1
|
Shi L, Zhang N, Xue Z, Luo G. Mechanistic Insights into Rare-Earth-Catalyzed Alternating Copolymerization through C-H Polyaddition of Functionalized Organic Compounds to Unconjugated Dienes. Inorg Chem 2024; 63:8079-8091. [PMID: 38663005 DOI: 10.1021/acs.inorgchem.4c00097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 05/07/2024]
Abstract
Density functional theory (DFT) calculations have been conducted to elucidate the detailed mechanisms of yttrium-catalyzed C-H polyaddition of 1,4-dimethoxybenzene (DMB) to 1,4-divinylbenzene (DVB). It was computationally determined that DMB not only serves as a substrate but also performs a crucial role as a ligand, stabilizing the catalytically active species and promoting alkene insertion. Side pathways involving Cβ-H activation and C═C continuous insertion were excluded due to steric and electronic factors, respectively, explaining why the reaction occurred efficiently and selectively to give perfectly alternating DMB-DVB polymers. Interestingly, the theoretical prediction of the reactivity of N,N-dimethyl-1,4-phenylenediamine and 2,2'-biethyl-4,4'-bipyridine reveals significant differences in the coordination effects of these substrates, leading to distinct mechanisms, primarily influenced by their steric effects. These findings shed new light on the previously overlooked role of substrate ligand effects in rare-earth-catalyzed step-growth copolymerization reactions.
Collapse
Affiliation(s)
- Lei Shi
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Ni Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Zuqian Xue
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Gen Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| |
Collapse
|
2
|
Zhang W, Ling B, Bi S. Gold-Catalyzed Oxidation Reactions of Thioalkynes with Quinoline N-Oxides: A DFT Study. J Org Chem 2024; 89:5546-5554. [PMID: 38593403 DOI: 10.1021/acs.joc.4c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 04/11/2024]
Abstract
Mechanistic investigation of the gold-catalyzed oxidative reactions of thioalkynes with quinoline N-oxides was performed using density functional theory (DFT) calculations. For the oxidative rearrangement of thioalkynes with quinoline N-oxide to yield the same products, the Cβ-oxidation of thioalkynes was predicted to be competitive with Cα-oxidation, with the Cβ-oxidative process slightly more favorable. However, for the oxidative alkenylation of propargyl aryl thioethers with quinoline N-oxides, the Cβ-oxidation of thioether by quinoline N-oxide generated the product 3-hydroxy-1-alkylidene phenylthiopropan-2-one. Moreover, the ring opening of the four-membered sulfonium intermediate was achieved by the nucleophilic attack of quinoline N-oxide rather than a water molecule.
Collapse
Affiliation(s)
- Wanying Zhang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People's Republic of China
- GRINM (Guangdong) Institute for Advanced Materials and Technology, Foshan 528000, Guangdong, People's Republic of China
| | - Baoping Ling
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People's Republic of China
| | - Siwei Bi
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People's Republic of China
| |
Collapse
|
3
|
Yu S, Zhang C, Wang F, Liang X, Yang M, An M. Promotion of B(C 6F 5) 3 as Ligand for Titanium (or Vanadium) Catalysts in the Copolymerization of Ethylene and 1-Hexene: A Computational Study. Polymers (Basel) 2023; 15:polym15112435. [PMID: 37299237 DOI: 10.3390/polym15112435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/11/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Density functional theory (DFT) is employed to investigate the promotion of B(C6F5)3 as a ligand for titanium (or vanadium) catalysts in ethylene/1-hexene copolymerization reactions. The results reveal that (I) Ethylene insertion into TiB (with B(C6F5)3 as a ligand ) is preferred over TiH, both thermodynamically and kinetically. (II) In TiH and TiB catalysts, the 2,1 insertion reaction (TiH21 and TiB21) is the primary pathway for 1-hexene insertion. Furthermore, the 1-hexene insertion reaction for TiB21 is favored over TiH21 and is easier to perform. Consequently, the entire ethylene and 1-hexene insertion reaction proceeds smoothly using the TiB catalyst to yield the final product. (III) Analogous to the Ti catalyst case, VB (with B(C6F5)3 as a ligand) is preferred over VH for the entire ethylene/1-hexene copolymerization reaction. Moreover, VB exhibits higher reaction activity than TiB, thus agreeing with experimental results. Additionally, the electron localization function and global reactivity index analysis indicate that titanium (or vanadium) catalysts with B(C6F5)3 as a ligand exhibit higher reactivity. Investigating the promotion of B(C6F5)3 as a ligand for titanium (or vanadium) catalysts in ethylene/1-hexene copolymerization reactions will aid in designing novel catalysts and lead to more cost-effective polymerization production methods.
Collapse
Affiliation(s)
- Shuyuan Yu
- College of Chemistry and Material Science, Langfang Normal University, Langfang 065000, China
| | - Chenggen Zhang
- College of Chemistry and Material Science, Langfang Normal University, Langfang 065000, China
| | - Fei Wang
- College of Chemistry and Material Science, Langfang Normal University, Langfang 065000, China
| | - Xinru Liang
- College of Chemistry and Material Science, Langfang Normal University, Langfang 065000, China
| | - Mengyao Yang
- College of Chemistry and Material Science, Langfang Normal University, Langfang 065000, China
| | - Mengyu An
- College of Chemistry and Material Science, Langfang Normal University, Langfang 065000, China
| |
Collapse
|
4
|
Liu X, Liu LG, Chen CM, Li X, Xu Z, Lu X, Zhou B, Ye LW. Copper-Catalyzed Enantioselective Doyle-Kirmse Reaction of Azide-Ynamides via α-Imino Copper Carbenes. Angew Chem Int Ed Engl 2023; 62:e202216923. [PMID: 36639865 DOI: 10.1002/anie.202216923] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/17/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/15/2023]
Abstract
[2,3]-Sigmatropic rearrangement reaction involving sulfonium ylide (Doyle-Kirmse reaction) generated from metal carbenes represents one of the powerful methods for the construction of C(sp3 )-S and C-C bonds. Although significant advances have been achieved, the asymmetric versions via the generation of sulfonium ylides from metal carbenes have been rarely reported to date, and they have so far been limited to diazo compounds as metal carbene precursors. Here, we describe a copper-catalyzed enantioselective Doyle-Kirmse reaction via azide-ynamide cyclization, leading to the practical and divergent assembly of an array of chiral [1,4]thiazino[3,2-b]indoles bearing a quaternary carbon stereocenter in generally moderate to excellent yields and excellent enantioselectivities. Importantly, this protocol represents a unique catalytic asymmetric Doyle-Kirmse reaction via a non-diazo approach and an unprecedented asymmetric [2,3]-sigmatropic rearrangement via α-imino metal carbenes.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Li-Gao Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Can-Ming Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhou Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Bo Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
5
|
Liu Y, Liu X, Feng X. Recent advances in metal-catalysed asymmetric sigmatropic rearrangements. Chem Sci 2022; 13:12290-12308. [PMID: 36382273 PMCID: PMC9629009 DOI: 10.1039/d2sc03806d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/08/2022] [Accepted: 09/22/2022] [Indexed: 09/22/2023] Open
Abstract
Asymmetric sigmatropic rearrangement is a powerful organic transformation via substrate-reorganization to efficiently increase molecular complexity from readily accessible starting materials. In particular, a high level of diastereo- and enantioselectivity can be readily accessed through well-defined and predictable transition states in [3,3], [2,3]-sigmatropic rearrangements, which have been widely applied in the synthesis of various chiral building blocks, natural products, and pharmaceuticals. In recent years, catalytic asymmetric sigmatropic rearrangements involving chiral metal complexes to induce stereocontrol have been intensively studied. This review presents an overview of metal-catalysed enantioselective versions of sigmatropic rearrangements in the past two decades, mainly focusing on [3,3], [2,3], and [1,3]-rearrangements, to show the development of substrate design, new catalyst exploitation, and novel cascade processes. In addition, their application in the asymmetric synthesis of complex natural products is also exemplified.
Collapse
Affiliation(s)
- Yangbin Liu
- Institute of Chemical Biology, Shenzhen Bay Laboratory Shenzhen 518132 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaoming Feng
- Institute of Chemical Biology, Shenzhen Bay Laboratory Shenzhen 518132 China
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| |
Collapse
|
6
|
Wang K, Li S, Wang J. Cu(I)/Chiral Bisoxazoline‐Catalyzed Enantioselective Doyle‐Kirmse Reaction of Allenyl Sulfides with
α
‐Diazoesters. Chemistry 2022; 28:e202200170. [DOI: 10.1002/chem.202200170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/18/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Kang Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS) Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education College of Chemistry Peking University Beijing 100871 P. R. China
| | - Shu‐Sen Li
- Beijing National Laboratory of Molecular Sciences (BNLMS) Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education College of Chemistry Peking University Beijing 100871 P. R. China
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS) Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education College of Chemistry Peking University Beijing 100871 P. R. China
- The State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences Shanghai 200032 P. R. China
| |
Collapse
|
7
|
Hu L, Li J, Zhang Y, Feng X, Liu X. Enantioselective [1,2]-Stevens Rearrangement of Thiosulfonates to Construct Dithio-Substituted Quaternary Carbon Centers. Chem Sci 2022; 13:4103-4108. [PMID: 35440994 PMCID: PMC8985575 DOI: 10.1039/d2sc00419d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/21/2022] [Accepted: 03/10/2022] [Indexed: 11/29/2022] Open
Abstract
An enantioselective [1,2] Stevens rearrangement was realized by using chiral guanidine and copper(i) complexes. Bis-sulfuration of α-diazocarbonyl compounds was developed through using thiosulfonates as the sulfenylating agent. It was undoubtedly an atom-economic process providing an efficient route to access novel chiral dithioketal derivatives, affording the corresponding products in good yields (up to 90% yield) and enantioselectivities (up to 96 : 4 er). A novel catalytic cycle was proposed to rationalize the reaction process and enantiocontrol. An asymmetric [1,2] Stevens rearrangement was realized via chiral guanidine and copper(i) complexes. A series of novel chiral dithioketal derivatives were obtained with good yields (up to 90% yield) and enantioselectivities (up to 96 : 4 er).![]()
Collapse
Affiliation(s)
- Linfeng Hu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Jinzhao Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Yongyan Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| |
Collapse
|
8
|
Fu Z, Zhou Q, Xiao Y, Wang J. Polymerization with Cu(I)-Catalyzed Doyle-Kirmse Reaction of Bis(allyl sulfides) and Bis(α-diazoesters). Polym Chem 2022. [DOI: 10.1039/d2py00162d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
Cu(I)-catalyzed Doyle-Kirmse reaction has been successfully introduced into polymer chemistry for the first time. A series of new type of sulfur-containing polymers were efficiently synthesized from various allyl sulfides and...
Collapse
|
9
|
Tantillo DJ, Laconsay CJ. Melding of Experiment and Theory Illuminates Mechanisms of Metal-Catalyzed Rearrangements: Computational Approaches and Caveats. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0040-1720451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/20/2022]
Abstract
AbstractThis review summarizes approaches and caveats in computational modeling of transition-metal-catalyzed sigmatropic rearrangements involving carbene transfer. We highlight contemporary examples of combined synthetic and theoretical investigations that showcase the synergy achievable by integrating experiment and theory.1 Introduction2 Mechanistic Models3 Theoretical Approaches and Caveats3.1 Recommended Computational Tools3.2 Choice of Functional and Basis Set3.3 Conformations and Ligand-Binding Modes3.4 Solvation4 Synergy of Experiment and Theory – Case Studies4.1 Metal-Bound or Free Ylides?4.2 Conformations and Ligand-Binding Modes of Paddlewheel Complexes4.3 No Metal, Just Light4.4 How To ‘Cope’ with Nonstatistical Dynamic Effects5 Outlook
Collapse
|
10
|
Xu H, Li B, Liu Z, Dang Y. Mechanistic Origins of Stereodivergence in Asymmetric Cascade Allylation and Cyclization Reactions Enabled by Synergistic Cu/Ir Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02270] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hui Xu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, China
| | - Bo Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, China
| | - Zheyuan Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, China
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, China
| |
Collapse
|
11
|
Nair VN, Kojasoy V, Laconsay CJ, Kong WY, Tantillo DJ, Tambar UK. Catalyst-Controlled Regiodivergence in Rearrangements of Indole-Based Onium Ylides. J Am Chem Soc 2021; 143:9016-9025. [PMID: 34124896 PMCID: PMC8650141 DOI: 10.1021/jacs.1c00283] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022]
Abstract
We have developed catalyst-controlled regiodivergent rearrangements of onium-ylides derived from indole substrates. Oxonium ylides formed in situ from substituted indoles selectively undergo [2,3]- and [1,2]-rearrangements in the presence of a rhodium and a copper catalyst, respectively. The combined experimental and density functional theory (DFT) computational studies indicate divergent mechanistic pathways involving a metal-free ylide in the rhodium catalyzed reaction favoring [2,3]-rearrangement, and a metal-coordinated ion-pair in the copper catalyzed [1,2]-rearrangement that recombines in the solvent-cage. The application of our methodology was demonstrated in the first total synthesis of the indole alkaloid (±)-sorazolon B, which enabled the stereochemical reassignment of the natural product. Further functional group transformations of the rearrangement products to generate valuable synthetic intermediates were also demonstrated.
Collapse
Affiliation(s)
- Vaishnavi N Nair
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, United States
| | - Volga Kojasoy
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Croix J Laconsay
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Wang Yeuk Kong
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Uttam K Tambar
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, United States
| |
Collapse
|
12
|
Nakliang P, Yoon S, Choi S. Emerging computational approaches for the study of regio- and stereoselectivity in organic synthesis. Org Chem Front 2021. [DOI: 10.1039/d1qo00531f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/22/2022]
Abstract
Computational chemistry has become important in organic synthesis as it provides a detailed understanding of molecular structures and properties and detailed reaction mechanisms.
Collapse
Affiliation(s)
- Pratanphorn Nakliang
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sanghee Yoon
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sun Choi
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Xili, Nanshan District, Shenzhen, 518055, China
| |
Collapse
|
13
|
Zhao X, Xu J, Liu C, Zhang D. DFT study of Ni/NHC-catalyzed C–H alkylation of fluoroarenes with alkenes to synthesize fluorotetralins: mechanism, chemoselectivity of C–H vs. C–F bond activation, and regio- and enantioselectivities of C–H bond activation. Org Chem Front 2021. [DOI: 10.1039/d0qo01594f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2023]
Abstract
DFT calculations clarified the mechanism of Ni/NHC-catalyzed C–H alkylation of alkene tethered fluoroarene and rationalized enantio-, regio- and chemoselectivities.
Collapse
Affiliation(s)
- Xia Zhao
- Key Lab of Colloid and Interface Chemistry
- Ministry of Education
- Institute of Theoretical Chemistry
- School of Chemistry and Chemical Engineering
- Shandong University
| | - Jihong Xu
- Key Lab of Colloid and Interface Chemistry
- Ministry of Education
- Institute of Theoretical Chemistry
- School of Chemistry and Chemical Engineering
- Shandong University
| | - Chengbu Liu
- Key Lab of Colloid and Interface Chemistry
- Ministry of Education
- Institute of Theoretical Chemistry
- School of Chemistry and Chemical Engineering
- Shandong University
| | - Dongju Zhang
- Key Lab of Colloid and Interface Chemistry
- Ministry of Education
- Institute of Theoretical Chemistry
- School of Chemistry and Chemical Engineering
- Shandong University
| |
Collapse
|
14
|
Gao C, Cao T, Kirillov AM, Fang R, Yang L. Rationalization of the mechanism and chemoselectivity of versatile Au-catalyzed reactions of diazoesters with allyl-functionalized sulfides, selenides, amines, or ethers by DFT. Org Chem Front 2021. [DOI: 10.1039/d1qo00920f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
The origin of chemoselectivity and the mechanism of the title reactions were fully rationalized by density functional theory (DFT).
Collapse
Affiliation(s)
- Caicai Gao
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Teng Cao
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Alexander M. Kirillov
- Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
- Research Institute of Chemistry, Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya st., Moscow, 117198, Russian Federation
| | - Ran Fang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| | - Lizi Yang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|