectives: Magnesium Materials in Bone Regeneration. ACS Biomater Sci Eng 2024; 10:3514-3527. [PMID: 38723173 PMCID: PMC11167594 DOI: 10.1021/acsbiomaterials.3c01713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 06/11/2024]
Abstract
The field of bone regeneration has always been a hot and difficult research area, and there is no perfect strategy at present. As a new type of biodegradable material, magnesium alloys have excellent mechanical properties and bone promoting ability. Compared with other inert metals, magnesium alloys have significant advantages and broad application prospects in the field of bone regeneration. By searching the official Web sites and databases of various funds, this paper summarizes the research status of magnesium composites in the field of bone regeneration and introduces the latest scientific research achievements and clinical transformations of scholars in various countries and regions, such as improving the corrosion resistance of magnesium alloys by adding coatings. Finally, this paper points out the current problems and challenges, aiming to provide ideas and help for the development of new strategies for the treatment of bone defects and fractures.
Collapse
Affiliation(s)
| | | | - Jibin Wu
- Department of Plastic Surgery, The First Hospital of China Medical University, 110001 Shenyang, Liaoning Province, PR China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, 110001 Shenyang, Liaoning Province, PR China
| | - Qiang Sun
- Department of Plastic Surgery, The First Hospital of China Medical University, 110001 Shenyang, Liaoning Province, PR China
| |
Collapse
|
3
|
Liang W, Zhou C, Bai J, Zhang H, Long H, Jiang B, Dai H, Wang J, Zhang H, Zhao J. Current developments and future perspectives of nanotechnology in orthopedic implants: an updated review. Front Bioeng Biotechnol 2024; 12:1342340. [PMID: 38567086 PMCID: PMC10986186 DOI: 10.3389/fbioe.2024.1342340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Orthopedic implants are the most commonly used fracture fixation devices for facilitating the growth and development of incipient bone and treating bone diseases and defects. However, most orthopedic implants suffer from various drawbacks and complications, including bacterial adhesion, poor cell proliferation, and limited resistance to corrosion. One of the major drawbacks of currently available orthopedic implants is their inadequate osseointegration at the tissue-implant interface. This leads to loosening as a result of immunological rejection, wear debris formation, low mechanical fixation, and implant-related infections. Nanotechnology holds the promise to offer a wide range of innovative technologies for use in translational orthopedic research. Nanomaterials have great potential for use in orthopedic applications due to their exceptional tribological qualities, high resistance to wear and tear, ability to maintain drug release, capacity for osseointegration, and capability to regenerate tissue. Furthermore, nanostructured materials possess the ability to mimic the features and hierarchical structure of native bones. They facilitate cell proliferation, decrease the rate of infection, and prevent biofilm formation, among other diverse functions. The emergence of nanostructured polymers, metals, ceramics, and carbon materials has enabled novel approaches in orthopaedic research. This review provides a concise overview of nanotechnology-based biomaterials utilized in orthopedics, encompassing metallic and nonmetallic nanomaterials. A further overview is provided regarding the biomedical applications of nanotechnology-based biomaterials, including their application in orthopedics for drug delivery systems and bone tissue engineering to facilitate scaffold preparation, surface modification of implantable materials to improve their osteointegration properties, and treatment of musculoskeletal infections. Hence, this review article offers a contemporary overview of the current applications of nanotechnology in orthopedic implants and bone tissue engineering, as well as its prospective future applications.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, China
| | - Juqin Bai
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hongwei Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hengguo Long
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Bo Jiang
- Rehabilitation Department, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Haidong Dai
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jiangwei Wang
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hengjian Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jiayi Zhao
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
4
|
Mahjoory M, Shahgholi M, Karimipour A. Investigation on the size and percentage effects of magnesium nanoparticles on thermophysical properties of reinforced calcium phosphate bone cement by molecular dynamic simulation. Heliyon 2023; 9:e18835. [PMID: 37576247 PMCID: PMC10415888 DOI: 10.1016/j.heliyon.2023.e18835] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023] Open
Abstract
In recent years, bone materials and cement innovation have made extraordinary strides. Calcium phosphate cement (CPC) regenerates body tissues and repairs bone and dental defects. Since the presence of nanoparticles (NPs) increased the initial cement strength in terms of the reduction of porosity, magnesium (Mg) NPs were used because of their unique properties. In this study, the effects of various Mg NP percentages and sizes on reinforced cement thermal behavior and mechanical behavior are investigated using the molecular dynamics (MD) simulation method. The changes of Young's modulus (YM), maximum temperature (MT), and ultimate strength (US) were investigated for this reason. The US, YM, and MT of the reinforced cement sample improved from 0.879 to 0.171 MPa to 1.326 and 0.255 MPa, respectively, and from 1321 to 1403 K by raising the NPs percentage to 4%. The radius increase of NPs to 16 Å enhanced the US, YM, and MT to 0.899 MPa, 0.179 MPa, and 1349 K. The MT decreased to 1275 K. The quantity and size of the Mg NPs significantly enhanced the mechanical behavior of the finished cement, according to the findings.
Collapse
Affiliation(s)
- Mostafa Mahjoory
- Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Mohamad Shahgholi
- Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Arash Karimipour
- Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| |
Collapse
|
5
|
Jia MS, Hash S, Reynoso W, Elsaadany M, Ibrahim H. Characterization and Biocompatibility Assessment of Boron Nitride Magnesium Nanocomposites for Orthopedic Applications. Bioengineering (Basel) 2023; 10:757. [PMID: 37508784 PMCID: PMC10376449 DOI: 10.3390/bioengineering10070757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/30/2023] Open
Abstract
Magnesium (Mg) has been intensively studied as a promising alternative material to inert metallic alloys for orthopedic fixation devices due to its biodegradable nature inside the body and its favorable biocompatibility. However, the low mechanical strength and rapid corrosion of Mg in physiological environments represent the main challenges for the development of Mg-based devices for orthopedic applications. A possible solution to these limitations is the incorporation of a small content of biocompatible nanoparticles into the Mg matrix to increase strength and possibly corrosion resistance of the resulting nanocomposites. In this work, the effect of adding boron nitride (BN) nanoparticles (0.5 and 1.5 vol.%) on the mechanical properties, corrosion behavior, and biocompatibility of Mg-based nanocomposites was investigated. The properties of the nanocomposites fabricated using powder metallurgy methods were assessed using microstructure analyses, microhardness, compression tests, in vitro corrosion, contact angle, and cytotoxicity tests. A significant increase in the microhardness, strength, and corrosion rates of Mg-BN nanocomposites was detected compared with those of pure Mg (0% BN). Crystalline surface post-corrosion byproducts were detected and identified via SEM, EDX, and XRD. Biocompatibility assessments showed that the incorporation of BN nanoparticles had no significant impact on the cytotoxicity of Mg and samples were hydrophilic based on the contact angle results. These results confirm that the addition of BN nanoparticles to the Mg matrix can increase strength and corrosion resistance without influencing cytotoxicity in vitro. Further investigation into the chemical behavior of nanocomposites in physiological environments is needed to determine the potential impact of corrosive byproducts. Surface treatments and formulation methods that would increase the viability of these materials in vivo are also needed.
Collapse
Affiliation(s)
- Mary S Jia
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Shelby Hash
- Department of Mechanical Engineering, University of Tennessee, Chattanooga, TN 37403, USA
| | - Wendy Reynoso
- Department of Mechanical Engineering, University of Tennessee, Chattanooga, TN 37403, USA
| | - Mostafa Elsaadany
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Hamdy Ibrahim
- Department of Mechanical Engineering, University of Tennessee, Chattanooga, TN 37403, USA
| |
Collapse
|
6
|
Rout DR, Jena HM, Baigenzhenov O, Hosseini-Bandegharaei A. Graphene-based materials for effective adsorption of organic and inorganic pollutants: A critical and comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160871. [PMID: 36521616 DOI: 10.1016/j.scitotenv.2022.160871] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Water scarcity has been felt in many countries and will become a critical issue in the coming years. The release of toxic organic and inorganic contaminants from different anthropogenic activities, like mining, agriculture, industries, and domestic households, enters the natural waterbody and pollutes them. Keeping this in view in combating the environmental crises, removing pollutants from wastewater is one of the ongoing environmental challenges. Adsorption technology is an economical, fast, and efficient physicochemical method for removing both organic and inorganic pollutants, even at low concentrations. In the last decade, graphene and its composite materials have become the center of attraction for numerous applications, including wastewater treatment, due to the large surface area, highly active surface, and exclusive physicochemical properties, which make them potential adsorbents with unique physicochemical properties, like low density, chemical strength, structural variability, and the possibility of large-scale fabrications. This review article provides a thorough summary/critical appraisal of the published literature on graphene-, GO-, and rGO-based adsorbents for the removal of organic and inorganic pollutants from wastewater. The synthesis methods, experimental parameters, adsorption behaviors, isotherms, kinetics, thermodynamics, mechanisms, and the performance of the regeneration-desorption processes of these substances are scrutinized. Finally, the research challenges, limitations, and future research studies are also discussed. Certainly, this review article will benefit the research community by getting substantial information on suitable techniques for synthesizing such adsorbents and utilizing them in water treatment and designing water treatment systems.
Collapse
Affiliation(s)
- Dibya Ranjan Rout
- Department of Chemical Engineering, National Institute of Technology, Rourkela 769008, Orissa, India.
| | - Hara Mohan Jena
- Department of Chemical Engineering, National Institute of Technology, Rourkela 769008, Orissa, India.
| | | | | |
Collapse
|
7
|
The effect of Co-encapsulated GNPs-CNTs nanofillers on mechanical properties, degradation and antibacterial behavior of Mg-based composite. J Mech Behav Biomed Mater 2023; 138:105601. [PMID: 36493612 DOI: 10.1016/j.jmbbm.2022.105601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
Magnesium (Mg)-based composites, as one group of the biodegradable materials, enjoy high biodegradability, biocompatibility, and non-toxicity making them a great option for implant applications. In this paper, by the semi powder metallurgy (SPM) technique, the graphene nano-platelets (GNPs) and carbon nanotubes (CNTs) nanosystems, as reinforcements, are dispersed homogenously in the Mg-Zn (MZ) alloy matrix. Subsequently, the composite is successfully produced employing the spark plasma sintering (SPS) process. Compared to the unreinforced MZ sample, GNPs + CNTs mixture reinforced composite exhibits higher compressive strength (∼75%). Notably, adding only 1 wt % of GNPs + CNTs to the MZ matrix reduces the rate of the degradation in the Mg-based composite by almost 2- fold. Examining the antibacterial activity demonstrate that the incorporation of GNPs + CNTs into the Mg-based matrix is likely to prevent the infiltration and development of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) significantly. While the MTT with 0.5 and 1 wt % GNPs + CNTs does not demonstrate cytotoxicity to the MG63 cells, the excessive GNPs + CNTs results in a certain degree of poisonousness. In general, the findings of the present research attest to the viable application of MZ/GNPs + CNTs composites for implants as well as bone infection treatment.
Collapse
|
8
|
Huang S, Zhong Y, Fu Y, Zheng X, Feng Z, Mo A. Graphene and its derivatives: "one stone, three birds" strategy for orthopedic implant-associated infections. Biomater Sci 2023; 11:380-399. [PMID: 36453143 DOI: 10.1039/d2bm01507b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Orthopedic implants provide an avascular surface for microbial attachment and biofilm formation, impeding the entry of immune cells and the diffusion of antibiotics. The above is an important cause of dental and orthopedic implant-associated infection (IAI). For the prevention and treatment of IAI, the drawbacks of antibiotic resistance and surgical treatment are increasingly apparent. Due to their outstanding biological properties such as biocompatibility, immunomodulatory effects, and antibacterial properties, graphene-based nanomaterials (GBNs) have been applied to bone tissue engineering to deal with IAI, and in particular have great potential application in drug/gene carriers, multi-functional platforms, and coating forms. Here we review the latest research progress and achievements in GBNs for the prevention and treatment of IAI, mainly including their biomedical applications for antibacterial and immunomodulation effects, and for inducing osteogenesis. Furthermore, the biosafety of graphene family materials in bone tissue regeneration and the feasibility of clinical application are critically analyzed and discussed.
Collapse
Affiliation(s)
- Si Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China. .,Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yongjin Zhong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China. .,Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu Fu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China. .,Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiaofei Zheng
- Stomatology Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zeru Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China. .,Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Anchun Mo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China. .,Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Shan Z, Xie X, Wu X, Zhuang S, Zhang C. Development of degradable magnesium-based metal implants and their function in promoting bone metabolism (A review). J Orthop Translat 2022; 36:184-193. [PMID: 36263386 PMCID: PMC9552026 DOI: 10.1016/j.jot.2022.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/05/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022] Open
Abstract
Background Use of degradable magnesium (Mg)-based metal implants in orthopaedic surgeries can avoid drawbacks associated with subsequent removal of the non-degradable metallic implants, reducing cost and trauma of patients. Although Mg has been applied in the clinic for orthopaedic treatment, the use of Mg-based metal implants is largely in the research phase. But its application is potentially beneficial in this context as it has been shown that Mg can promote osteogenesis and inhibit osteoclast activity. Methods A systematic literature search about “degradable magnesium (Mg)-based metal implants” was performed in PubMed and Web of Science. Meanwhile, relevant findings have been reviewed and quoted. Results In this review, we summarize the latest developments in Mg-based metal implants and their role in bone regeneration. We also review the various molecular mechanisms by which Mg ions regulate bone metabolic processes, including osteogenesis, osteoclast activity, angiogenesis, immunity, and neurology. Finally, we discuss the remaining research challenges and opportunities for Mg-based implants and their applications. Conclusion Currently, establishment of the in vitro and in vivo biological evaluation systems and phenotypic modification improvement of Mg-based implants are still needed. Clarifying the functions of Mg-based metal implants in promoting bone metabolism is beneficial for their clinical application. The Translational potential of this article All current reviews on Mg-based implants are mainly concerned with the improvement of Mg alloy properties or the progress of applications. However, there are few reviews that provides a systematic narrative on the effect of Mg on bone metabolism. This review summarized the latest developments in Mg-based metal implants and various molecular mechanisms of Mg ions regulating bone metabolism, which is beneficial to further promote the translation of Mg based implants in the clinic and is able to provide a strong basis for the clinical application of Mg based implants.
Collapse
Affiliation(s)
- Zhengming Shan
- School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Xinhui Xie
- School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
- The Department of Orthopaedics, ZhongDa Hospital, Nanjing, Jiangsu, 210009, China
- Corresponding author. The Department of Orthopaedics, ZhongDa hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China.
| | - Xiaotao Wu
- School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
- The Department of Orthopaedics, ZhongDa Hospital, Nanjing, Jiangsu, 210009, China
- Corresponding author. The Department of Orthopaedics, ZhongDa hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China.
| | - Suyang Zhuang
- School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
- The Department of Orthopaedics, ZhongDa Hospital, Nanjing, Jiangsu, 210009, China
| | - Cong Zhang
- School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
- The Department of Orthopaedics, ZhongDa Hospital, Nanjing, Jiangsu, 210009, China
| |
Collapse
|
10
|
Nizami MZI, Yin IX, Lung CYK, Niu JY, Mei ML, Chu CH. In Vitro Studies of Graphene for Management of Dental Caries and Periodontal Disease: A Concise Review. Pharmaceutics 2022; 14:pharmaceutics14101997. [PMID: 36297434 PMCID: PMC9611330 DOI: 10.3390/pharmaceutics14101997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/07/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Graphene is a single-layer two-dimensional carbon-based nanomaterial. It presents as a thin and strong material that has attracted many researchers’ attention. This study provides a concise review of the potential application of graphene materials in caries and periodontal disease management. Pristine or functionalized graphene and its derivatives exhibit favorable physicochemical, mechanical, and morphological properties applicable to biomedical applications. They can be activated and functionalized with metal and metal nanoparticles, polymers, and other small molecules to exhibit multi-differentiation activities, antimicrobial activities, and biocompatibility. They were investigated in preventive dentistry and regenerative dentistry. Graphene materials such as graphene oxide inhibit cariogenic microbes such as Streptococcus mutans. They also inhibit periodontal pathogens that are responsible for periodontitis and root canal infection. Graphene-fluorine promotes enamel and dentin mineralization. These materials were also broadly studied in regenerative dental research, such as dental hard and soft tissue regeneration, as well as periodontal tissue and bone regeneration. Graphene oxide-based materials, such as graphene oxide-fibroin, were reported as promising in tissue engineering for their biocompatibility, bioactivity, and ability to enhance cell proliferation properties in periodontal ligament stem cells. Laboratory research showed that graphene can be used exclusively or by incorporating it into existing dental materials. The success of laboratory studies can translate the application of graphene into clinical use.
Collapse
Affiliation(s)
| | - Iris Xiaoxue Yin
- Faculty of Dentistry, University of Hong Kong, Hong Kong SAR 999077, China
| | | | - John Yun Niu
- Faculty of Dentistry, University of Hong Kong, Hong Kong SAR 999077, China
| | - May Lei Mei
- Faculty of Dentistry, University of Otago, Dunedin 9054, New Zealand
| | - Chun Hung Chu
- Faculty of Dentistry, University of Hong Kong, Hong Kong SAR 999077, China
- Correspondence:
| |
Collapse
|
11
|
Bao J, Sun X, Chen Z, Yang J, Wang C. Study on the angiogenesis ability of Polymethyl methacrylate-mineralized collagen/Mg-Ca composite material in vitro and the bone formation effect in vivo. J Biomater Appl 2022; 37:814-828. [PMID: 35969489 DOI: 10.1177/08853282221121851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Magnesium (Mg) and its alloys show high degrees of biocompatibility and biodegradability, used as biodegrad able materials in biomedical applications. In this study, Polymethyl methacrylate (PMMA) - mineralized collagen (nano-Hydroxyapatite/collagen; nHAC)/Mg-Ca composite materials were prepared, to study the angiogenesis ability of its composite materials on Human umbilical vein endothelial cells (HUVECs) and its osteogenesis effect in vivo. The results showed that the PMMA-nHAC reinforcement materials can promote the proliferation and adhesion in HUVECs of Mg matrix significantly, it can enhance the migration motility and VEGF expression of HUVECs. In vivo, Micro-CT examination showed that with coated samples presenting the highest bone formation. Histologically, the materials and their corrosion products caused no systematic or local cytotoxicological effects. Therefore, the Mg matrix composites prepared in the present study has good biocompatibility and PMMA-nHAC/Mg-Ca composite may be an ideal orthopedic material to improve the bone formation, and biodegradable magnesium based implants with bioactivity have potential applications in bone tissue.
Collapse
Affiliation(s)
- Jiaxin Bao
- Department of Prosthodontics, 207492The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xirao Sun
- Department of Prosthodontics, 207492The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zhan Chen
- Department of Prosthodontics, 207492The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Jingxin Yang
- Beijing Key Laboratory of Information Service Engineering, 70541Beijing Union University, Beijing, China.,College of Robotics, 70541Beijing Union University, Beijing, China
| | - Chengyue Wang
- Department of Prosthodontics, 207492The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
12
|
Paşahan A, Sevimli R, Kıvılcım N, Karaca Açarı İ, Erenler AŞ, Sezer S, Durmaz HT, Hüz M, Ünver T, Seçkin T, Akpolat N, Köytepe S, Gültek A, Ateş B, Yılmaz İ. Preparation, characterization, and biocompatibility of chondroitin sulfate-based sol-gel coatings and investigation of their effects on osseointegration improvement. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2105332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Aziz Paşahan
- Medical Services and Techniques Department, Vocational School of Health Service, Inonu University, Malatya, Turkey
| | - Reşit Sevimli
- Department of Orthopedics and Traumatology, Turgut Ozal Medical Center, Inonu University, Malatya, Turkey
| | - Nilüfer Kıvılcım
- Department of Chemistry, Faculty of Arts and Science, Inonu University, Malatya, Turkey
| | - İdil Karaca Açarı
- Department of Bioengineering, Faculty of Engineering and Natural Sciences, Turgut Ozal University, Malatya, Turkey
| | - A. Şebnem Erenler
- Department of Medical Biology, School of Medicine, Turgut Ozal University, Malatya, Turkey
| | - Selda Sezer
- Department of Chemistry, Faculty of Arts and Science, Inonu University, Malatya, Turkey
| | - H. Turgut Durmaz
- Department of Chemistry, Faculty of Arts and Science, Inonu University, Malatya, Turkey
| | - Mustafa Hüz
- Department of Pathology, Turgut Ozal Medical Center, Inonu University, Malatya, Turkey
| | - Tuba Ünver
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Inonu University, Malatya, Turkey
| | - Turgay Seçkin
- Department of Chemistry, Faculty of Arts and Science, Inonu University, Malatya, Turkey
| | - Nusret Akpolat
- Department of Pathology, Turgut Ozal Medical Center, Inonu University, Malatya, Turkey
| | - Süleyman Köytepe
- Department of Chemistry, Faculty of Arts and Science, Inonu University, Malatya, Turkey
| | - Ahmet Gültek
- Department of Chemistry, Faculty of Arts and Science, Inonu University, Malatya, Turkey
| | - Burhan Ateş
- Department of Chemistry, Faculty of Arts and Science, Inonu University, Malatya, Turkey
| | - İsmet Yılmaz
- Department of Chemistry, Faculty of Arts and Science, Inonu University, Malatya, Turkey
| |
Collapse
|
13
|
Malakhova AA, Rybin DK, Shtertser AA, Dudina DV. Nanoscale Detonation Carbon Demonstrates Biosafety in Human Cell Culture. MICROMACHINES 2022; 13:mi13081187. [PMID: 36014109 PMCID: PMC9414359 DOI: 10.3390/mi13081187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 12/21/2022]
Abstract
The production method of nanoscale detonation carbon (NDC) has recently been developed at Lavrentyev Institute of Hydrodynamics SB RAS. This method uses the reaction of acetylene with oxygen conducted in the detonation mode in fuel-rich acetylene–oxygen mixtures. The morphology and structural features of the NDC particles can be varied by changing the concentration of oxygen in the gaseous mixtures. The particles of NDC can serve as reinforcements in metal matrix composites and additives imparting electrical conductivity to polymer matrix composites. Before NDC can be considered for industrial applications, it is necessary to address the related biological safety concerns. The present work was aimed at determining the cytotoxicity of NDC. The NDC powders with two morphologies (obtained using different acetylene/oxygen ratios) were tested on HEK293A human cells. The NDC powder was added to the culture medium in concentrations ranging from 10 ng/mL to 400 μg/mL. The cell viability was determined by a colorimetric EZ4U test and a real-time cell analyzer xCELLigence. None of the NDC samples showed a cytotoxic effect. The results of this study allow us to recommend NDC as a safe and useful product for the development of advanced carbon-based and composite materials.
Collapse
Affiliation(s)
- Anastasia A. Malakhova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Ave. 10, Novosibirsk 630090, Russia;
| | - Denis K. Rybin
- Lavrentyev Institute of Hydrodynamics, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Ave. 15, Novosibirsk 630090, Russia; (D.K.R.); (A.A.S.)
| | - Alexandr A. Shtertser
- Lavrentyev Institute of Hydrodynamics, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Ave. 15, Novosibirsk 630090, Russia; (D.K.R.); (A.A.S.)
| | - Dina V. Dudina
- Lavrentyev Institute of Hydrodynamics, Siberian Branch of the Russian Academy of Sciences, Lavrentyev Ave. 15, Novosibirsk 630090, Russia; (D.K.R.); (A.A.S.)
- Correspondence:
| |
Collapse
|
14
|
Abstract
Nanomaterials are promising in the development of innovative therapeutic options that include tissue and organ replacement, as well as bone repair and regeneration. The expansion of new nanoscaled biomaterials is based on progress in the field of nanotechnologies, material sciences, and biomedicine. In recent decades, nanomaterial systems have bridged the line between the synthetic and natural worlds, leading to the emergence of a new science called nanomaterial design for biological applications. Nanomaterials replicating bone properties and providing unique functions help in bone tissue engineering. This review article is focused on nanomaterials utilized in or being explored for the purpose of bone repair and regeneration. After a brief overview of bone biology, including a description of bone cells, matrix, and development, nanostructured materials and different types of nanoparticles are discussed in detail.
Collapse
|
15
|
Pahlevanzadeh F, Emadi R, Setayeshmehr M, Kharaziha M, Poursamar SA. Antibacterial amorphous magnesium phosphate/graphene oxide for accelerating bone regeneration. BIOMATERIALS ADVANCES 2022; 138:212856. [PMID: 35913248 DOI: 10.1016/j.bioadv.2022.212856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Magnesium phosphates (MgP)s have attracted interest as an alternative biomaterial compared to the calcium phosphate (CaP)s compounds in the bone regeneration application in terms of their prominent biodegradability, lack of cytotoxicity, and ability of bone repair stimulation. Among them, amorphous magnesium phosphates (AMP)s indicated a higher rate of resorption, while preserving high osteoblasts viability and proliferation, which is comparable to their CaP peers. However, fast degradation of AMP leads to the initial fast release of Mg2+ ions and adverse effects on its excellent biological features. It seems that the addition of graphene oxide (GO) to magnesium phosphate can moderate its degradation rate. Hence, a novel in situ synthesized AMP powders containing 0.05, 0.25, 0.5, and 1 wt% of graphene oxide (AMP/GO) were developed to achieve a favorable degradation rate, desirable antibacterial properties against both Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) accompanying with proper cell viability and proliferation. The incorporation of 0.5 wt% of graphene oxide into the AMP ceramic led to reduce the release of Mg2+ ions from 571.2 ± 12.9 mg/L to 372.8 ± 14.7 mg/L and P ions from 354.8 ± 11.9 mg/L to 245.3 ± 9.9 mg/L, at day 10 of immersion in PBS. Besides, AMP/0.5 GO bioceramics were capable of eradicating all bacterial colonies of both strains. On the other hand, MG63 cells viability went up from 143.46% ± 7.54 to 184.46% ± 11.54 on the 7th day of culture in the presence of 0.5 wt% of GO compared to pure AMP ceramic. Furthermore, alizarin red staining and alkaline phosphatase (ALP) activity demonstrated the ability of AMP/GO to maintain the osteogenic phenotype of MG63 cells during 7 days culture. Therefore, it can be concluded that well distributed and in situ synthesized AMP/0.5GO powders can be a promising biomaterial for bone tissue regeneration.
Collapse
Affiliation(s)
- F Pahlevanzadeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - R Emadi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - M Setayeshmehr
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - M Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - S A Poursamar
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| |
Collapse
|
16
|
Insights on Spark Plasma Sintering of Magnesium Composites: A Review. NANOMATERIALS 2022; 12:nano12132178. [PMID: 35808014 PMCID: PMC9268439 DOI: 10.3390/nano12132178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023]
Abstract
This review paper gives an insight into the microstructural, mechanical, biological, and corrosion resistance of spark plasma sintered magnesium (Mg) composites. Mg has a mechanical property similar to natural human bones as well as biodegradable and biocompatible properties. Furthermore, Mg is considered a potential material for structural and biomedical applications. However, its high affinity toward oxygen leads to oxidation of the material. Various researchers optimize the material composition, processing techniques, and surface modifications to overcome this issue. In this review, effort has been made to explore the role of process techniques, especially applying a typical powder metallurgy process and the sintering technique called spark plasma sintering (SPS) in the processing of Mg composites. The effect of reinforcement material on Mg composites is illustrated well. The reinforcement’s homogeneity, size, and shape affect the mechanical properties of Mg composites. The evidence shows that Mg composites exhibit better corrosion resistance, as the reinforcement act as a cathode in a Mg matrix. However, in most cases, a localized corrosion phenomenon is observed. The Mg composite’s high corrosion rate has adversely affected cell viability and promotes cytotoxicity. The reinforcement of bioactive material to the Mg matrix is a potential method to enhance the corrosion resistance and biocompatibility of the materials. However, the impact of SPS process parameters on the final quality of the Mg composite needs to be explored.
Collapse
|
17
|
Tiwari AK, Mishra A, Pandey G, Gupta MK, Pandey PC. Nanotechnology: A Potential Weapon to Fight against COVID-19. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION : MEASUREMENT AND DESCRIPTION OF PARTICLE PROPERTIES AND BEHAVIOR IN POWDERS AND OTHER DISPERSE SYSTEMS 2022; 39:2100159. [PMID: 35440846 PMCID: PMC9011707 DOI: 10.1002/ppsc.202100159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/28/2021] [Indexed: 05/13/2023]
Abstract
The COVID-19 infections have posed an unprecedented global health emergency, with nearly three million deaths to date, and have caused substantial economic loss globally. Hence, an urgent exploration of effective and safe diagnostic/therapeutic approaches for minimizing the threat of this highly pathogenic coronavirus infection is needed. As an alternative to conventional diagnosis and antiviral agents, nanomaterials have a great potential to cope with the current or even future health emergency situation with a wide range of applications. Fundamentally, nanomaterials are physically and chemically tunable and can be employed for the next generation nanomaterial-based detection of viral antigens and host antibodies in body fluids as antiviral agents, nanovaccine, suppressant of cytokine storm, nanocarrier for efficient delivery of antiviral drugs at infection site or inside the host cells, and can also be a significant tool for better understanding of the gut microbiome and SARS-CoV-2 interaction. The applicability of nanomaterial-based therapeutic options to cope with the current and possible future pandemic is discussed here.
Collapse
Affiliation(s)
- Atul K. Tiwari
- Department of ChemistryIndian Institute of Technology (BHU)VaranasiUttar Pradesh221005India
| | - Anupa Mishra
- Department of MicrobiologyDr. R.M.L. Awadh UniversityAyodhyaUttar Pradesh224001India
- Department of MicrobiologySri Raghukul Mahila Vidya PeethCivil Line GondaUttar Pradesh271001India
| | - Govind Pandey
- Department of PaediatricsKing George Medical UniversityLucknowUttar Pradesh226003India
| | - Munesh K. Gupta
- Department of MicrobiologyInstitute of Medical SciencesBanaras Hindu UniversityVaranasiUttar Pradesh221005India
| | - Prem C. Pandey
- Department of ChemistryIndian Institute of Technology (BHU)VaranasiUttar Pradesh221005India
| |
Collapse
|
18
|
Jampilek J, Placha D. Advances in Use of Nanomaterials for Musculoskeletal Regeneration. Pharmaceutics 2021; 13:1994. [PMID: 34959276 PMCID: PMC8703496 DOI: 10.3390/pharmaceutics13121994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/24/2022] Open
Abstract
Since the worldwide incidence of bone disorders and cartilage damage has been increasing and traditional therapy has reached its limits, nanomaterials can provide a new strategy in the regeneration of bones and cartilage. The nanoscale modifies the properties of materials, and many of the recently prepared nanocomposites can be used in tissue engineering as scaffolds for the development of biomimetic materials involved in the repair and healing of damaged tissues and organs. In addition, some nanomaterials represent a noteworthy alternative for treatment and alleviating inflammation or infections caused by microbial pathogens. On the other hand, some nanomaterials induce inflammation processes, especially by the generation of reactive oxygen species. Therefore, it is necessary to know and understand their effects in living systems and use surface modifications to prevent these negative effects. This contribution is focused on nanostructured scaffolds, providing a closer structural support approximation to native tissue architecture for cells and regulating cell proliferation, differentiation, and migration, which results in cartilage and bone healing and regeneration.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Daniela Placha
- Nanotechnology Centre, CEET, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 33 Ostrava-Poruba, Czech Republic
- Centre ENET, CEET, VSB-Technical University of Ostrava, 17. Listopadu 2172/15, 708 33 Ostrava-Poruba, Czech Republic
| |
Collapse
|
19
|
Kaliaraj GS, Siva T, Ramadoss A. Surface functionalized bioceramics coated on metallic implants for biomedical and anticorrosion performance - a review. J Mater Chem B 2021; 9:9433-9460. [PMID: 34755756 DOI: 10.1039/d1tb01301g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In modern days, the usage of trauma fixation devices has significantly increased due to sports injury, age-related issues, accidents, and revision surgery purposes. Numerous materials such as stainless steel, titanium, Co-Cr alloy, polymers, and ceramics have been used to replace the missing or defective parts of the human body. After implantation, body fluids (Na+, K+, and Cl-), protein, and blood cells interact with the surface of metallic implants, which favours the release of ions from the metallic surface to surrounding body tissues, leading to a hypersensitive reaction. Body pH, temperature, and interaction of immune cells also cause metal ion leaching and lose host cell interaction and effective mineralization for better durability. Moreover, microbial invasion is another important crisis, which produces extracellular compounds onto the biomaterial surface through which it escapes from the antimicrobial agents. To enhance the performance of materials by improving mechanical, corrosion resistance, antimicrobial, and biocompatibility properties, surface modification is a prerequisite method in which chemical vapour deposition (CVD), physical vapour deposition (PVD), sol-gel method, and electrochemical deposition are generally involved. The properties of bioceramics such as chemical inertness, bioactivity, biocompatibility, and corrosion protection make them most suitable for the surface functionalization of metallic implants. To the best of our knowledge, very limited literature is available to discuss the interaction of body proteins, pH, and temperature onto bioceramic coatings. Hence, the present review focuses on the corrosion behaviour of different ceramic composite coating materials with different conditions. This review initially briefs the properties and surface chemistry of metal implants and the need for surface modifications by different deposition techniques. Further, mechanical, cytotoxicity, antimicrobial property, and electrochemical behaviour of ceramics and metal nitride coatings are discussed. Finally, future perspectives of coatings are outlined for biomedical applications.
Collapse
Affiliation(s)
- Gobi Saravanan Kaliaraj
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai 600119, India.
| | - T Siva
- School for Advanced Research in Petrochemicals, Laboratory for Advanced Research in Polymeric Materials, Central Institute of Petrochemicals Engineering & Technology, Bhubaneswar 751024, India.
| | - Ananthakumar Ramadoss
- School for Advanced Research in Petrochemicals, Laboratory for Advanced Research in Polymeric Materials, Central Institute of Petrochemicals Engineering & Technology, Bhubaneswar 751024, India.
| |
Collapse
|
20
|
Li J, Zeng H, Zeng Z, Zeng Y, Xie T. Promising Graphene-Based Nanomaterials and Their Biomedical Applications and Potential Risks: A Comprehensive Review. ACS Biomater Sci Eng 2021; 7:5363-5396. [PMID: 34747591 DOI: 10.1021/acsbiomaterials.1c00875] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Graphene-based nanomaterials (GBNs) have been the subject of research focus in the scientific community because of their excellent physical, chemical, electrical, mechanical, thermal, and optical properties. Several studies have been conducted on GBNs, and they have provided a detailed review and summary of various applications. However, comprehensive comments on biomedical applications and potential risks and strategies to reduce toxicity are limited. In this review, we systematically summarized the following aspects of GBNs in order to fill the gaps: (1) the history, synthesis methods, structural characteristics, and surface modification; (2) the latest advances in biomedical applications (including drug/gene delivery, biosensors, bioimaging, tissue engineering, phototherapy, and antibacterial activity); and (3) biocompatibility, potential risks (toxicity in vivo/vitro and effects on human health and the environment), and strategies to reduce toxicity. Moreover, we have analyzed the challenges to be overcome in order to enhance application of GBNs in the biomedical field.
Collapse
Affiliation(s)
- Jie Li
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.,School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China
| | - Huamin Zeng
- Chengdu Ping An Healthcare Medical Examination Laboratory, Chengdu, Sichuan 611130, China
| | - Zhaowu Zeng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China
| | - Yiying Zeng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China
| | - Tian Xie
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China.,School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, Zhejiang 311121, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
21
|
Seifi T, Reza Kamali A. Antiviral performance of graphene-based materials with emphasis on COVID-19: A review. MEDICINE IN DRUG DISCOVERY 2021; 11:100099. [PMID: 34056572 PMCID: PMC8151376 DOI: 10.1016/j.medidd.2021.100099] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease-2019 has been one of the most challenging global epidemics of modern times with a large number of casualties combined with economic hardships across the world. Considering that there is still no definitive cure for the recent viral crisis, this article provides a review of nanomaterials with antiviral activity, with an emphasis on graphene and its derivatives, including graphene oxide, reduced graphene oxide and graphene quantum dots. The possible interactions between surfaces of such nanostructured materials with coronaviruses are discussed. The antiviral mechanisms of graphene materials can be related to events such as the inactivation of virus and/or the host cell receptor, electrostatic trapping and physico-chemical destruction of viral species. These effects can be enhanced by functionalization and/or decoration of carbons with species that enhances graphene-virus interactions. The low-cost and large-scale preparation of graphene materials with enhanced antiviral performances is an interesting research direction to be explored.
Collapse
Affiliation(s)
- Tahereh Seifi
- Energy and Environmental Materials Research Centre (E2MC), School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Ali Reza Kamali
- Energy and Environmental Materials Research Centre (E2MC), School of Metallurgy, Northeastern University, Shenyang 110819, China
| |
Collapse
|
22
|
Xu H, Shen M, Shang H, Xu W, Zhang S, Yang HR, Zhou D, Hakkarainen M. Osteoconductive and Antibacterial Poly(lactic acid) Fibrous Membranes Impregnated with Biobased Nanocarbons for Biodegradable Bone Regenerative Scaffolds. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02165] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Huan Xu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Mengyuan Shen
- The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou 221002, China
| | - Han Shang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Wenxuan Xu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Shenghui Zhang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Hao-Ran Yang
- State Laboratory of Surface and Interface Science and Technology, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Dongmei Zhou
- The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou 221002, China
| | - Minna Hakkarainen
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm 100 44, Sweden
| |
Collapse
|
23
|
Dewey MJ, Harley BAC. Biomaterial design strategies to address obstacles in craniomaxillofacial bone repair. RSC Adv 2021; 11:17809-17827. [PMID: 34540206 PMCID: PMC8443006 DOI: 10.1039/d1ra02557k] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022] Open
Abstract
Biomaterial design to repair craniomaxillofacial defects has largely focused on promoting bone regeneration, while there are many additional factors that influence this process. The bone microenvironment is complex, with various mechanical property differences between cortical and cancellous bone, a unique porous architecture, and multiple cell types that must maintain homeostasis. This complex environment includes a vascular architecture to deliver cells and nutrients, osteoblasts which form new bone, osteoclasts which resorb excess bone, and upon injury, inflammatory cells and bacteria which can lead to failure to repair. To create biomaterials able to regenerate these large missing portions of bone on par with autograft materials, design of these materials must include methods to overcome multiple obstacles to effective, efficient bone regeneration. These obstacles include infection and biofilm formation on the biomaterial surface, fibrous tissue formation resulting from ill-fitting implants or persistent inflammation, non-bone tissue formation such as cartilage from improper biomaterial signals to cells, and voids in bone infill or lengthy implant degradation times. Novel biomaterial designs may provide approaches to effectively induce osteogenesis and new bone formation, include design motifs that facilitate surgical handling, intraoperative modification and promote conformal fitting within complex defect geometries, induce a pro-healing immune response, and prevent bacterial infection. In this review, we discuss the bone injury microenvironment and methods of biomaterial design to overcome these obstacles, which if unaddressed, may result in failure of the implant to regenerate host bone.
Collapse
Affiliation(s)
- Marley J. Dewey
- Dept of Materials Science and Engineering, University of Illinois at Urbana-ChampaignUrbanaIL 61801USA
| | - Brendan A. C. Harley
- Dept of Materials Science and Engineering, University of Illinois at Urbana-ChampaignUrbanaIL 61801USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-ChampaignUrbanaIL 61801USA
- Dept of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 110 Roger Adams Laboratory600 S. Mathews AveUrbanaIL 61801USA+1-217-333-5052+1-217-244-7112
| |
Collapse
|
24
|
Batool F, Özçelik H, Stutz C, Gegout PY, Benkirane-Jessel N, Petit C, Huck O. Modulation of immune-inflammatory responses through surface modifications of biomaterials to promote bone healing and regeneration. J Tissue Eng 2021; 12:20417314211041428. [PMID: 34721831 PMCID: PMC8554547 DOI: 10.1177/20417314211041428] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/06/2021] [Indexed: 12/25/2022] Open
Abstract
Control of inflammation is indispensable for optimal oral wound healing and tissue regeneration. Several biomaterials have been used to enhance the regenerative outcomes; however, the biomaterial implantation can ensure an immune-inflammatory response. The interface between the cells and the biomaterial surface plays a critical role in determining the success of soft and hard tissue regeneration. The initial inflammatory response upon biomaterial implantation helps in tissue repair and regeneration, however, persistant inflammation impairs the wound healing response. The cells interact with the biomaterials through extracellular matrix proteins leading to protein adsorption followed by recruitment, attachment, migration, and proliferation of several immune-inflammatory cells. Physical nanotopography of biomaterials, such as surface proteins, roughness, and porosity, is crucial for driving cellular attachment and migration. Similarly, modification of scaffold surface chemistry by adapting hydrophilicity, surface charge, surface coatings, can down-regulate the initiation of pro-inflammatory cascades. Besides, functionalization of scaffold surfaces with active biological molecules can down-regulate pro-inflammatory and pro-resorptive mediators' release as well as actively up-regulate anti-inflammatory markers. This review encompasses various strategies for the optimization of physical, chemical, and biological properties of biomaterial and the underlying mechanisms to modulate the immune-inflammatory response, thereby, promoting the tissue integration and subsequent soft and hard tissue regeneration potential of the administered biomaterial.
Collapse
Affiliation(s)
- Fareeha Batool
- Faculté de Chirurgie-dentaire, Université de Strasbourg, Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Hayriye Özçelik
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Céline Stutz
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Pierre-Yves Gegout
- Faculté de Chirurgie-dentaire, Université de Strasbourg, Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Pôle de médecine et chirurgie bucco-dentaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Nadia Benkirane-Jessel
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Catherine Petit
- Faculté de Chirurgie-dentaire, Université de Strasbourg, Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Pôle de médecine et chirurgie bucco-dentaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Olivier Huck
- Faculté de Chirurgie-dentaire, Université de Strasbourg, Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Pôle de médecine et chirurgie bucco-dentaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|