1
|
Meissner C, Crosby AJ, Emrick T. Mesoscale Filamentous Polyelectrolytes: Chemical Functionalization and Fluidic Structure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409039. [PMID: 39806836 DOI: 10.1002/smll.202409039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/24/2024] [Indexed: 01/16/2025]
Abstract
The preparation and study of synthetic mesoscale structures opens opportunities to understand soft materials properties at length scales that are intermediate between that of the molecular and bulk, often referred to as the mesoscale. This paper details the preparation of mesoscale polymer filaments, prepared by flow coating and evaporative deposition from solution to yield filamentous versions of charged polymers. Using thiol-ene reactions on olefin-containing mesoscale polymer ribbons, anionic character in the form of carboxylates is introduced to the filamentous structures. The resultant mesoscale ribbons exhibit morphological changes as a function of their aqueous solution environment, based on their neutral versus anionic character, offering insights into the structure and morphology of small, multi-length scale, soft structures comprised of macromolecular materials.
Collapse
Affiliation(s)
- Cornelia Meissner
- Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, MA, 01003, USA
| | - Alfred J Crosby
- Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, MA, 01003, USA
| | - Todd Emrick
- Polymer Science & Engineering Department, Conte Center for Polymer Research, University of Massachusetts, 120 Governors Drive, Amherst, MA, 01003, USA
| |
Collapse
|
2
|
Rosas M, Sousa CFV, Pereira A, Amaral AJR, Pesqueira T, Patrício SG, Fateixa S, Nogueira HIS, Mano JF, Oliveira AL, Borges J. Silk Sericin/Chitosan Supramolecular Multilayered Thin Films as Sustainable Cytocompatible Nanobiomaterials. Biomacromolecules 2025; 26:296-310. [PMID: 39680042 DOI: 10.1021/acs.biomac.4c01146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Silk sericin (SS) has been widely discarded as a waste by the silk textile industry during the degumming process to obtain fibroin. However, in the past decade, an in-depth understanding of its properties and functions turned it into a high added-value biomaterial for biomedical applications. Herein, we report the molecular design and development of sustainable supramolecular multilayered nanobiomaterials encompassing SS and oppositely charged chitosan (CHT) through a combination of self-assembly and electrostatically driven layer-by-layer (LbL) assembly technology. The successful buildup of SS/CHT multilayered nanobiomaterials was demonstrated by the quartz crystal microbalance with dissipation monitoring and attenuated total reflectance-Fourier transform infrared spectroscopy, and the nanofilms' wettable properties and nanofibrillar-like topography were shown by water contact angle, atomic force microscopy, and scanning electron microscopy. In vitro assays demonstrated the cytocompatibility of the LbL nanofilms toward human primary dermal fibroblasts, holding great promise as biofunctional nanocoatings for drug/therapeutics/cell delivery, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Miguel Rosas
- CICECO ─ Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193, Aveiro, Portugal
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina ─ Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Cristiana F V Sousa
- CICECO ─ Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193, Aveiro, Portugal
| | - Ana Pereira
- CICECO ─ Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193, Aveiro, Portugal
| | - Adérito J R Amaral
- CICECO ─ Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193, Aveiro, Portugal
| | - Tamagno Pesqueira
- CICECO ─ Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193, Aveiro, Portugal
| | - Sónia G Patrício
- CICECO ─ Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193, Aveiro, Portugal
| | - Sara Fateixa
- CICECO ─ Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193, Aveiro, Portugal
| | - Helena I S Nogueira
- CICECO ─ Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193, Aveiro, Portugal
| | - João F Mano
- CICECO ─ Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193, Aveiro, Portugal
| | - Ana L Oliveira
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina ─ Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - João Borges
- CICECO ─ Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193, Aveiro, Portugal
| |
Collapse
|
3
|
Müller M, Wöltje M, Hofmaier M, Tarpara B, Urban B, Aibibu D, Cherif C. In Situ ATR-FTIR Studies on the β-Sheet Formation of Native and Regenerated Bombyx mori Silk Material in Solution and Its Potential for Drug Releasing Coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39073396 DOI: 10.1021/acs.langmuir.4c00920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Dynamic attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy at both solutions and coatings of a semicrystalline silk material derived from Bombyx mori was applied to monitor the β-sheet conformation, which is known to correlate with silk protein crystallinity. The secondary structure-sensitive Amide I band was analyzed. Two silk protein samples were studied: native-based silk buffer fibroin (NSF) was extracted from silk glands and regenerated silk fibroin (RSF) was extracted from degummed cocoons. Solutions of both NSF and RSF at 2 mg/mL featured low initial β-sheet contents of 5-12%, which further increased to 47-53% after 24 h. RSF and NSF solutions at 23 mg/mL also featured low initial β-sheet contents of 9-10%, which yet only slightly increased to 16-17% after 24 h. Coatings deposited from RSF solutions showed high surface integrity (Q > 99%) after rinsing in mineralized water, enabling interfacial drug delivery applications. RSF coatings were post-treated with either formic acid (FA) or pure methanol (MeOH) vapor to showcase inducibility of crystalline domains in RSF coatings. Such coatings were loaded with the model antibiotic drugs tetracycline (TCL) and streptomycin (STRP), and the sustained release of TCL was followed in contact with (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) (HEPES) buffer. RSF/TCL coatings post-treated with formic acid (FA) vapor followed by methanol (MeOH) vapor showed a significantly lower (52%) initial burst of rather hydrophobic TCL compared to untreated RSF/TCL coatings (72%), while no such significant release difference was observed for hydrophilic STRP. This was rationalized by a specific interaction between nonpolar TCL and hydrophobic crystalline RSF domains.
Collapse
Affiliation(s)
- M Müller
- Department Functional Colloidal Materials, Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, 01069 Dresden, Germany
- Department Chemistry and Food Chemistry, TUD Dresden University of Technology, 01062 Dresden, Germany
| | - M Wöltje
- TUD Dresden University of Technology, Institute of Textile Machinery and High-Performance Material Technology, 01062 Dresden, Germany
| | - M Hofmaier
- Department Functional Colloidal Materials, Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, 01069 Dresden, Germany
- Department Chemistry and Food Chemistry, TUD Dresden University of Technology, 01062 Dresden, Germany
| | - B Tarpara
- Department Functional Colloidal Materials, Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, 01069 Dresden, Germany
- Department Processing Technology, Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, 01069 Dresden, Germany
| | - B Urban
- Department Functional Colloidal Materials, Leibniz Institute of Polymer Research Dresden, Hohe Straße 6, 01069 Dresden, Germany
| | - D Aibibu
- TUD Dresden University of Technology, Institute of Textile Machinery and High-Performance Material Technology, 01062 Dresden, Germany
| | - C Cherif
- TUD Dresden University of Technology, Institute of Textile Machinery and High-Performance Material Technology, 01062 Dresden, Germany
| |
Collapse
|
4
|
Di Buduo CA, Lunghi M, Kuzmenko V, Laurent P, Della Rosa G, Del Fante C, Dalle Nogare DE, Jug F, Perotti C, Eto K, Pecci A, Redwan IN, Balduini A. Bioprinting Soft 3D Models of Hematopoiesis using Natural Silk Fibroin-Based Bioink Efficiently Supports Platelet Differentiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308276. [PMID: 38514919 PMCID: PMC11095152 DOI: 10.1002/advs.202308276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/09/2024] [Indexed: 03/23/2024]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) continuously generate platelets throughout one's life. Inherited Platelet Disorders affect ≈ 3 million individuals worldwide and are characterized by defects in platelet formation or function. A critical challenge in the identification of these diseases lies in the absence of models that facilitate the study of hematopoiesis ex vivo. Here, a silk fibroin-based bioink is developed and designed for 3D bioprinting. This bioink replicates a soft and biomimetic environment, enabling the controlled differentiation of HSPCs into platelets. The formulation consisting of silk fibroin, gelatin, and alginate is fine-tuned to obtain a viscoelastic, shear-thinning, thixotropic bioink with the remarkable ability to rapidly recover after bioprinting and provide structural integrity and mechanical stability over long-term culture. Optical transparency allowed for high-resolution imaging of platelet generation, while the incorporation of enzymatic sensors allowed quantitative analysis of glycolytic metabolism during differentiation that is represented through measurable color changes. Bioprinting patient samples revealed a decrease in metabolic activity and platelet production in Inherited Platelet Disorders. These discoveries are instrumental in establishing reference ranges for classification and automating the assessment of treatment responses. This model has far-reaching implications for application in the research of blood-related diseases, prioritizing drug development strategies, and tailoring personalized therapies.
Collapse
Affiliation(s)
| | - Marco Lunghi
- Department of Molecular MedicineUniversity of PaviaPavia27100Italy
| | | | | | | | - Claudia Del Fante
- Immunohaematology and Transfusion ServiceI.R.C.C.S. Policlinico S. Matteo FoundationPavia27100Italy
| | | | | | - Cesare Perotti
- Immunohaematology and Transfusion ServiceI.R.C.C.S. Policlinico S. Matteo FoundationPavia27100Italy
| | - Koji Eto
- Department of Clinical ApplicationCenter for iPS Cell Research and Application (CiRA)Kyoto UniversityKyoto606‐8507Japan
- Department of Regenerative MedicineGraduate School of MedicineChiba UniversityChiba260‐8670Japan
| | - Alessandro Pecci
- Department of Internal MedicineI.R.C.C.S. Policlinico S. Matteo Foundation and University of PaviaPavia27100Italy
| | | | - Alessandra Balduini
- Department of Molecular MedicineUniversity of PaviaPavia27100Italy
- Department of Biomedical EngineeringTufts UniversityMedfordMA02155USA
| |
Collapse
|
5
|
Patel M, Singh SP, Dubey DK. Insights into nanomechanical behavior of B. mori silk fibroin-hydroxyapatite bio-nanocomposite using MD simulations: Role of varying hydroxyapatite content. J Mech Behav Biomed Mater 2023; 147:106125. [PMID: 37797553 DOI: 10.1016/j.jmbbm.2023.106125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 10/07/2023]
Abstract
Nanocomposite material composed of Bombyx mori Silk Fibroin and hydroxyapatite (B. mori SF-HA) is a potential biomaterial for bone tissue engineering. Here, Bombyx mori Silk Fibroin (B. mori SF) is a flexible and tough organic, polymer phase, and hydroxyapatite (HA) is hard and stiff mineral phase. Knowledge about mechanical deformation behavior together with governing mechanisms, and the role of the two phases (SF and HA phase) and interfacial interactions between them, in B. mori SF-HA biomaterial, at fundamental level is an important factor to consider while developing the tissue grafts. Such nanometer scale behavior is often preferably investigated using molecular dynamics method. Present study aims at understanding the mechanical deformation behavior and associated physical mechanisms in B. mori SF-HA bio-nanocomposite, at nanoscale. For this purpose, computational atomistic models of B. mori SF-HA bio-nanocomposite are developed with varying HA content. Mechanical behavior analysis of these composite models under tensile loading were performed using Molecular Dynamics (MD) simulations. Elastic modulus and tensile strength values in the range of 7-20 GPa and 200-700 MPa, respectively, are obtained for B. mori SF-HA composite, in case of different HA contents, wherein, increased mechanical properties are observed with increase in HA content. Analyses of the deformation trajectories show that the deformation flow behavior in B. mori SF-HA bio-nanocomposites is mainly defined by the soft SF phase. However, energetics analyses show that, the HA phase and SF-HA interfacial interactions also play a considerable role in mechanical performance of B. mori SF-HA bio-nanocomposite. Additionally, interfacial shear strength values in B. mori SF-HA bio-nanocomposite, for different HA contents, have also been obtained. The observations made and insights gained in present work has contribution and impact in gaining an insight into the mechanistic interactions occurring at nanoscale between SF and HA phases in B. mori SF-HA bio-composite.
Collapse
Affiliation(s)
- Mrinal Patel
- Mechanical Engineering Department, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Satinder Paul Singh
- Mechanical Engineering Department, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Devendra K Dubey
- Mechanical Engineering Department, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
6
|
Xie Q, On Lee S, Vissamsetti N, Guo S, Johnson ME, Fried SD. Secretion-Catalyzed Assembly of Protein Biomaterials on a Bacterial Membrane Surface. Angew Chem Int Ed Engl 2023; 62:e202305178. [PMID: 37469298 PMCID: PMC11619767 DOI: 10.1002/anie.202305178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/28/2023] [Accepted: 07/18/2023] [Indexed: 07/21/2023]
Abstract
Protein-based biomaterials have played a key role in tissue engineering, and additional exciting applications as self-healing materials and sustainable polymers are emerging. Over the past few decades, recombinant expression and production of various fibrous proteins from microbes have been demonstrated; however, the resulting proteins typically must then be purified and processed by humans to form usable fibers and materials. Here, we show that the Gram-positive bacterium Bacillus subtilis can be programmed to secrete silk through its translocon via an orthogonal signal peptide/peptidase pair. Surprisingly, we discover that this translocation mechanism drives the silk proteins to assemble into fibers spontaneously on the cell surface, in a process we call secretion-catalyzed assembly (SCA). Secreted silk fibers form self-healing hydrogels with minimal processing. Alternatively, the fibers retained on the membrane provide a facile route to create engineered living materials from Bacillus cells. This work provides a blueprint to achieve autonomous assembly of protein biomaterials in useful morphologies directly from microbial factories.
Collapse
Affiliation(s)
- Qi Xie
- Department of Chemistry, Johns Hopkins University, 21218, Baltimore, MD, USA
| | - Sea On Lee
- Department of Chemistry, Johns Hopkins University, 21218, Baltimore, MD, USA
| | - Nitya Vissamsetti
- Department of Chemistry, Johns Hopkins University, 21218, Baltimore, MD, USA
| | - Sikao Guo
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 21218, Baltimore, MD, USA
| | - Margaret E Johnson
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 21218, Baltimore, MD, USA
| | - Stephen D Fried
- Department of Chemistry, Johns Hopkins University, 21218, Baltimore, MD, USA
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 21218, Baltimore, MD, USA
| |
Collapse
|
7
|
Mu X, Amouzandeh R, Vogts H, Luallen E, Arzani M. A brief review on the mechanisms and approaches of silk spinning-inspired biofabrication. Front Bioeng Biotechnol 2023; 11:1252499. [PMID: 37744248 PMCID: PMC10512026 DOI: 10.3389/fbioe.2023.1252499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Silk spinning, observed in spiders and insects, exhibits a remarkable biological source of inspiration for advanced polymer fabrications. Because of the systems design, silk spinning represents a holistic and circular approach to sustainable polymer fabrication, characterized by renewable resources, ambient and aqueous processing conditions, and fully recyclable "wastes." Also, silk spinning results in structures that are characterized by the combination of monolithic proteinaceous composition and mechanical strength, as well as demonstrate tunable degradation profiles and minimal immunogenicity, thus making it a viable alternative to most synthetic polymers for the development of advanced biomedical devices. However, the fundamental mechanisms of silk spinning remain incompletely understood, thus impeding the efforts to harness the advantageous properties of silk spinning. Here, we present a concise and timely review of several essential features of silk spinning, including the molecular designs of silk proteins and the solvent cues along the spinning apparatus. The solvent cues, including salt ions, pH, and water content, are suggested to direct the hierarchical assembly of silk proteins and thus play a central role in silk spinning. We also discuss several hypotheses on the roles of solvent cues to provide a relatively comprehensive analysis and to identify the current knowledge gap. We then review the state-of-the-art bioinspired fabrications with silk proteins, including fiber spinning and additive approaches/three-dimensional (3D) printing. An emphasis throughout the article is placed on the universal characteristics of silk spinning developed through millions of years of individual evolution pathways in spiders and silkworms. This review serves as a stepping stone for future research endeavors, facilitating the in vitro recapitulation of silk spinning and advancing the field of bioinspired polymer fabrication.
Collapse
Affiliation(s)
- Xuan Mu
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, United States
| | | | | | | | | |
Collapse
|
8
|
Liu L, Zhang D, Bai P, Mao Y, Li Q, Guo J, Fang Y, Ma R. Strong Tough Thermogalvanic Hydrogel Thermocell With Extraordinarily High Thermoelectric Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300696. [PMID: 37222174 DOI: 10.1002/adma.202300696] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/19/2023] [Indexed: 05/25/2023]
Abstract
Thermocells can continuously convert heat into electricity, and they are widely used to power wearable electronic devices. However, they have a risk of leakage and poor mechanical properties. Although quasi-solid ionic thermocells can overcome the issue of electrolyte leakage, the trade-off between their excellent mechanical properties and high thermopower remains a major challenge. In this study, stretching-induced crystallization and the thermoelectric effect are combined to propose a high-strength quasi-solid stretchable polyvinyl alcohol thermogalvanic thermocell (SPTC) with a large tensile strength of 19 MPa and high thermopower of 6.5 mV K-1 . The SPTC exhibits a high stretchability of 1300%, ultrahigh toughness of 163.4 MJ m-3 , and high specific output power density of 1969 µW m-2 K-2 . These comprehensive properties are superior to those of previously reported quasi-solid stretchable thermogalvanic thermocells. The use of SPTC-based systems in wearable devices for energy-autonomous strain sensors and health monitoring is demonstrated. This can facilitate the rapid implementation of sustainable wearable electronics in the Internet of Things era.
Collapse
Affiliation(s)
- Lili Liu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Smart Sensing Interdisciplinary Science Center, Nankai University, Tongyan Road 38, Tianjin, 300350, China
| | - Ding Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Smart Sensing Interdisciplinary Science Center, Nankai University, Tongyan Road 38, Tianjin, 300350, China
| | - Peijia Bai
- School of Materials Science and Engineering, National Institute for Advanced Materials, Smart Sensing Interdisciplinary Science Center, Nankai University, Tongyan Road 38, Tianjin, 300350, China
| | - Yin Mao
- School of Materials Science and Engineering, National Institute for Advanced Materials, Smart Sensing Interdisciplinary Science Center, Nankai University, Tongyan Road 38, Tianjin, 300350, China
| | - Qi Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, Smart Sensing Interdisciplinary Science Center, Nankai University, Tongyan Road 38, Tianjin, 300350, China
| | - Jiaqi Guo
- School of Materials Science and Engineering, National Institute for Advanced Materials, Smart Sensing Interdisciplinary Science Center, Nankai University, Tongyan Road 38, Tianjin, 300350, China
| | - Yanjie Fang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Smart Sensing Interdisciplinary Science Center, Nankai University, Tongyan Road 38, Tianjin, 300350, China
| | - Rujun Ma
- School of Materials Science and Engineering, National Institute for Advanced Materials, Smart Sensing Interdisciplinary Science Center, Nankai University, Tongyan Road 38, Tianjin, 300350, China
| |
Collapse
|
9
|
Patel M, Dubey DK, Singh SP. Molecular mechanics and failure mechanisms in B. mori Silk Fibroin-hydroxyapatite composite interfaces: Effect of crystal thickness and surface characteristics. J Mech Behav Biomed Mater 2023; 143:105910. [PMID: 37257312 DOI: 10.1016/j.jmbbm.2023.105910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 06/02/2023]
Abstract
Bombyx mori Silk Fibroin-hydroxyapatite (B. mori SF-HA) bio-nanocomposite is a prospective biomaterial for tissue engineered graft for bone repair. Here, B. mori SF is primarily a soft and tough organic phase, and HA is a hard and stiff mineral phase. In biomaterial design, an understanding about the nanoscale mechanics of SF-HA interface, such as interfacial interaction and interface debonding mechanisms between the two phases is essential for obtaining required functionality. To investigate such nanoscale behavior, molecular dynamics method is a preferred approach. Present study focuses on understanding of the interface debonding mechanisms at SF-HA interface in B. mori SF-HA bio-nanocomposite at nanometer length scale. For this purpose, nanoscale atomistic models of SF-HA interface are also developed based on the HA crystal size and HA surface type (Ca2+ dominated and OH- dominated) in contact with SF. Mechanical behavior analysis of these SF-HA interface models under pull-out type test were performed using Molecular Dynamics (MD) simulations. Surface pull-off strength values in the range of 0.4-0.8 GPa were obtained for SF-HA interface models, for different HA crystal thicknesses, wherein, the pull-off strength values are found to increase with increase in HA thicknesses. Analyses show that deformation mechanisms in SF-HA interface deformation, is a combination of shear deformation in SF phase followed by disintegration of SF phase from HA block. Furthermore, higher rupture force values were obtained for SF-HA interface with Ca2+ dominated HA surface in contact with SF phase, indicating that SF protein has a higher affinity for Ca2+ dominated surface of HA phase. Current work contributes in developing an understanding of mechanistic interactions between organic and inorganic phases in B. mori SF-HA composite nanostructure.
Collapse
Affiliation(s)
- Mrinal Patel
- Mechanical Engineering Department, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| | - Devendra K Dubey
- Mechanical Engineering Department, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| | - Satinder Paul Singh
- Mechanical Engineering Department, Indian Institute of Technology Delhi, New Delhi, 110016, India
| |
Collapse
|
10
|
Rapid molecular diversification and homogenization of clustered major ampullate silk genes in Argiope garden spiders. PLoS Genet 2022; 18:e1010537. [PMID: 36508456 PMCID: PMC9779670 DOI: 10.1371/journal.pgen.1010537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/22/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
The evolutionary diversification of orb-web weaving spiders is closely tied to the mechanical performance of dragline silk. This proteinaceous fiber provides the primary structural framework of orb web architecture, and its extraordinary toughness allows these structures to absorb the high energy of aerial prey impact. The dominant model of dragline silk molecular structure involves the combined function of two highly repetitive, spider-specific, silk genes (spidroins)-MaSp1 and MaSp2. Recent genomic studies, however, have suggested this framework is overly simplistic, and our understanding of how MaSp genes evolve is limited. Here we present a comprehensive analysis of MaSp structural and evolutionary diversity across species of Argiope (garden spiders). This genomic analysis reveals the largest catalog of MaSp genes found in any spider, driven largely by an expansion of MaSp2 genes. The rapid diversification of Argiope MaSp genes, located primarily in a single genomic cluster, is associated with profound changes in silk gene structure. MaSp2 genes, in particular, have evolved complex hierarchically organized repeat units (ensemble repeats) delineated by novel introns that exhibit remarkable evolutionary dynamics. These repetitive introns have arisen independently within the genus, are highly homogenized within a gene, but diverge rapidly between genes. In some cases, these iterated introns are organized in an alternating structure in which every other intron is nearly identical in sequence. We hypothesize that this intron structure has evolved to facilitate homogenization of the coding sequence. We also find evidence of intergenic gene conversion and identify a more diverse array of stereotypical amino acid repeats than previously recognized. Overall, the extreme diversification found among MaSp genes requires changes in the structure-function model of dragline silk performance that focuses on the differential use and interaction among various MaSp paralogs as well as the impact of ensemble repeat structure and different amino acid motifs on mechanical behavior.
Collapse
|
11
|
Differences in the Elastomeric Behavior of Polyglycine-Rich Regions of Spidroin 1 and 2 Proteins. Polymers (Basel) 2022; 14:polym14235263. [PMID: 36501657 PMCID: PMC9738160 DOI: 10.3390/polym14235263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
Two different polyglycine-rich fragments were selected as representatives of major ampullate gland spidroins (MaSp) 1 and 2 types, and their behavior in a water-saturated environment was simulated within the framework of molecular dynamics (MD). The selected fragments are found in the sequences of the proteins MaSp1a and MaSp2.2a of Argiope aurantia with respective lengths of 36 amino acids (MaSp1a) and 50 amino acids (MaSp2.2s). The simulation took the fully extended β-pleated conformation as reference, and MD was used to determine the equilibrium configuration in the absence of external forces. Subsequently, MD were employed to calculate the variation in the distance between the ends of the fragments when subjected to an increasing force. Both fragments show an elastomeric behavior that can be modeled as a freely jointed chain with links of comparable length, and a larger number of links in the spidroin 2 fragment. It is found, however, that the maximum recovery force recorded from the spidroin 2 peptide (Fmax ≈ 400 pN) is found to be significantly larger than that of the spidroin 1 (Fmax ≈ 250 pN). The increase in the recovery force of the spidroin 2 polyglycine-rich fragment may be correlated with the larger values observed in the strain at breaking of major ampullate silk fibers spun by Araneoidea species, which contain spidroin 2 proteins, compared to the material produced by spider species that lack these spidroins (RTA-clade).
Collapse
|
12
|
López Barreiro D, Martín-Moldes Z, Blanco Fernández A, Fitzpatrick V, Kaplan DL, Buehler MJ. Molecular simulations of the interfacial properties in silk-hydroxyapatite composites. NANOSCALE 2022; 14:10929-10939. [PMID: 35852800 PMCID: PMC9351605 DOI: 10.1039/d2nr01989b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/10/2022] [Indexed: 06/02/2023]
Abstract
Biomineralization is a common strategy used in Nature to improve the mechanical strength and toughness of biological materials. This strategy, applied in materials like bone or nacre, serves as inspiration for materials scientists and engineers to design new materials for applications in healthcare, soft robotics or the environment. In this regard, composites consisting of silk and hydroxyapatite have been extensively researched for bone regeneration applications, due to their reported cytocompatibility and osteoinduction capacity that supports bone formation in vivo. Thus, it becomes relevant to understand how silk and hydroxyapatite interact at their interface, and how this affects the overall mechanical properties of these composites. This theoretical-experimental work investigates the interfacial dynamic and structural properties of silk in contact with hydroxyapatite, combining molecular dynamics simulations with analytical characterization. Our data indicate that hydroxyapatite decreases the β-sheets in silk, which are a key load-bearing element of silk. The β-sheets content can usually be increased in silk biomaterials via post-processing methods, such as water vapor annealing. However, the presence of hydroxyapatite appears to reduce also for the formation of β-sheets via water vapor annealing. This work sheds light into the interfacial properties of silk-hydroxyapatite composite and their relevance for the design of composite biomaterials for bone regeneration.
Collapse
Affiliation(s)
- Diego López Barreiro
- Laboratory for Atomistic and Molecular Mechanics (LAMM), 77 Massachusetts Avenue, 1-165, Cambridge, MA 02139, USA.
| | - Zaira Martín-Moldes
- Laboratory for Atomistic and Molecular Mechanics (LAMM), 77 Massachusetts Avenue, 1-165, Cambridge, MA 02139, USA.
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Adrián Blanco Fernández
- Instituto de Cerámica de Galicia (ICG), Universidade de Santiago de Compostela, Avda. do Mestre Mateo, 25, 15706, Santiago de Compostela, A Coruña, Spain
| | - Vincent Fitzpatrick
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics (LAMM), 77 Massachusetts Avenue, 1-165, Cambridge, MA 02139, USA.
- Center for Computational Science and Engineering, Schwarzman College of Computing, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| |
Collapse
|
13
|
Aznar-Cervantes SD, Cenis JL, Lozano-Picazo P, Bruno AL, Pagán A, Ruiz-León Y, Candel MJ, González-Nieto D, Rojo FJ, Elices M, Guinea GV, Pérez-Rigueiro J. Unexpected high toughness of Samia cynthia ricini silk gut. SOFT MATTER 2022; 18:4973-4982. [PMID: 35748816 DOI: 10.1039/d2sm00340f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Silk gut fibers were produced from the silkworm Samia cynthia ricini silk glands by the usual procedure of immersion in a mildly acidic solution and subsequent stretching. The morphology of the silk guts was assessed by scanning electron microscopy, and their microstructure was assessed by infrared spectroscopy and X-ray diffraction. It was found that both naturally spun and Samia silk guts share a common semicrystalline microstructure. The mechanical characterization of the silk guts revealed that these fibers show an elastomeric behavior when tested in water, and exhibit a genuine ground state to which the fiber may revert independently of its previous loading history. In spite of its large cross-sectional area compared with naturally spun silk fibers, Samia silk guts show values of work to fracture up to 160 MJ m-3, much larger than those of most of their natural counterparts, and establish a new record value for this parameter in silk guts.
Collapse
Affiliation(s)
- Salvador D Aznar-Cervantes
- Departamento de Biotecnología, Genómica y Mejora Vegetal, Instituto Murciano de Investigación y Desarrollo Agrario y Ambiental (IMIDA), 30150, La Alberca, Murcia, Spain.
| | - José Luis Cenis
- Departamento de Biotecnología, Genómica y Mejora Vegetal, Instituto Murciano de Investigación y Desarrollo Agrario y Ambiental (IMIDA), 30150, La Alberca, Murcia, Spain.
| | - Paloma Lozano-Picazo
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Augusto Luis Bruno
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Ana Pagán
- Departamento de Biotecnología, Genómica y Mejora Vegetal, Instituto Murciano de Investigación y Desarrollo Agrario y Ambiental (IMIDA), 30150, La Alberca, Murcia, Spain.
| | - Yolanda Ruiz-León
- Research Support Unit, Real Jardín Botánico, Consejo Superior de Investigaciones Científicas (CSIC), 28014 Madrid, Spain
| | - María José Candel
- Departamento de Biotecnología, Genómica y Mejora Vegetal, Instituto Murciano de Investigación y Desarrollo Agrario y Ambiental (IMIDA), 30150, La Alberca, Murcia, Spain.
| | - Daniel González-Nieto
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Francisco Javier Rojo
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle Prof. Martín Lagos s/n, 28040, Madrid, Spain
| | - Manuel Elices
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Gustavo Víctor Guinea
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle Prof. Martín Lagos s/n, 28040, Madrid, Spain
| | - José Pérez-Rigueiro
- Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle Prof. Martín Lagos s/n, 28040, Madrid, Spain
| |
Collapse
|
14
|
Secondary structure of peptides mimicking the Gly-rich regions of major ampullate spidroin protein 1 and 2. Biophys Chem 2022; 284:106783. [DOI: 10.1016/j.bpc.2022.106783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/07/2022] [Accepted: 02/17/2022] [Indexed: 11/17/2022]
|
15
|
Florczak A, Deptuch T, Kucharczyk K, Dams-Kozlowska H. Systemic and Local Silk-Based Drug Delivery Systems for Cancer Therapy. Cancers (Basel) 2021; 13:5389. [PMID: 34771557 PMCID: PMC8582423 DOI: 10.3390/cancers13215389] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/26/2022] Open
Abstract
For years, surgery, radiotherapy, and chemotherapy have been the gold standards to treat cancer, although continuing research has sought a more effective approach. While advances can be seen in the development of anticancer drugs, the tools that can improve their delivery remain a challenge. As anticancer drugs can affect the entire body, the control of their distribution is desirable to prevent systemic toxicity. The application of a suitable drug delivery platform may resolve this problem. Among other materials, silks offer many advantageous properties, including biodegradability, biocompatibility, and the possibility of obtaining a variety of morphological structures. These characteristics allow the exploration of silk for biomedical applications and as a platform for drug delivery. We have reviewed silk structures that can be used for local and systemic drug delivery for use in cancer therapy. After a short description of the most studied silks, we discuss the advantages of using silk for drug delivery. The tables summarize the descriptions of silk structures for the local and systemic transport of anticancer drugs. The most popular techniques for silk particle preparation are presented. Further prospects for using silk as a drug carrier are considered. The application of various silk biomaterials can improve cancer treatment by the controllable delivery of chemotherapeutics, immunotherapeutics, photosensitizers, hormones, nucleotherapeutics, targeted therapeutics (e.g., kinase inhibitors), and inorganic nanoparticles, among others.
Collapse
Affiliation(s)
- Anna Florczak
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland; (A.F.); (T.D.); (K.K.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Tomasz Deptuch
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland; (A.F.); (T.D.); (K.K.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Kamil Kucharczyk
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland; (A.F.); (T.D.); (K.K.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Hanna Dams-Kozlowska
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland; (A.F.); (T.D.); (K.K.)
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| |
Collapse
|
16
|
Xi P, Quan F, Yao J, Xia Y, Fang K, Jiang Y. Strategy to Fabricate a Strong and Supertough Bio-Inspired Fiber with Organic-Inorganic Networks in a Green and Scalable Way. ACS NANO 2021; 15:16478-16487. [PMID: 34591455 DOI: 10.1021/acsnano.1c05952] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Green and scalable production of some fibrous materials with higher fracture energy has long been the goal of researchers. Although some progress has been made in recent years in the research of materials with high fracture energy, inspired by the fiber structure of spider silk, it is still a great challenge to produce artificial fibers with extremely high toughness using a simple and green process. Here, we use the molecular and nanoscale engineering of calcium phosphate oligomers (CaP, < 1 nm) and waterborne polyurethanes (WPU) macromolecules that have strong interactions to form organic-inorganic networks just like β-sheet crystalline and flexible amorphous regions in spider silk. Through a simple and green route based on widespread paper string processing techniques, we fabricate a strong and supertough bioinspired fiber with a high strength (442 MPa), which is 7-15 times higher than the strength of counterpart PU (20-30 MPa), and a super toughness (640 MJ m-3), which is 2-3.5 times higher than the toughness of spider dragline silk. This technique provides a strategy for industrially manufacturing spider fiber-like artificial fibers with a super toughness.
Collapse
Affiliation(s)
- Panyi Xi
- College of Textile and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266101, China
| | - Fengyu Quan
- College of Textile and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266101, China
| | - Jiuyong Yao
- College of Textile and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266101, China
| | - Yanzhi Xia
- College of Textile and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266101, China
| | - Kuanjun Fang
- College of Textile and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266101, China
| | - Yijun Jiang
- College of Textile and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Collaborative Innovation Center for Eco-textiles of Shandong Province, Qingdao University, Qingdao, Shandong 266101, China
| |
Collapse
|
17
|
Belda Marín C, Egles C, Humblot V, Lalatonne Y, Motte L, Landoulsi J, Guénin E. Gold, Silver, and Iron Oxide Nanoparticle Incorporation into Silk Hydrogels for Biomedical Applications: Elaboration, Structure, and Properties. ACS Biomater Sci Eng 2021; 7:2358-2371. [PMID: 34043329 DOI: 10.1021/acsbiomaterials.1c00441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Silk fibroin (SF) is a versatile material with biodegradable and biocompatible properties, which make it fit for broad biomedical applications. In this context, the incorporation of nanosized objects into SF allows the development of a variety of bionanocomposites with tailored properties and functions. Herein, we report a thorough investigation on the design, characterization, and biological evaluation of SF hydrogels incorporating gold, silver, or iron oxide nanoparticles. The latter are synthesized in aqueous media using a biocompatible ligand allowing their utilization in various biomedical applications. This ligand seems to play a pivotal role in nanoparticle dispersion within the hydrogel. Results show that the incorporation of nanoparticles does not greatly influence the mechanism of SF gelation and has a minor impact on the mechanical properties of the so-obtained bionanocomposites. By contrast, significant changes are observed in the swelling behavior of these materials, depending on the nanoparticle used. Interestingly, the main characteristics of these bionanocomposites, related to their potential use for biomedical purposes, show the successful input of nanoparticles, including antibacterial properties for gold and silver nanoparticles and magnetic properties for iron oxide ones.
Collapse
Affiliation(s)
- Cristina Belda Marín
- Université de echnologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de recherche Royallieu, CS 60 319 - 60 203 Compiègne Cedex, France.,Laboratoire de Réactivité de Surface, Sorbonne Université, CNRS, 4 Place Jussieu, 75252 Paris, France
| | - Christophe Egles
- Université de technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de recherche Royallieu, CS 60 319 - 60 203 Compiègne Cedex, France
| | - Vincent Humblot
- Laboratoire de Réactivité de Surface, Sorbonne Université, CNRS, 4 Place Jussieu, 75252 Paris, France
| | - Yoann Lalatonne
- INSERM U1148, Laboratory for Vascular Translational Science, Université Sorbonne Paris Nord, F-93017 Bobigny, France.,Services de Biochimie et Médecine Nucléaire, Hôpital Avicenne Assistance Publique-Hôpitaux de Paris, F-93009 Bobigny, France
| | - Laurence Motte
- INSERM U1148, Laboratory for Vascular Translational Science, Université Sorbonne Paris Nord, F-93017 Bobigny, France
| | - Jessem Landoulsi
- Laboratoire de Réactivité de Surface, Sorbonne Université, CNRS, 4 Place Jussieu, 75252 Paris, France
| | - Erwann Guénin
- Université de echnologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de recherche Royallieu, CS 60 319 - 60 203 Compiègne Cedex, France
| |
Collapse
|
18
|
Theodoridis K, Manthou ME, Aggelidou E, Kritis A. In Vivo Cartilage Regeneration with Cell-Seeded Natural Biomaterial Scaffold Implants: 15-Year Study. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:206-245. [PMID: 33470169 DOI: 10.1089/ten.teb.2020.0295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Articular cartilage can be easily damaged from human's daily activities, leading to inflammation and to osteoarthritis, a situation that can diminish the patients' quality of life. For larger cartilage defects, scaffolds are employed to provide cells the appropriate three-dimensional environment to proliferate and differentiate into healthy cartilage tissue. Natural biomaterials used as scaffolds, attract researchers' interest because of their relative nontoxic nature, their abundance as natural products, their easy combination with other materials, and the relative easiness to establish Marketing Authorization. The last 15 years were chosen to review, document, and elucidate the developments on cell-seeded natural biomaterials for articular cartilage treatment in vivo. The parameters of the experimental designs and their results were all documented and presented. Considerations about the newly formed cartilage and the treatment of cartilage defects were discussed, along with difficulties arising when applying natural materials, research limitations, and tissue engineering approaches for hyaline cartilage regeneration.
Collapse
Affiliation(s)
- Konstantinos Theodoridis
- Department of Physiology and Pharmacology, Faculty of Health Sciences and cGMP Regenerative Medicine Facility, School of Medicine, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, Greece
| | - Maria Eleni Manthou
- Laboratory of Histology, Embryology, and Anthropology, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, Greece
| | - Eleni Aggelidou
- Department of Physiology and Pharmacology, Faculty of Health Sciences and cGMP Regenerative Medicine Facility, School of Medicine, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, Greece
| | - Aristeidis Kritis
- Department of Physiology and Pharmacology, Faculty of Health Sciences and cGMP Regenerative Medicine Facility, School of Medicine, Aristotle University of Thessaloniki (A.U.Th), Thessaloniki, Greece
| |
Collapse
|
19
|
Strong tough hydrogels via the synergy of freeze-casting and salting out. Nature 2021; 590:594-599. [DOI: 10.1038/s41586-021-03212-z] [Citation(s) in RCA: 231] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 01/08/2021] [Indexed: 01/22/2023]
|
20
|
Environmental biodegradability of recombinant structural protein. Sci Rep 2021; 11:242. [PMID: 33420166 PMCID: PMC7794409 DOI: 10.1038/s41598-020-80114-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022] Open
Abstract
Next generation polymers needs to be produced from renewable sources and to be converted into inorganic compounds in the natural environment at the end of life. Recombinant structural protein is a promising alternative to conventional engineering plastics due to its good thermal and mechanical properties, its production from biomass, and its potential for biodegradability. Herein, we measured the thermal and mechanical properties of the recombinant structural protein BP1 and evaluated its biodegradability. Because the thermal degradation occurs above 250 °C and the glass transition temperature is 185 °C, BP1 can be molded into sheets by a manual hot press at 150 °C and 83 MPa. The flexural strength and modulus of BP1 were 115 ± 6 MPa and 7.38 ± 0.03 GPa. These properties are superior to those of commercially available biodegradable polymers. The biodegradability of BP1 was carefully evaluated. BP1 was shown to be efficiently hydrolyzed by some isolated bacterial strains in a dispersed state. Furthermore, it was readily hydrolyzed from the solid state by three isolated proteases. The mineralization was evaluated by the biochemical oxygen demand (BOD)-biodegradation testing with soil inocula. The BOD biodegradability of BP1 was 70.2 ± 6.0 after 33 days.
Collapse
|
21
|
Zhou P, Dai XG, Kong J, Ling J. Synthesis of Well-defined Poly(tetrahydrofuran)-b-Poly(a-amino acid)s via Cationic Ring-opening Polymerization (ROP) of Tetrahydrofuran and Nucleophilic ROP of N-thiocarboxyanhydrides. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2539-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Liang W, Chen X, Dong Y, Zhou P, Xu F. Recent advances in biomaterials as instructive scaffolds for stem cells in tissue repair and regeneration. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1848832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, P. R. China
| | - Xuerong Chen
- Department of Orthopaedics, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, P. R. China
| | - Yongqiang Dong
- Department of Orthopaedics, Xinchang People’s Hospital, Shaoxing, P. R. China
| | - Ping Zhou
- Department of Orthopaedics, Shaoxing People’s Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, P. R. China
| | - Fangming Xu
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, P. R. China
| |
Collapse
|
23
|
Mao T, Cheng X, Fang Y, Li M, Lu Z, Qu J, Chen J, Wang H, Li F, Li B. Induction of ER stress, antioxidant and detoxification response by sublethal doses of chlorantraniliprole in the silk gland of silkworm, Bombyx mori. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 170:104685. [PMID: 32980060 DOI: 10.1016/j.pestbp.2020.104685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
Sublethal doses of chlorantraniliprole (CAP) disrupt spinning disorder in the silkworm Bombyx mori (B. mori) and cause reduced cocoon production. In the present study, we investigated the effects of trace amounts of CAP on morphology and gene expression of the B. mori silk gland, found the posterior silk gland cells were possessed of disintegrated Endoplasmic reticulum (ER), unevenly distributed chromatin after exposure to CAP (0.01 mg/L). Gene expression analysis revealed that IRE1 and ATF6 ER stress-signaling pathways were inhibited, the PERK/CncC pathway was activated. Digital gene expression (DGE) analysis showed that detoxification-related genes, antioxidant genes and genes involved in ER protein processing pathway were expressed differentially in CAP-treated silkworm larvae. Notably, the transcript levels of the detoxification-related genes (CYP4M5, CYP6AB4, GSTD3 and GSTS1) and the antioxidant genes (CAT, TPX and SOD) were significantly increased, and the expression of ER protein processing-related genes (Sec61β, Sec61γ, Sec23α and ERGIC-53) was significantly decreased after CAP exposure. The results showed that sublethal doses of CAP exposure caused ER stress, oxidative damage to the silk gland and the perturbation of protein processing in ER, thereby probably leading to abnormal growth of the silk gland and triggering the spinning failure in silkworm.
Collapse
Affiliation(s)
- Tingting Mao
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Xiaoyu Cheng
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Yilong Fang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Mengxue Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Zhengting Lu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jianwei Qu
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Jian Chen
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Hui Wang
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Fanchi Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Bing Li
- School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu 215123, PR China; Sericulture Institute of Soochow University, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
24
|
Leem JW, Fraser MJ, Kim YL. Transgenic and Diet-Enhanced Silk Production for Reinforced Biomaterials: A Metamaterial Perspective. Annu Rev Biomed Eng 2020; 22:79-102. [PMID: 32160010 DOI: 10.1146/annurev-bioeng-082719-032747] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Silk fibers, which are protein-based biopolymers produced by spiders and silkworms, are fascinating biomaterials that have been extensively studied for numerous biomedical applications. Silk fibers often have remarkable physical and biological properties that typical synthetic materials do not exhibit. These attributes have prompted a wide variety of silk research, including genetic engineering, biotechnological synthesis, and bioinspired fiber spinning, to produce silk proteins on a large scale and to further enhance their properties. In this review, we describe the basic properties of spider silk and silkworm silk and the important production methods for silk proteins. We discuss recent advances in reinforced silk using silkworm transgenesis and functional additive diets with a focus on biomedical applications. We also explain that reinforced silk has an analogy with metamaterials such that user-designed atypical responses can be engineered beyond what naturally occurring materials offer. These insights into reinforced silk can guide better engineering of superior synthetic biomaterials and lead to discoveries of unexplored biological and medical applications of silk.
Collapse
Affiliation(s)
- Jung Woo Leem
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Malcolm J Fraser
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA.,Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Young L Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.,Purdue University Center for Cancer Research, Regenstrief Center for Healthcare Engineering, and Purdue Quantum Science and Engineering Institute, West Lafayette, Indiana 47907, USA;
| |
Collapse
|
25
|
Improving mechanical and antibacterial properties of PMMA via polyblend electrospinning with silk fibroin and polyethyleneimine towards dental applications. Bioact Mater 2020; 5:510-515. [PMID: 32322761 PMCID: PMC7163214 DOI: 10.1016/j.bioactmat.2020.04.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/02/2020] [Accepted: 04/05/2020] [Indexed: 12/11/2022] Open
Abstract
Poly(methylmethacrylate) (PMMA) is a widely used material in dental applications, particularly as denture resins. Due to thermally unstable and wet oral cavity, the implanted PMMA based resins occasionally deform and grow bacterial biofilms at the interface between oral cavity and the biomaterial. Several strategies attempted earlier to improve the bacterial resistance and mechanical performance of PMMA. Poly(ethyleneimine) (PEI) is a hyperbranched cationic polymer shown earlier to improve antibacterial activity of resins but do not improve mechanical properties of the resins alone, while silk fibroin (SF) is a natural biopolymer with unique material properties. In this study, we combined SF and PEI towards development of antibacterial and mechanically superior PMMA based materials towards overcoming its drawbacks. Using polyblend electrospinning to combine SF, PEI and PMMA, we successfully developed intrinsically antibacterial and mechanically reinforced nanofiber mats. We propose that the resulting nanofiber mats have the potential to be incorporated into PMMA based denture resin materials to overcome the problems of patients and improve their quality of life. Polyblend electrospinning PMMA with SF and PEI leads to striking decrease in fiber diameter. PMMA+SF+PEI fibers have superior mechanical properties compared to PMMA fibers. PMMA+SF+PEI fibers intrinsically showed antibacterial activity against a pathogenic bacteria with in oral microflora. PMMA+SF+PEI fibers could potentially be used in PMMA based denture materials.
Collapse
|
26
|
Patel M, Dubey DK, Singh SP. Phenomenological models of Bombyx mori silk fibroin and their mechanical behavior using molecular dynamics simulations. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110414. [DOI: 10.1016/j.msec.2019.110414] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 10/31/2019] [Accepted: 11/07/2019] [Indexed: 11/26/2022]
|
27
|
Abstract
Silk is a natural polymer sourced mainly from spiders and silkworms. Due to its biocompatibility, biodegradability, and mechanical properties, it has been heavily investigated for biomedical applications. It can be processed into a number of formats, such as scaffolds, films, and nanoparticles. Common methods of production create constructs with limited complexity. 3D printing allows silk to be printed into more intricate designs, increasing its potential applications. Extrusion and inkjet printing are the primary ways silk has been 3D printed, though other methods are beginning to be investigated. Silk has been integrated into bioink with other polymers, both natural and synthetic. The addition of silk is primarily done to offer more desirable viscosity characteristics and mechanical properties for printing. Silk-based bioinks have been used to fabricate medical devices and tissues. This article discusses recent research and printing parameters important for 3D printing with silk.
Collapse
Affiliation(s)
- Megan K DeBari
- Material Science and Engineering Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Mia N Keyser
- Biomedical Engineering Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Michelle A Bai
- Biomedical Engineering Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Rosalyn D Abbott
- Biomedical Engineering Department, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
28
|
Yu CH, Buehler MJ. Sonification based de novo protein design using artificial intelligence, structure prediction, and analysis using molecular modeling. APL Bioeng 2020; 4:016108. [PMID: 32206742 PMCID: PMC7078008 DOI: 10.1063/1.5133026] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/29/2020] [Indexed: 11/14/2022] Open
Abstract
We report the use of a deep learning model to design de novo proteins, based on the interplay of elementary building blocks via hierarchical patterns. The deep neural network model is based on translating protein sequences and structural information into a musical score that features different pitches for each of the amino acids, and variations in note length and note volume reflecting secondary structure information and information about the chain length and distinct protein molecules. We train a deep learning model whose architecture is composed of several long short-term memory units from data consisting of musical representations of proteins classified by certain features, focused here on alpha-helix rich proteins. Using the deep learning model, we then generate de novo musical scores and translate the pitch information and chain lengths into sequences of amino acids. We use a Basic Local Alignment Search Tool to compare the predicted amino acid sequences against known proteins, and estimate folded protein structures using the Optimized protein fold RecognitION method (ORION) and MODELLER. We find that the method proposed here can be used to design de novo proteins that do not exist yet, and that the designed proteins fold into specified secondary structures. We validate the newly predicted protein by molecular dynamics equilibration in explicit water and subsequent characterization using a normal mode analysis. The method provides a tool to design novel protein materials that could find useful applications as materials in biology, medicine, and engineering.
Collapse
Affiliation(s)
| | - Markus J. Buehler
- Laboratory for Atomistic and Molecular Mechanics (LAMM),
Department of Civil and Environmental Engineering, Massachusetts Institute of
Technology, 77 Massachusetts Ave. 1-290, Cambridge, Massachusetts 02139,
USA
| |
Collapse
|
29
|
Dong Q, Fang G, Huang Y, Hu L, Yao J, Shao Z, Ling S, Chen X. Effect of stress on the molecular structure and mechanical properties of supercontracted spider dragline silks. J Mater Chem B 2020; 8:168-176. [PMID: 31789330 DOI: 10.1039/c9tb02032b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Supercontraction is one of the most interesting properties of spider dragline silks. In this study, changes in the secondary structures of the Nephila edulis spider dragline silk after it was subjected to different supercontraction processes were investigated by integrating synchrotron Fourier transform infrared (S-FTIR) microspectroscopy and mechanical characterization. The results showed that after free supercontraction, the β-sheet lost most of its orientation, while the helix and random coils were almost totally disordered. Interestingly, by conducting different types of supercontractions (i.e., stretching of the free supercontracted spider dragline silk to its original length or performing constrained supercontraction), it was found that although the molecular structures all changed after supercontraction, the mechanical properties almost remained unchanged when the length of the spider dragline silk did not change significantly. The other interesting conclusion obtained is that the manual stretching of a poorly oriented spider dragline silk cannot selectively improve the orientation degree of the β-sheet in the spider silk, but increase the orientation degree of all conformations (β-sheet, helix, and random). These experimental findings not only help to unveil the structure-property-function relationship of natural spider silks, but also provide a useful guideline for the design of biomimetic spider fiber materials.
Collapse
Affiliation(s)
- Qinglin Dong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China.
| | - Guangqiang Fang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China.
| | - Yufang Huang
- Department of Materials Science, Fudan University, Shanghai, 200433, People's Republic of China
| | - Linli Hu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China.
| | - Jinrong Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China.
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China.
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, People's Republic of China.
| | - Xin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
30
|
Sarkar A, Connor AJ, Koffas M, Zha RH. Chemical Synthesis of Silk-Mimetic Polymers. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E4086. [PMID: 31817786 PMCID: PMC6947416 DOI: 10.3390/ma12244086] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 01/15/2023]
Abstract
Silk is a naturally occurring high-performance material that can surpass man-made polymers in toughness and strength. The remarkable mechanical properties of silk result from the primary sequence of silk fibroin, which bears semblance to a linear segmented copolymer with alternating rigid ("crystalline") and flexible ("amorphous") blocks. Silk-mimetic polymers are therefore of great emerging interest, as they can potentially exhibit the advantageous features of natural silk while possessing synthetic flexibility as well as non-natural compositions. This review describes the relationships between primary sequence and material properties in natural silk fibroin and furthermore discusses chemical approaches towards the synthesis of silk-mimetic polymers. In particular, step-growth polymerization, controlled radical polymerization, and copolymerization with naturally derived silk fibroin are presented as strategies for synthesizing silk-mimetic polymers with varying molecular weights and degrees of sequence control. Strategies for improving macromolecular solubility during polymerization are also highlighted. Lastly, the relationships between synthetic approach, supramolecular structure, and bulk material properties are explored in this review, with the aim of providing an informative perspective on the challenges facing chemical synthesis of silk-mimetic polymers with desirable properties.
Collapse
Affiliation(s)
| | | | | | - R. Helen Zha
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; (A.S.); (A.J.C.); (M.K.)
| |
Collapse
|
31
|
Gu L, Jiang Y, Hu J. Scalable Spider-Silk-Like Supertough Fibers using a Pseudoprotein Polymer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1904311. [PMID: 31490597 DOI: 10.1002/adma.201904311] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/25/2019] [Indexed: 06/10/2023]
Abstract
Spider silks are tougher than almost all other materials in the world and thus are considered ideal materials by scientists and the industry. Although there have been tremendous attempts to prepare fibers from genetically engineered spider-silk proteins, it is still a very large challenge to artificially produce materials with a very high fracture energy, not to mention the high scaling-up requirements because of the extremely low productivity and high cost levels. Here, a facile spider-silk-mimicking strategy is first reported for preparing scalable supertough fibers using the chemical synthesis route. Supertoughness (≈387 MJ m-3 ), more than twice the reported value of common spider dragline silk and comparable to the value of the toughest spider silk, the aciniform silk of Argiope trifasciata, is achieved by introducing β-sheet crystals and α-helical peptides simultaneously in a pseudoprotein polymer. The process opens up a very promising avenue for obtaining excellent spider fibers.
Collapse
Affiliation(s)
- Lin Gu
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, P. R. China
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Yuanzhang Jiang
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Jinlian Hu
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| |
Collapse
|
32
|
Affiliation(s)
- Aleksei Solomonov
- Department of Materials and Interfaces Weizmann Institute of Science 7610001 Rehovot Israel
| | - Ulyana Shimanovich
- Department of Materials and Interfaces Weizmann Institute of Science 7610001 Rehovot Israel
| |
Collapse
|
33
|
Ali BA, Allam NK. Silkworms as a factory of functional wearable energy storage fabrics. Sci Rep 2019; 9:12649. [PMID: 31477777 PMCID: PMC6718607 DOI: 10.1038/s41598-019-49193-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/21/2019] [Indexed: 11/12/2022] Open
Abstract
Feeding Bombyx mori larvae with chemically-modified diets affects the structure and properties of the resulted silk. Herein, we provide a road map for the use of silkworms as a factory to produce semiconducting/metallic natural silk that can be used in many technological applications such as supercapacitor electrodes. The silkworms were fed with four different types of chemicals; carbon material (graphite), sulfide (MoS2), oxide (TiO2 nanotubes), and a mixture of reactive chemicals (KMnO4/MnCl2). All the fed materials were successfully integrated into the resulted silk. The capacitive performance of the resulted silk was evaluated as self-standing fabric electrodes as well as on glassy carbon substrates. The self-standing silk and the silk@glassy carbon substrate showed a great enhancement in the capacitive performance over that of the unmodified counterparts. The specific capacitance of the self-standing blank silk negative and positive electrodes was enhanced 4 and 5 folds at 10 mV/s, respectively upon the modification with KMnO4/MnCl2 compared to that of the plain silk electrodes.
Collapse
Affiliation(s)
- Basant A Ali
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt
| | - Nageh K Allam
- Energy Materials Laboratory (EML), School of Sciences and Engineering, The American University in Cairo, New Cairo, 11835, Egypt.
| |
Collapse
|
34
|
Blamires SJ, Cerexhe G, White TE, Herberstein ME, Kasumovic MM. Spider silk colour covaries with thermal properties but not protein structure. J R Soc Interface 2019; 16:20190199. [PMID: 31362622 DOI: 10.1098/rsif.2019.0199] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Understanding how and why animal secretions vary in property has important biomimetic implications as desirable properties might covary. Spider major ampullate (MA) silk, for instance, is a secretion earmarked for biomimetic applications, but many of its properties vary among and between species across environments. Here, we tested the hypothesis that MA silk colour, protein structure and thermal properties covary when protein uptake is manipulated in the spider Trichonephila plumipes. We collected silk from adult female spiders maintained on a protein-fed or protein-deprived diet. Based on spectrophotometric quantifications, we classified half the silks as 'bee visible' and the other half 'bee invisible'. Wide angle X-ray diffraction and differential scanning calorimetry were then used to assess the silk's protein structure and thermal properties, respectively. We found that although protein structures and thermal properties varied across our treatments only the thermal properties covaried with colour. This ultimately suggests that protein structure alone is not responsible for MA silk thermal properties, nor does it affect silk colours. We speculate that similar ecological factors act on silk colour and thermal properties, which should be uncovered to inform biomimetic programmes.
Collapse
Affiliation(s)
- Sean J Blamires
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences E26, The University of New South Wales, Sydney 2052, Australia.,Department of Biological Science, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Georgia Cerexhe
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences E26, The University of New South Wales, Sydney 2052, Australia
| | - Thomas E White
- Department of Biological Science, Macquarie University, Sydney, New South Wales 2109, Australia.,School of Life and Environmental Sciences, Macleay (A12), Room 208, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Marie E Herberstein
- Department of Biological Science, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Michael M Kasumovic
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences E26, The University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
35
|
|
36
|
Teramoto H, Iga M, Tsuboi H, Nakajima K. Characterization and Scaled-Up Production of Azido-Functionalized Silk Fiber Produced by Transgenic Silkworms with an Expanded Genetic Code. Int J Mol Sci 2019; 20:E616. [PMID: 30708986 PMCID: PMC6387213 DOI: 10.3390/ijms20030616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 11/17/2022] Open
Abstract
The creation of functional materials from renewable resources has attracted much interest. We previously reported on the genetic code expansion of the domesticated silkworm Bombyx mori to functionalize silk fiber with synthetic amino acids such as 4-azido-L-phenylalanine (AzPhe). The azido groups act as selective handles for biorthogonal chemical reactions. Here we report the characterization and scaled-up production of azido-functionalized silk fiber for textile, healthcare, and medical applications. To increase the productivity of azido-functionalized silk fiber, the original transgenic line was hybridized with a high silk-producing strain. The F₁ hybrid produced circa 1.5 times more silk fibroin than the original transgenic line. The incorporation efficiency of AzPhe into silk fibroin was retained after hybridization. The tensile properties of the azido-functionalized silk fiber were equal to those of normal silk fiber. Scaled-up production of the azido-functionalized silk fiber was demonstrated by rearing circa 1000 transgenic silkworms. Differently-colored fluorescent silk fibers were successfully prepared by click chemistry reactions, demonstrating the utility of the azido-functionalized silk fiber for developing silk-based materials with desired functions.
Collapse
Affiliation(s)
- Hidetoshi Teramoto
- Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Ibaraki 305-8518, Japan.
| | - Masatoshi Iga
- Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Ibaraki 305-8518, Japan.
| | - Hiromi Tsuboi
- Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Ibaraki 305-8518, Japan.
| | - Kenichi Nakajima
- Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Ibaraki 305-8518, Japan.
| |
Collapse
|
37
|
Zha RH, Delparastan P, Fink TD, Bauer J, Scheibel T, Messersmith PB. Universal nanothin silk coatings via controlled spidroin self-assembly. Biomater Sci 2019; 7:683-695. [PMID: 30628598 PMCID: PMC6459601 DOI: 10.1039/c8bm01186a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Robust, biocompatible, and facile coatings are promising for improving the in vivo performance of medical implants and devices. Here, we demonstrate the formation of nanothin silk coatings by leveraging the biomimetic self-assembly of eADF4(C16), an amphiphilic recombinant protein based on the Araneus diadematus dragline spidroin ADF4. These coatings result from concurrent adsorption and supramolecular assembly of eADF4(C16) induced by KH2PO4, thereby providing a mild one-pot coating strategy in which the coating rate can be controlled by protein and KH2PO4 concentration. The thickness of the coatings ranges from 2-30 nm depending on the time immersed in the aqueous coating solution. Coatings can be formed on hydrophobic and hydrophilic substrates regardless of surface chemistry and without requiring specialized surface activation. Moreover, coatings appear to be stable through vigorous rinsing and prolonged agitation in water. Grazing incidence wide angle X-ray scattering, single-molecule force spectroscopy, and Congo red staining techniques confirm the formation of β-sheet nanocrystals within the eADF4(C16) coating, which contributes to the cohesive and adhesive stability of the material. Coatings are exceptionally smooth in the dry state and are hydrophilic regardless of substrate hydrophobicity. Under aqueous conditions, nanothin silk coatings exhibit the properties of a hydrogel material.
Collapse
Affiliation(s)
- R Helen Zha
- Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY 12180, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Holland C, Numata K, Rnjak‐Kovacina J, Seib FP. The Biomedical Use of Silk: Past, Present, Future. Adv Healthc Mater 2019; 8:e1800465. [PMID: 30238637 DOI: 10.1002/adhm.201800465] [Citation(s) in RCA: 423] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 08/04/2018] [Indexed: 11/07/2022]
Abstract
Humans have long appreciated silk for its lustrous appeal and remarkable physical properties, yet as the mysteries of silk are unraveled, it becomes clear that this outstanding biopolymer is more than a high-tech fiber. This progress report provides a critical but detailed insight into the biomedical use of silk. This journey begins with a historical perspective of silk and its uses, including the long-standing desire to reverse engineer silk. Selected silk structure-function relationships are then examined to appreciate past and current silk challenges. From this, biocompatibility and biodegradation are reviewed with a specific focus of silk performance in humans. The current clinical uses of silk (e.g., sutures, surgical meshes, and fabrics) are discussed, as well as clinical trials (e.g., wound healing, tissue engineering) and emerging biomedical applications of silk across selected formats, such as silk solution, films, scaffolds, electrospun materials, hydrogels, and particles. The journey finishes with a look at the roadmap of next-generation recombinant silks, especially the development pipeline of this new industry for clinical use.
Collapse
Affiliation(s)
- Chris Holland
- Department of Materials Science and Engineering The University of Sheffield Sir Robert Hadfield Building, Mappin Street Sheffield South Yorkshire S1 3JD UK
| | - Keiji Numata
- Biomacromolecules Research Team RIKEN Center for Sustainable Resource Science 2‐1 Hirosawa Wako Saitama 351‐0198 Japan
| | - Jelena Rnjak‐Kovacina
- Graduate School of Biomedical Engineering The University of New South Wales Sydney NSW 2052 Australia
| | - F. Philipp Seib
- Leibniz Institute of Polymer Research Dresden Max Bergmann Center of Biomaterials Dresden Dresden 01069 Germany
- Strathclyde Institute of Pharmacy and Biomedical Sciences University of Strathclyde Glasgow G4 0RE UK
| |
Collapse
|
39
|
López Barreiro D, Yeo J, Tarakanova A, Martin-Martinez FJ, Buehler MJ. Multiscale Modeling of Silk and Silk-Based Biomaterials-A Review. Macromol Biosci 2018; 19:e1800253. [PMID: 30375164 DOI: 10.1002/mabi.201800253] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/20/2018] [Indexed: 12/25/2022]
Abstract
Silk embodies outstanding material properties and biologically relevant functions achieved through a delicate hierarchical structure. It can be used to create high-performance, multifunctional, and biocompatible materials through mild processes and careful rational material designs. To achieve this goal, computational modeling has proven to be a powerful platform to unravel the causes of the excellent mechanical properties of silk, to predict the properties of the biomaterials derived thereof, and to assist in devising new manufacturing strategies. Fine-scale modeling has been done mainly through all-atom and coarse-grained molecular dynamics simulations, which offer a bottom-up description of silk. In this work, a selection of relevant contributions of computational modeling is reviewed to understand the properties of natural silk, and to the design of silk-based materials, especially combined with experimental methods. Future research directions are also pointed out, including approaches such as 3D printing and machine learning, that may enable a high throughput design and manufacturing of silk-based biomaterials.
Collapse
Affiliation(s)
- Diego López Barreiro
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 1-290, Cambridge, MA, 02139, USA
| | - Jingjie Yeo
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 1-290, Cambridge, MA, 02139, USA.,Institute of High Performance Computing, A*STAR, 1 Fusionopolis Way, Singapore, 138632, Singapore.,Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Anna Tarakanova
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 1-290, Cambridge, MA, 02139, USA
| | - Francisco J Martin-Martinez
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 1-290, Cambridge, MA, 02139, USA
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 1-290, Cambridge, MA, 02139, USA
| |
Collapse
|
40
|
Ling S, Chen W, Fan Y, Zheng K, Jin K, Yu H, Buehler MJ, Kaplan DL. Biopolymer nanofibrils: structure, modeling, preparation, and applications. Prog Polym Sci 2018; 85:1-56. [PMID: 31915410 PMCID: PMC6948189 DOI: 10.1016/j.progpolymsci.2018.06.004] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biopolymer nanofibrils exhibit exceptional mechanical properties with a unique combination of strength and toughness, while also presenting biological functions that interact with the surrounding environment. These features of biopolymer nanofibrils profit from their hierarchical structures that spun angstrom to hundreds of nanometer scales. To maintain these unique structural features and to directly utilize these natural supramolecular assemblies, a variety of new methods have been developed to produce biopolymer nanofibrils. In particular, cellulose nanofibrils (CNFs), chitin nanofibrils (ChNFs), silk nanofibrils (SNFs) and collagen nanofibrils (CoNFs), as the four most abundant biopolymer nanofibrils on earth, have been the focus of research in recent years due to their renewable features, wide availability, low-cost, biocompatibility, and biodegradability. A series of top-down and bottom-up strategies have been accessed to exfoliate and regenerate these nanofibrils for versatile advanced applications. In this review, we first summarize the structures of biopolymer nanofibrils in nature and outline their related computational models with the aim of disclosing fundamental structure-property relationships in biological materials. Then, we discuss the underlying methods used for the preparation of CNFs, ChNFs, SNF and CoNFs, and discuss emerging applications for these biopolymer nanofibrils.
Collapse
Affiliation(s)
- Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Wenshuai Chen
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Yimin Fan
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Ke Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Kai Jin
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Haipeng Yu
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Markus J. Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
41
|
Su I, Qin Z, Saraceno T, Krell A, Mühlethaler R, Bisshop A, Buehler MJ. Imaging and analysis of a three-dimensional spider web architecture. J R Soc Interface 2018; 15:20180193. [PMID: 30232240 PMCID: PMC6170774 DOI: 10.1098/rsif.2018.0193] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 08/21/2018] [Indexed: 12/21/2022] Open
Abstract
Spiders are abundantly found in nature and most ecosystems, making up more than 47 000 species. This ecological success is in part due to the exceptional mechanics of the spider web, with its strength, toughness, elasticity and robustness, which originate from its hierarchical structures all the way from sequence design to web architecture. It is a unique example in nature of high-performance material design. In particular, to survive in different environments, spiders have optimized and adapted their web architecture by providing housing, protection, and an efficient tool for catching prey. The most studied web in literature is the two-dimensional (2D) orb web, which is composed of radial and spiral threads. However, only 10% of spider species are orb-web weavers, and three-dimensional (3D) webs, such as funnel, sheet or cobwebs, are much more abundant in nature. The complex spatial network and microscale size of silk fibres are significant challenges towards determining the topology of 3D webs, and only a limited number of previous studies have attempted to quantify their structure and properties. Here, we focus on developing an innovative experimental method to directly capture the complete digital 3D spider web architecture with micron scale resolution. We built an automatic segmentation and scanning platform to obtain high-resolution 2D images of individual cross-sections of the web that were illuminated by a sheet laser. We then developed image processing algorithms to reconstruct the digital 3D fibrous network by analysing the 2D images. This digital network provides a model that contains all of the structural and topological features of the porous regions of a 3D web with high fidelity, and when combined with a mechanical model of silk materials, will allow us to directly simulate and predict the mechanical response of a realistic 3D web under mechanical loads. Our work provides a practical tool to capture the architecture of sophisticated 3D webs, and could lead to studies of the relation between architecture, material and biological functions for numerous 3D spider web applications.
Collapse
Affiliation(s)
- Isabelle Su
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Zhao Qin
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| | - Tomás Saraceno
- Studio Tomás Saraceno, Hauptstrasse 11/12, 10317 Lichtenberg, Berlin, Germany
| | - Adrian Krell
- Studio Tomás Saraceno, Hauptstrasse 11/12, 10317 Lichtenberg, Berlin, Germany
| | - Roland Mühlethaler
- Studio Tomás Saraceno, Hauptstrasse 11/12, 10317 Lichtenberg, Berlin, Germany
| | - Ally Bisshop
- Studio Tomás Saraceno, Hauptstrasse 11/12, 10317 Lichtenberg, Berlin, Germany
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA
| |
Collapse
|
42
|
Sparkes J, Holland C. The Energy Requirements for Flow‐Induced Solidification of Silk. Macromol Biosci 2018; 19:e1800229. [DOI: 10.1002/mabi.201800229] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/01/2018] [Indexed: 01/07/2023]
Affiliation(s)
- James Sparkes
- Natural Materials GroupDepartment of Materials Science and Engineering Sir Robert Hadfield Building, Mappin Street Sheffield S1 3JD UK
| | - Chris Holland
- Natural Materials GroupDepartment of Materials Science and Engineering Sir Robert Hadfield Building, Mappin Street Sheffield S1 3JD UK
| |
Collapse
|
43
|
Laity PR, Baldwin E, Holland C. Changes in Silk Feedstock Rheology during Cocoon Construction: The Role of Calcium and Potassium Ions. Macromol Biosci 2018; 19:e1800188. [PMID: 30040173 DOI: 10.1002/mabi.201800188] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/25/2018] [Indexed: 11/06/2022]
Abstract
Variation in silk feedstocks is a barrier both to our understanding of natural spinning and biomimetic endeavors. To address this, compositional changes are investigated in feedstock specimens from the domesticated silkworm (Bombyx mori). It is found that the feedstock viscosity decreased systematically by over two orders of magnitude during cocoon construction. Potential factors such as protein concentration, molecular weight, pH, or the presence of trehalose are excluded, whereas a clear correlation appear between viscosity and the relative concentrations of Ca2+ and K+ ions. It is expected that Ca2+ ions would favor "salt bridges" between acidic (Asp and Glu) amino acids, leading to an increased viscosity, whereas K+ ions would compete for these sites, thereby reducing viscosity. Thus, these findings suggest a simple, systematic yet sophisticated control of feedstock viscosity in the silkworm, which in turn can be applied to future industrial silk production.
Collapse
Affiliation(s)
- Peter R Laity
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK
| | - Elizabeth Baldwin
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK
| | - Chris Holland
- Department of Materials Science and Engineering, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK
| |
Collapse
|
44
|
Martín-Moldes Z, Ebrahimi D, Plowright R, Dinjaski N, Perry CC, Buehler MJ, Kaplan DL. Intracellular Pathways Involved in Bone Regeneration Triggered by Recombinant Silk-silica Chimeras. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1702570. [PMID: 30140193 PMCID: PMC6101667 DOI: 10.1002/adfm.201702570] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Biomineralization at the organic-inorganic interface is critical to many biology material functions in vitro and in vivo. Recombinant silk-silica fusion peptides are organic-inorganic hybrid material systems that can be effectively used to study and control biologically-mediated mineralization due to the genetic basis of sequence control. However, to date, the mechanisms by which these functionalized silk-silica proteins trigger the differentiation of human mesenchymal stem cells (hMSCs) to osteoblasts remain unknown. To address this challenge, we analyzed silk-silica surfaces for silica-hMSC receptor binding and activation, and the intracellular pathways involved in the induction of osteogenesis on these bioengineered biomaterials. The induction of gene expression of αVβ3 integrin, all three Mitogen-activated Protein Kinsases (MAPKs) as well as c-Jun, Runt-related Transcription Factor 2 (Runx2) and osteoblast marker genes was demonstrated upon growth of the hMSCs on the silk-silica materials. This induction of key markers of osteogenesis correlated with the content of silica on the materials. Moreover, computational simulations were performed for silk/silica-integrin binding which showed activation of αVβ3 integrin in contact with silica. This integrated computational and experimental approach provides insight into interactions that regulate osteogenesis towards more efficient biomaterial designs.
Collapse
Affiliation(s)
- Zaira Martín-Moldes
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Davoud Ebrahimi
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Robyn Plowright
- Biomolecular and Materials Interface Research Group, Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Nina Dinjaski
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA; Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Carole C Perry
- Biomolecular and Materials Interface Research Group, Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Markus J Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
45
|
Kontturi E, Laaksonen P, Linder MB, Gröschel AH, Rojas OJ, Ikkala O. Advanced Materials through Assembly of Nanocelluloses. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1703779. [PMID: 29504161 DOI: 10.1002/adma.201703779] [Citation(s) in RCA: 352] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/06/2017] [Indexed: 05/20/2023]
Abstract
There is an emerging quest for lightweight materials with excellent mechanical properties and economic production, while still being sustainable and functionalizable. They could form the basis of the future bioeconomy for energy and material efficiency. Cellulose has long been recognized as an abundant polymer. Modified celluloses were, in fact, among the first polymers used in technical applications; however, they were later replaced by petroleum-based synthetic polymers. Currently, there is a resurgence of interest to utilize renewable resources, where cellulose is foreseen to make again a major impact, this time in the development of advanced materials. This is because of its availability and properties, as well as economic and sustainable production. Among cellulose-based structures, cellulose nanofibrils and nanocrystals display nanoscale lateral dimensions and lengths ranging from nanometers to micrometers. Their excellent mechanical properties are, in part, due to their crystalline assembly via hydrogen bonds. Owing to their abundant surface hydroxyl groups, they can be easily modified with nanoparticles, (bio)polymers, inorganics, or nanocarbons to form functional fibers, films, bulk matter, and porous aerogels and foams. Here, some of the recent progress in the development of advanced materials within this rapidly growing field is reviewed.
Collapse
Affiliation(s)
- Eero Kontturi
- Department of Bioproducts and Biosystems, Aalto University, Espoo, FI-00076, Finland
| | - Päivi Laaksonen
- Department of Bioproducts and Biosystems, Aalto University, Espoo, FI-00076, Finland
- Center of Excellence Molecular Engineering of Biosynthetic Hybrid Materials Research, Aalto University and VTT, Espoo, FI-00076, Finland
| | - Markus B Linder
- Department of Bioproducts and Biosystems, Aalto University, Espoo, FI-00076, Finland
- Center of Excellence Molecular Engineering of Biosynthetic Hybrid Materials Research, Aalto University and VTT, Espoo, FI-00076, Finland
| | - André H Gröschel
- Physical Chemistry and Centre for Nanointegration (CENIDE), University of Duisburg-Essen, DE-45127, Essen, Germany
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, Aalto University, Espoo, FI-00076, Finland
- Center of Excellence Molecular Engineering of Biosynthetic Hybrid Materials Research, Aalto University and VTT, Espoo, FI-00076, Finland
- Department of Applied Physics, Aalto University, Espoo, FI-00076, Finland
| | - Olli Ikkala
- Department of Bioproducts and Biosystems, Aalto University, Espoo, FI-00076, Finland
- Center of Excellence Molecular Engineering of Biosynthetic Hybrid Materials Research, Aalto University and VTT, Espoo, FI-00076, Finland
- Department of Applied Physics, Aalto University, Espoo, FI-00076, Finland
| |
Collapse
|
46
|
Hoffmann B, Gruat-Henry C, Mulinti P, Jiang L, Brooks BD, Brooks AE. Using hydrodynamic focusing to predictably alter the diameter of synthetic silk fibers. PLoS One 2018; 13:e0195522. [PMID: 29649239 PMCID: PMC5896967 DOI: 10.1371/journal.pone.0195522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/23/2018] [Indexed: 01/21/2023] Open
Abstract
Spiders and silkworms provide a model of superior processing for multifunctional and highly versatile high-performance fibers. Mimicking the spider's complex control system for chemical and mechanical gradients has remained an ongoing obstacle for synthetic silk production. In this study, the use of hydrodynamic fluid focusing within a 3D printed biomimetic spinning system to recapitulate the biological spinneret is explored and shown to produce predictable, small diameter fibers. Mirroring in silico fluid flow simulations using a hydrodynamic microfluidic spinning technique, we have developed a model correlating spinning rates, solution viscosity and fiber diameter outputs that will significantly advance the field of synthetic silk fiber production. The use of hydrodynamic focusing to produce controlled output fiber diameter simulates the natural silk spinning process and continues to build upon a 3D printed biomimetic spinning platform.
Collapse
Affiliation(s)
- Bradley Hoffmann
- Department of Mechanical Engineering, North Dakota State University, Fargo, North Dakota, United States of America
| | - Catherine Gruat-Henry
- Department of Electrical Engineering, North Dakota State University, Fargo, North Dakota, United States of America
| | - Pranothi Mulinti
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| | - Long Jiang
- Department of Mechanical Engineering, North Dakota State University, Fargo, North Dakota, United States of America
| | - Benjamin D. Brooks
- Department of Electrical Engineering, North Dakota State University, Fargo, North Dakota, United States of America
| | - Amanda E. Brooks
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| |
Collapse
|
47
|
Chawla S, Midha S, Sharma A, Ghosh S. Silk-Based Bioinks for 3D Bioprinting. Adv Healthc Mater 2018; 7:e1701204. [PMID: 29359861 DOI: 10.1002/adhm.201701204] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/15/2017] [Indexed: 11/07/2022]
Abstract
3D bioprinting field is making remarkable progress; however, the development of critical sized engineered tissue construct is still a farfetched goal. Silk fibroin offers a promising choice for bioink material. Nature has imparted several unique structural features in silk protein to ensure spinnability by silkworms or spider. Researchers have modified the structure-property relationship by reverse engineering to further improve shear thinning behavior, high printability, cytocompatible gelation, and high structural fidelity. In this review, it is attempted to summarize the recent advancements made in the field of 3D bioprinting in context of two major sources of silk fibroin: silkworm silk and spider silk (native and recombinant). The challenges faced by current approaches in processing silk bioinks, cellular signaling pathways modulated by silk chemistry and secondary conformations, gaps in knowledge, and future directions acquired for pushing the field further toward clinic are further elaborated.
Collapse
Affiliation(s)
- Shikha Chawla
- Department of Textile TechnologyIIT Delhi Hauz Khas New Delhi 110016 India
| | - Swati Midha
- Department of Textile TechnologyIIT Delhi Hauz Khas New Delhi 110016 India
| | - Aarushi Sharma
- Department of Textile TechnologyIIT Delhi Hauz Khas New Delhi 110016 India
| | - Sourabh Ghosh
- Department of Textile TechnologyIIT Delhi Hauz Khas New Delhi 110016 India
| |
Collapse
|
48
|
Teramoto H, Amano Y, Iraha F, Kojima K, Ito T, Sakamoto K. Genetic Code Expansion of the Silkworm Bombyx mori to Functionalize Silk Fiber. ACS Synth Biol 2018; 7:801-806. [PMID: 29480717 DOI: 10.1021/acssynbio.7b00437] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The genetic code in bacteria and animal cells has been expanded to incorporate novel amino acids into proteins. Recent efforts have enabled genetic code expansion in nematodes, flies, and mice, whereas such engineering is rare with industrially useful animals. In the present study, we engineered the silkworm Bombyx mori to synthesize silk fiber functionalized with azidophenylalanine. For this purpose, we developed a bacterial system to screen for B. mori phenylalanyl-tRNA synthetases with altered amino-acid specificity. We created four transgenic B. mori lines expressing the selected synthetase variants in silk glands, and found that two of them supported the efficient in vivo incorporation of azidophenylalanine into silk fiber. The obtained silk was bio-orthogonally reactive with fluorescent molecules. The results showed that genetic code expansion in an industrial animal can be facilitated by prior bacterial selection, to accelerate the development of silk fiber with novel properties.
Collapse
Affiliation(s)
- Hidetoshi Teramoto
- Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki 305-0035, Japan
| | - Yoshimi Amano
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Fumie Iraha
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Katsura Kojima
- Division of Biotechnology, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki 305-0035, Japan
| | - Takuhiro Ito
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Kensaku Sakamoto
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
49
|
Dionne J, Lefèvre T, Bilodeau P, Lamarre M, Auger M. A quantitative analysis of the supercontraction-induced molecular disorientation of major ampullate spider silk. Phys Chem Chem Phys 2018; 19:31487-31498. [PMID: 29159351 DOI: 10.1039/c7cp05739c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spider silks exhibit remarkable properties, among which the so-called supercontraction, a physical phenomenon by which fibers undergo a longitudinal shrinkage and a radial swelling when exposed to water. The process is marked by a significant decrease in chain orientation resulting from plasticisation of the amorphous phase. Despite several studies that determined the Hermans orientation function, more quantitative data are required to be able to describe theoretically the macroscopic water-induced shrinkage from molecular reorganization. Here, we have examined the supercontraction of the major ampullate silk single fibers of Nephila clavipes (Nc) and Araneus diadematus (Ad) using polarized Raman spectromicroscopy. We determined the order parameters, the orientation distribution and the secondary structure content. Our data suggest that supercontraction induces a slight increase in β-sheet content, consistently with previous works. The β-sheet orientation is slightly affected by supercontraction compared to that of the amorphous phase, which becomes almost isotropic with shrinkage. Despite an initially lower orientation level, the Ad fiber shows a larger orientation decrease than Nc, consistently with its higher shrinkage amplitude. Although they share similar trends, absolute values of the orientation parameters from this work differ from those found in the literature. We took advantage of having determined the distribution of orientation to estimate the amplitude of shrinkage from changes in macromolecular size resulting from molecular disorientation. Our calculations show that more realistic models are needed to correlate molecular reorientation/refolding to macroscopic shrinkage. This work also underlines that more accurate data relative to molecular orientation are necessary.
Collapse
Affiliation(s)
- J Dionne
- Département de chimie, Regroupement québécois de Recherche sur la Fonction, l'Ingénierie et les Applications des Protéines (PROTEO), Centre de Recherche sur les Matériaux Avancés (CERMA), Centre Québécois sur les Matériaux Fonctionnels (CQMF), Université Laval, Pavillon Alexandre-Vachon, QC G1V 0A6, Canada.
| | | | | | | | | |
Collapse
|
50
|
Fink TD, Zha RH. Silk and Silk-Like Supramolecular Materials. Macromol Rapid Commun 2018; 39:e1700834. [DOI: 10.1002/marc.201700834] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/16/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Tanner D. Fink
- Department of Chemical and Biological Engineering; Center for Biotechnology and Interdisciplinary Studies; Rensselaer Polytechnic Institute; 110 8th St. Troy NY 12180 USA
| | - R. Helen Zha
- Department of Chemical and Biological Engineering; Center for Biotechnology and Interdisciplinary Studies; Rensselaer Polytechnic Institute; 110 8th St. Troy NY 12180 USA
| |
Collapse
|