1
|
Li H, Zhang Y, Chen Y, Li Y, Li Z, Yang B, Zhang Q, Lu J, Lei L, Xu ZJ, Hou Y. Leveraging Iron in the Electrolyte to Improve Oxygen Evolution Reaction Performance: Fundamentals, Strategies, and Perspectives. Angew Chem Int Ed Engl 2025; 64:e202423071. [PMID: 39807697 DOI: 10.1002/anie.202423071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/13/2025] [Accepted: 01/13/2025] [Indexed: 01/16/2025]
Abstract
Electrochemical water splitting is a pivotal technology for storing intermittent electricity from renewable sources into hydrogen fuel. However, its overall energy efficiency is impeded by the sluggish oxygen evolution reaction (OER) at the anode. In the quest to design high-performance anode catalysts for driving the OER under non-acidic conditions, iron (Fe) has emerged as a crucial element. Although the profound impact of adventitious electrolyte Fen+ species on OER catalysis had been reported forty years ago, recent interest in tailoring the electrode-electrolyte interface has spurred studies on the controlled introduction of Fe ions into the electrolyte to improve OER performance. During the catalytic process, scenarios where the rate of Fen+ deposition on a specific host material outruns that of dissolution pave the way for establishing highly efficient and dynamically stable electrochemical interfaces for long-term steady operation. This review systematically summarizes recent endeavors devoted to elucidating the behaviors of in situ Fe(aq.) incorporation, the role of incorporated Fe sites in the OER, and critical factors influencing the interplay between the electrode surface and Fe ions in the electrolyte environment. Finally, unexplored issues related to comprehensively understanding and leveraging the dynamic exchange of Fen+ at the interface for improved OER catalysis are summarized.
Collapse
Affiliation(s)
- Haiyan Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Hydrogen Energy Institute, Zhejiang University, Hangzhou, 310027, China
| | - Yuwei Zhang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yubo Chen
- Hydrogen Energy Institute, Zhejiang University, Hangzhou, 310027, China
- Institute of Advanced Equipment, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yang Li
- Hydrogen Energy Institute, Zhejiang University, Hangzhou, 310027, China
- Institute of Advanced Equipment, College of Energy Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhongjian Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Bin Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qinghua Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianguo Lu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lecheng Lei
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhichuan J Xu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yang Hou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Hydrogen Energy Institute, Zhejiang University, Hangzhou, 310027, China
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, China
| |
Collapse
|
2
|
Sondermann L, Voggenauer LM, Vollrath A, Strothmann T, Janiak C. Comparison of In Situ and Postsynthetic Formation of MOF-Carbon Composites as Electrocatalysts for the Alkaline Oxygen Evolution Reaction (OER). Molecules 2025; 30:208. [PMID: 39860079 PMCID: PMC11767250 DOI: 10.3390/molecules30020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/30/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
Mixed-metal nickel-iron, NixFe materials draw attention as affordable earth-abundant electrocatalysts for the oxygen evolution reaction (OER). Here, nickel and mixed-metal nickel-iron metal-organic framework (MOF) composites with the carbon materials ketjenblack (KB) or carbon nanotubes (CNT) were synthesized in situ in a one-pot solvothermal reaction. As a direct comparison to these in situ synthesized composites, the neat MOFs were postsynthetically mixed by grinding with KB or CNT, to generate physical mixture composites. The in situ and postsynthetic MOF/carbon samples were comparatively tested as (pre-)catalysts for the OER, and most of them outperformed the RuO2 benchmark. Depending on the carbon material and metal ratio, the in situ or postsynthetic composites performed better, showing that the method to generate the composite can influence the OER activity. The best material Ni5Fe-CNT was synthesized in situ and achieved an overpotential (η) of 301 mV (RuO2η = 354 mV), a Tafel slope (b) of 58 mV/dec (RuO2b = 91 mV/dec), a charge transfer resistance (Rct) of 7 Ω (RuO2 Rct = 39 Ω), and a faradaic efficiency (FE) of 95% (RuO2 FE = 91%). Structural changes in the materials could be seen through a stability test in the alkaline electrolyte, and chronopotentiometry over 12 h showed that the derived electrocatalysts and RuO2 have good stability.
Collapse
Affiliation(s)
| | | | | | | | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany; (L.S.); (L.M.V.); (A.V.); (T.S.)
| |
Collapse
|
3
|
Offen-Polak I, Ayali Aviram H, Hijaze A, Slot TK, Eisenberg D. Ammonia electro-oxidation on nickel hydroxide: phases, pH and poisoning. Phys Chem Chem Phys 2024. [PMID: 39639841 DOI: 10.1039/d4cp02950j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Nickel hydroxide is a leading alternative to platinum group metals for electrocatalysis of the ammonia oxidation reaction (AOR), an important process for energy conversion and environmental remediation. Nevertheless, the dependence of AOR electrocatalysis on the different crystalline phases at the electrode surface (α-Ni(OH)2/γ-NiOOH vs. β-Ni(OH)2/β-NiOOH) has never been investigated. Herein, the crystalline β-Ni(OH)2 and the disordered α-Ni(OH)2 were synthesized and characterized by XRD, HRSEM, and Raman and FTIR spectroscopies. The respective electrocatalytic activity of the two phases was analysed at a broad range of ammonia concentrations (0.01-2 M) and pH values (11-13). Both phases electrocatalyze the oxidation of NH3 to N2, as proven by online mass spectrometry, but the α-Ni(OH)2/γ-NiOOH couple is more active. At high ammonia concentrations (>1 M), surface poisoning by adsorbed NH3 prevents access to OH-, leading to less NiOOH formation, lower AOR currents, and suppression of the OER side reaction. The poisoning is strong and irreversible on α-Ni(OH)2, as confirmed by soaking experiments. The difference in ammonia adsorption and electrocatalytic activity between the α-Ni(OH)2 and β-Ni(OH)2 emphasizes the importance of understanding the phase space of nickel hydroxide electrodes when designing low-cost electrocatalysts for the nitrogen cycle.
Collapse
Affiliation(s)
- Inbal Offen-Polak
- Schulich Faculty of Chemistry, The Grand Technion Energy Program, and the Resnick Sustainability Center for Catalysis, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel.
| | - Hilla Ayali Aviram
- Schulich Faculty of Chemistry, The Grand Technion Energy Program, and the Resnick Sustainability Center for Catalysis, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel.
| | - Adan Hijaze
- Schulich Faculty of Chemistry, The Grand Technion Energy Program, and the Resnick Sustainability Center for Catalysis, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel.
| | - Thierry K Slot
- Schulich Faculty of Chemistry, The Grand Technion Energy Program, and the Resnick Sustainability Center for Catalysis, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel.
| | - David Eisenberg
- Schulich Faculty of Chemistry, The Grand Technion Energy Program, and the Resnick Sustainability Center for Catalysis, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel.
| |
Collapse
|
4
|
Phongsuk N, Adpakpang K, Pukdeejorhor L, Atithep T, Bureekaew S. Electrochemically Created Active Centers in a Bimetallic CoNi-Triazole Metal-Organic Framework for Enhanced Oxygen Evolution Reaction Activity. Chempluschem 2024; 89:e202400423. [PMID: 39225248 DOI: 10.1002/cplu.202400423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
Electrochemical water oxidation utilizing bimetallic CoNi-Tz (Tz=1,2,4-triazole) framework is explored. Initially, CoNi-Tz possesses active tetrahedral Co center and electron-mediated octahedral Ni chain. After performing an electrochemical activation, the partial structural transformation on the Ni center occurs. This leads to the generation of excessive active centers which can promote catalytic activity of the framework. The activated CoNi-Tz catalyst displays a remarkably low OER overpotential of 293 mV at a current density of 10 mA cm-2 with a small Tafel slope of 49.98 mV dec-1, outperforming the single metal Co-Tz and benchmark IrO2 catalysts.
Collapse
Affiliation(s)
- Natchaya Phongsuk
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Payupnai, Wangchan, Rayong, 21210, Thailand
| | - Kanyaporn Adpakpang
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Payupnai, Wangchan, Rayong, 21210, Thailand
| | - Ladawan Pukdeejorhor
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Payupnai, Wangchan, Rayong, 21210, Thailand
| | - Thassanant Atithep
- Frontier Research Center (FRC), Vidyasirimedhi Institute of Science and Technology, 555 Payupnai, Wangchan, Rayong, 21210, Thailand
| | - Sareeya Bureekaew
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Payupnai, Wangchan, Rayong, 21210, Thailand
| |
Collapse
|
5
|
Zhang Y, Dong L, Zhang Q, Wang L, He X. Ni/Fe Fluorides (Hydroxide) Nanocomposite as Efficient OER Catalyst. Chemphyschem 2024:e202400701. [PMID: 39603995 DOI: 10.1002/cphc.202400701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 11/27/2024] [Indexed: 11/29/2024]
Abstract
The synthesis of efficient oxygen evolution reaction (OER) catalysts that markedly reduce the overpotential over an extended period is crucial for electrolytic water splitting toward hydrogen production. A kind of Ni/Fe fluoride (hydroxide) nanocomposite OER catalyst is designed and prepared by a two-step method for the first time. The nanocomposite with the optimal OER performance (Ni : Fe precursor ratio of 9 : 1) is observed to possess a nanoparticle morphology with size of about 100 nm. Each nanoparticle hosts extensive nanoregions of Ni4OHF7, NiFeF5 ⋅ 2H2O and Fe1.9F4.75 ⋅ 0.95H2O phases. The optimal nanocomposite (Ni : Fe precursor ratio of 9 : 1) exhibits OER overpotential of merely 208 mV and 349 mV at 10 mA cm-2 and 100 mA cm-2 respectively, tafel slope of 53.1, and outstanding stability for 10 h duration at 100 mA cm-2. The superior OER catalytic performance of the optimal nanocomposite after CV activation is mainly ascribed to the comprehensive catalytic effect of multiple Ni, Fe active sites from three phases, the smaller charge transfer resistance achieved at this particular Ni : Fe precursor ratio. The abundant resources of Ni, Fe, F elements and the superior OER properties of the Ni/Fe fluorides (hydroxide) nanocomposite, make it a good OER catalyst candidate for electrolytic water splitting toward hydrogen production.
Collapse
Affiliation(s)
- Yanli Zhang
- School of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning, 110142, China
| | - Liangliang Dong
- School of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning, 110142, China
| | - Qiang Zhang
- School of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning, 110142, China
| | - Li Wang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Xiangming He
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
6
|
Song W, Xia C, Zaman S, Chen S, Xiao C. Advances in Stability of NiFe-Based Anodes toward Oxygen Evolution Reaction for Alkaline Water Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406075. [PMID: 39314014 DOI: 10.1002/smll.202406075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/19/2024] [Indexed: 09/25/2024]
Abstract
Alkaline electrolysis plays a crucial role in sustainable energy solutions by utilizing electrolytic cells to produce hydrogen gas, providing a clean and efficient method for energy storage and conversion. Efficient, stable, and low-cost electrocatalysts for the oxygen evolution reaction (OER) are essential to facilitate alkaline water electrolysis on a commercial scale. Nickel-iron-based (NiFe-based) transition metal electrocatalysts are considered the most promising non-precious metal catalysts for alkaline OER due to their low cost, abundance, and tunable catalytic properties. Nevertheless, the majority of existing NiFe-based catalysts suffer from limited activity and poor stability, posing a significant challenge in meeting industrial applications. This also highlights a common situation where the emphasis on material activity receives significant attention, while the equally critical stability aspect is often underemphasized. Initiating with a comprehensive exploration of the stability of NiFe-based OER materials, this article first summarizes the debate surrounding the determination of active sites in NiFe-based OER electrocatalysts. Subsequently, the degradation mechanisms of recently reported NiFe-based electrocatalysts are outlined, encompassing assessments of both chemical and mechanical endurance, along with essential approaches for enhancing their stability. Finally, suggestions are put forth regarding the essential considerations for the design of NiFe-based OER electrocatalysts, with a focus on heightened stability.
Collapse
Affiliation(s)
- Wenyu Song
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chenfeng Xia
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Shahid Zaman
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Shenghua Chen
- National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chunhui Xiao
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
7
|
Wei J, Shao Y, Xu J, Yin F, Li Z, Qian H, Wei Y, Chang L, Han Y, Li J, Gan L. Sequential oxygen evolution and decoupled water splitting via electrochemical redox reaction of nickel hydroxides. Nat Commun 2024; 15:9012. [PMID: 39424812 PMCID: PMC11489567 DOI: 10.1038/s41467-024-53310-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 10/09/2024] [Indexed: 10/21/2024] Open
Abstract
Alkaline water electrolysis is a promising low-cost strategy for clean and sustainable hydrogen production but is largely limited by the sluggish anodic oxygen evolution reaction and the challenges in maintaining adequate separation between H2 and O2. Here, we reveal an anodic-cathodic sequential oxygen evolution process via electrochemical oxidation and subsequent reduction of Ni hydroxides, enabling much lower overpotentials than conventional anodic oxygen evolution. By using (isotope-labeled) differential electrochemical mass spectrometry and in situ Raman spectroscopy combined with density functional theory calculations, we evidence that the sequential oxygen evolution originates from the electrochemical oxidation of Ni hydroxides to NiOO- active species while undergoing a different, reductive step of NiOO- for the final release of O2 due to weakened Ni-O covalency. Based on this sequential process, we propose and demonstrate a hybrid water electrolysis and energy storage device, which enables time-decoupled hydrogen and oxygen evolution and electrochemical energy storage in the Ni hydroxides.
Collapse
Affiliation(s)
- Jie Wei
- Institute of Materials Research and Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Yangfan Shao
- Institute of Materials Research and Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Jingbo Xu
- Institute of Materials Research and Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Fang Yin
- Institute of Materials Research and Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Zejian Li
- Institute of Materials Research and Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Haitao Qian
- Institute of Materials Research and Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Yinping Wei
- Institute of Materials Research and Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Liang Chang
- Institute of Materials Research and Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Yu Han
- Institute of Materials Research and Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Jia Li
- Institute of Materials Research and Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.
| | - Lin Gan
- Institute of Materials Research and Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China.
| |
Collapse
|
8
|
Etxebarria A, Lopez Luna M, Martini A, Hejral U, Rüscher M, Zhan C, Herzog A, Jamshaid A, Kordus D, Bergmann A, Kuhlenbeck H, Roldan Cuenya B. Effect of Iron Doping in Ordered Nickel Oxide Thin Film Catalyst for the Oxygen Evolution Reaction. ACS Catal 2024; 14:14219-14232. [PMID: 39324051 PMCID: PMC11421220 DOI: 10.1021/acscatal.4c02572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024]
Abstract
Water splitting has emerged as a promising route for generating hydrogen as an alternative to conventional production methods. Finding affordable and scalable catalysts for the anodic half-reaction, the oxygen evolution reaction (OER), could help with its industrial widespread implementation. Iron-containing Ni-based catalysts have a competitive performance for the use in commercial alkaline electrolyzers. Due to the complexity of studying the catalysts at working conditions, the active phase and the role that iron exerts in conjunction with Ni are still a matter of investigation. Here, we study this topic with NiO(001) and Ni0.75Fe0.25O x (001) thin film model electrocatalysts employing surface-sensitive techniques. We show that iron constrains the growth of the oxyhydroxide phase formed on top of the Ni or NiFe oxide, which is considered the active phase for the OER. Besides, operando Raman and grazing incidence X-ray absorption spectroscopy experiments reveal that the presence of iron affects both, the disorder level of the active phase and the oxidative charge around Ni during OER. The observed compositional, structural, and electronic properties of each system have been correlated with their electrochemical performance.
Collapse
Affiliation(s)
| | | | - Andrea Martini
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin 14195, Germany
| | | | - Martina Rüscher
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin 14195, Germany
| | - Chao Zhan
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin 14195, Germany
| | | | - Afshan Jamshaid
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin 14195, Germany
| | - David Kordus
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin 14195, Germany
| | - Arno Bergmann
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin 14195, Germany
| | - Helmut Kuhlenbeck
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin 14195, Germany
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, Faradayweg 4-6, Berlin 14195, Germany
| |
Collapse
|
9
|
Luo S, Dai C, Ye Y, Wu Q, Wang J, Li X, Xi S, Xu ZJ. Elevated Water Oxidation by Cation Leaching Enabled Tunable Surface Reconstruction. Angew Chem Int Ed Engl 2024; 63:e202402184. [PMID: 38750660 DOI: 10.1002/anie.202402184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Indexed: 06/28/2024]
Abstract
Water electrolysis is one promising and eco-friendly technique for energy storage, yet its overall efficiency is hindered by the sluggish kinetics of oxygen evolution reaction (OER). Therefore, developing strategies to boost OER catalyst performance is crucial. With the advances in characterization techniques, an extensive phenomenon of surface structure evolution into an active amorphous layer was uncovered. Surface reconstruction in a controlled fashion was then proposed as an emerging strategy to elevate water oxidation efficiency. In this work, Cr substitution induces the reconstruction of NiFexCr2-xO4 during cyclic voltammetry (CV) conditioning by Cr leaching, which leads to a superior OER performance. The best-performed NiFe0.25Cr1.75O4 shows a ~1500 % current density promotion at overpotential η=300 mV, which outperforms many advanced NiFe-based OER catalysts. It is also found that their OER activities are mainly determined by Ni : Fe ratio rather than considering the contribution of Cr. Meanwhile, the turnover frequency (TOF) values based on redox peak and total mass were obtained and analysed, and their possible limitations in the case of NiFexCr2-xO4 are discussed. Additionally, the high activity and durability were further verified in a membrane electrode assembly (MEA) cell, highlighting its potential for practical large-scale and sustainable hydrogen gas generation.
Collapse
Affiliation(s)
- Songzhu Luo
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Chencheng Dai
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yike Ye
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Nanyang Environment and Water Research Institute (NEWRI), Interdisciplinary Graduate School, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore
| | - Qian Wu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jiarui Wang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xiaoning Li
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore
| | - Zhichuan J Xu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Nanyang Environment and Water Research Institute (NEWRI), Interdisciplinary Graduate School, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore
- The Centre of Advanced Catalysis Science and Technology, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
10
|
Kong J, Wang Z, Liu C, Wang S, Guo Y, Chen H, Wang J, Lü Z. Electrode switch-an efficient induced approach for self-activation of an electrode toward water splitting. Chem Commun (Camb) 2024; 60:7315-7318. [PMID: 38916276 DOI: 10.1039/d4cc01830c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
In this paper, we provide a novel electrode switch (ES) method to improve the stability of the alkaline electrolyzer toward water splitting. The voltage of the alkaline electrolyzer consisting of commercial Ni mesh electrodes utilizing the ES mode exhibits extreme stability because highly active Ni oxide(hydroxide) with oxygen defects is in situ formed during the hydrogen evolution reaction (HER) polarization process.
Collapse
Affiliation(s)
- Jin Kong
- School of Physics, Harbin Institute of Technology, Yikuang Street 2#, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Zhihong Wang
- School of Physics, Harbin Institute of Technology, Yikuang Street 2#, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Chaoyue Liu
- School of Science, Harbin University of Science and Technology, Heilongjiang 150080, People's Republic of China
| | - Shuo Wang
- School of Physics, Harbin Institute of Technology, Yikuang Street 2#, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Yingshuang Guo
- School of Physics, Harbin Institute of Technology, Yikuang Street 2#, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Honglei Chen
- School of Physics, Harbin Institute of Technology, Yikuang Street 2#, Harbin, Heilongjiang 150001, People's Republic of China.
| | - Jiepeng Wang
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, People's Republic of China
- PERIC Hydrogen Technologies Co., Ltd, Handan 056000, People's Republic of China
| | - Zhe Lü
- School of Physics, Harbin Institute of Technology, Yikuang Street 2#, Harbin, Heilongjiang 150001, People's Republic of China.
| |
Collapse
|
11
|
El-Refaei SM, Rauret DL, Manjón AG, Spanos I, Zeradjanin A, Dieckhöfer S, Arbiol J, Schuhmann W, Masa J. Ni-Xides (B, S, and P) for Alkaline OER: Shedding Light on Reconstruction Processes and Interplay with Incidental Fe Impurities as Synergistic Activity Drivers. ACS APPLIED ENERGY MATERIALS 2024; 7:1369-1381. [PMID: 38425378 PMCID: PMC10900598 DOI: 10.1021/acsaem.3c03114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 03/02/2024]
Abstract
Ni-Xides (X = B, P, or S) exhibit intriguing properties that have endeared them for electrocatalytic water splitting. However, the role of B, P, and S, among others, in tailoring the catalytic performance of the Ni-Xides remains vaguely understood, especially if they are studied in unpurified KOH (Un-KOH) because of the renowned impact of incidental Fe impurities. Therefore, decoupling the effect induced by Fe impurities from inherent material reconstruction processes necessitates investigation of the materials in purified KOH solutions (P-KOH). Herein, studies of the OER on Ni2B, Ni2P, and Ni3S2 in P-KOH and Un-KOH coupled with in situ Raman spectroscopy, ex situ post-electrocatalysis, and online dissolution studies by ICP-OES are used to unveil the distinctive role of Ni-Xide reconstruction and the role of Fe impurities and their interplay on the electrocatalytic behavior of the three Ni-Xide precatalysts during the OER. There was essentially no difference in the OER activity and the electrochemical Ni2+/Ni3+ redox activation fingerprints of the three precatalysts via cyclic voltammetry in P-KOH, whereas their OER activity was considerably higher in Un-KOH with marked differences in the intrinsic activity and evolution of the Ni2+/Ni3+ fingerprint redox peaks. Thus, in the absence of Fe in the electrolyte (P-KOH), neither the nature of the guest element (B, P, and S) nor the underlying reconstruction processes are decisive activity drivers. This underscores the crucial role played by incidental Fe impurities on the OER activity of Ni-Xide precatalysts, which until now has been overlooked. In situ Raman spectroscopy revealed that the nickel hydroxide derived from Ni2B exhibits higher disorder than in the case of Ni2P and Ni3S2, both exhibiting a similar degree of disorder. The guest elements thus influence the degree of disorder of the formed nickel oxyhydroxides, which through their synergistic interaction with incidental Fe impurities concertedly realize high OER performance.
Collapse
Affiliation(s)
- Sayed Mahmoud El-Refaei
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - David Llorens Rauret
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia Spain
| | - Alba G. Manjón
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia Spain
| | - Ioannis Spanos
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Aleksandar Zeradjanin
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Stefan Dieckhöfer
- Analytical
Chemistry, Center for Electrochemical Sciences (CES), Faculty of Chemistry
and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Jordi Arbiol
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Catalonia Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Catalonia, Spain
| | - Wolfgang Schuhmann
- Analytical
Chemistry, Center for Electrochemical Sciences (CES), Faculty of Chemistry
and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany
| | - Justus Masa
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
12
|
Xie JY, Zhao J, Han JQ, Wang FL, Zhai XJ, Nan J, Wang ST, Chai YM, Dong B. Fe-doping and oxygen vacancy achieved by electrochemical activation and precipitation/dissolution equilibrium in NiOOH for oxygen evolution reaction. J Colloid Interface Sci 2023; 652:1588-1596. [PMID: 37666191 DOI: 10.1016/j.jcis.2023.08.194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
The poor conductivities and instabilities of accessible nickel oxyhydroxides hinder their use as oxygen evolution reaction (OER) electrocatalysts. Herein, we constructed Fe-NiOOH-OV-600, an Fe-doped nickel oxide hydroxide with abundant oxygen vacancies supported on nickel foam (NF), using a hydrothermal method and an electrochemical activation strategy involving 600 cycles of cyclic voltammetry, assisted by the precipitation/dissolution equilibrium of ferrous sulfide (FeS) in the electrolyte. This two-step method endows the catalyst with abundant Fe-containing active sites while maintaining the ordered structure of nickel oxide hydroxide (NiOOH). Characterization and density functional theory (DFT) calculations revealed that synergy between trace amounts of the Fe dopant and the oxygen vacancies not only promotes the generation of reconstructed active layers but also optimizes the electronic structure and adsorption capacity of the active sites. Consequently, the as-prepared Fe-NiOOH-OV-600 delivered large current densities of 100 and 1000 mA cm-2 for the OER at overpotentials of only 253 and 333 mV in 1 mol/L KOH. Moreover, the catalyst is stable for at least 100 h at 500 mA cm-2. This work provides insight into the design of efficient transition-metal-based electrocatalysts for the OER.
Collapse
Affiliation(s)
- Jing-Yi Xie
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jie Zhao
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jun-Qi Han
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Fu-Li Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xue-Jun Zhai
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Jun Nan
- CNOOC Tianjin Chemical Research and Design Institute Co., Ltd, Tianjin 300131, China
| | - Shu-Tao Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yong-Ming Chai
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| | - Bin Dong
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
| |
Collapse
|
13
|
Kawashima K, Márquez RA, Smith LA, Vaidyula RR, Carrasco-Jaim OA, Wang Z, Son YJ, Cao CL, Mullins CB. A Review of Transition Metal Boride, Carbide, Pnictide, and Chalcogenide Water Oxidation Electrocatalysts. Chem Rev 2023. [PMID: 37967475 DOI: 10.1021/acs.chemrev.3c00005] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Transition metal borides, carbides, pnictides, and chalcogenides (X-ides) have emerged as a class of materials for the oxygen evolution reaction (OER). Because of their high earth abundance, electrical conductivity, and OER performance, these electrocatalysts have the potential to enable the practical application of green energy conversion and storage. Under OER potentials, X-ide electrocatalysts demonstrate various degrees of oxidation resistance due to their differences in chemical composition, crystal structure, and morphology. Depending on their resistance to oxidation, these catalysts will fall into one of three post-OER electrocatalyst categories: fully oxidized oxide/(oxy)hydroxide material, partially oxidized core@shell structure, and unoxidized material. In the past ten years (from 2013 to 2022), over 890 peer-reviewed research papers have focused on X-ide OER electrocatalysts. Previous review papers have provided limited conclusions and have omitted the significance of "catalytically active sites/species/phases" in X-ide OER electrocatalysts. In this review, a comprehensive summary of (i) experimental parameters (e.g., substrates, electrocatalyst loading amounts, geometric overpotentials, Tafel slopes, etc.) and (ii) electrochemical stability tests and post-analyses in X-ide OER electrocatalyst publications from 2013 to 2022 is provided. Both mono and polyanion X-ides are discussed and classified with respect to their material transformation during the OER. Special analytical techniques employed to study X-ide reconstruction are also evaluated. Additionally, future challenges and questions yet to be answered are provided in each section. This review aims to provide researchers with a toolkit to approach X-ide OER electrocatalyst research and to showcase necessary avenues for future investigation.
Collapse
Affiliation(s)
- Kenta Kawashima
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Raúl A Márquez
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Lettie A Smith
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rinish Reddy Vaidyula
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Omar A Carrasco-Jaim
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ziqing Wang
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yoon Jun Son
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Chi L Cao
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - C Buddie Mullins
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Center for Electrochemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- H2@UT, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
14
|
Zhao M, Guo C, Liu C, Gao L, Ren X, Yang H, Kuang X, Sun X, Wei Q. An amorphous Ni-Fe catalyst for electrocatalytic dehydrogenation of alcohols to value-added chemicals. NANOSCALE 2023; 15:15600-15607. [PMID: 37740308 DOI: 10.1039/d3nr03511e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
As for the hydrogen production process via electrocatalytic water splitting, the green and sustainable electro-oxidation of organic molecules at the anode is thermodynamically more favourable than the oxygen evolution reaction (OER). Here, we proposed for the first time to replace the OER process by the oxidation of N-Boc-4-piperidine methanol (BPM), via a parallel reaction, which finally leads to the green production of N-Boc-4-piperidine carboxaldehyde (BPC). The amorphous NiFeO(OH) nanospheres with rich valence states were adopted as the anode catalyst, with creation of more active sites. The gas chromatography results showed that nearly all the BPM converted to BPC after 15 h reaction. The electrochemical tests showed that the Faraday efficiency (FE) approaches nearly 100% when the charge transfer is approximately equal to the theoretical charge. This work reports a new process for the alcohol oxidation, providing a valuable green organic synthesis process.
Collapse
Affiliation(s)
- Mingzhu Zhao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering Institution; University of Jinan, Jinan, Shandong 250022, P. R. China.
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Chengying Guo
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering Institution; University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Chengqing Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering Institution; University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Lingfeng Gao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering Institution; University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering Institution; University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Hua Yang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology; Liaocheng University, Liaocheng, 252059, P. R. China
| | - Xuan Kuang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering Institution; University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Xu Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering Institution; University of Jinan, Jinan, Shandong 250022, P. R. China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong; School of Chemistry and Chemical Engineering Institution; University of Jinan, Jinan, Shandong 250022, P. R. China.
| |
Collapse
|
15
|
Zhang Z, Wang T, Song Chen J, Dong K, Sun S, Luo Y, Guo H, Sun X, Li T. Cr 3C 2 nanoparticles decorated carbon nanofibers for efficient nitrate reduction to ammonia at ambient conditions. J Colloid Interface Sci 2023; 648:693-700. [PMID: 37321088 DOI: 10.1016/j.jcis.2023.05.186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/17/2023]
Abstract
Electrochemical nitrate (NO3-) reduction is a promising approach to relieve nitrate pollution and produce value-added ammonia (NH3), but efficient and durable catalysts are required due to the large bond dissociation energy of nitrate and low selectivity. Herein, we propose chromium carbide (Cr3C2) nanoparticles loaded carbon nanofibers (Cr3C2@CNFs) as electrocatalysts to convert nitrate to ammonia. In phosphate buffer saline containing 0.1 mol L-1 NaNO3, such catalyst achieves a large NH3 yield of 25.64 mg h-1 mg-1cat. and a high faradaic efficiency of 90.08% at -1.1 V vs the reversible hydrogen electrode, which also shows excellent electrochemical durability and structural stability. Theoretical calculations reveal the adsorption energy for nitrate at Cr3C2 surfaces reaches -1.92 eV and the potential determining step (*NO→*N) for Cr3C2 hits a low energy increase of 0.38 eV.
Collapse
Affiliation(s)
- Zhihao Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| | - Tan Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
| | - Jun Song Chen
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China; Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Kai Dong
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Yongsong Luo
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Haoran Guo
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xuping Sun
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, Shandong, China
| | - Tingshuai Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.
| |
Collapse
|
16
|
Hu P, Hu S, Du H, Liu Q, Guo H, Ma K, Li T. Efficient electrocatalytic reduction of nitrate to ammonia over fibrous SmCoO 3 under ambient conditions. Chem Commun (Camb) 2023; 59:5697-5700. [PMID: 37083021 DOI: 10.1039/d3cc00889d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
We report SmCoO3 nanofibers as an efficient catalyst for nitrate reduction to ammonia. This catalyst achieves a large NH3 yield of 14.4 mg h-1 mgcat.-1 and a high faradaic efficiency of 81.3% at -1.0 V vs. RHE in 0.1 M PBS with 0.1 M NaNO3, and it also displays excellent electrochemical durability and structural stability. Theoretical calculations indicate that Sm-O and Co-O bonds have an incredibly low adsorption energy of -0.1 eV, which can significantly reduce the applied potential and hence enhance the catalytic activity.
Collapse
Affiliation(s)
- Peiji Hu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.
| | - Songjie Hu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.
| | - Hongting Du
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Haoran Guo
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ke Ma
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610041, China.
| | - Tingshuai Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China.
| |
Collapse
|
17
|
Hua W, Sun H, Hou Z, Li Y, Wei B, Wang JG. Boosting large-current-density water oxidation activity and stability by phytic acid-assisted rapid electrochemical corrosion. J Colloid Interface Sci 2023; 633:24-31. [PMID: 36434932 DOI: 10.1016/j.jcis.2022.11.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/07/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022]
Abstract
Corrosion engineering is an efficient strategy to achieve durable oxygen evolution reaction (OER) catalysts at high current densities beyond 500 mA cm-2. However, the spontaneous electrochemical corrosion has a slow reaction rate, and most of them need to add large amounts of salts (such as NaCl) to accelerate the corrosion process. In this report, a novel and effective phytic acid (PA)-assisted in situ electrochemical corrosion strategy is demonstrated to accelerate the the corrosion process and form bimetallic active catalysts to show excellent OER performance at large current densities. In situ rapid electrochemical corrosion of nickel foam substrate and PA ligands etching realize localized high concentrations of Ni and Fe ions. High concentrations of metal ions will combine with hydroxyl to effectively form defects-enriched NiFe layered double hydroxides porous nanosheets tightly anchoring on the underneath substrate. Remarkably, the activated electrode exhibits excellent OER catalytic activities with ultralow overpotentials of 289 and 315 mV to reach high current densities of 500 and 1000 mA cm-2, respectively. When coupled with Ni-Mo-N hydrogen evolution reaction catalysts, the two-electrode cell merely requires 1.87 V to deliver 1000 mA cm-2. The ligands-assisted rapid electrochemical corrosion strategy provides a fresh perspective for facile, cost-effective, and scale-up production of superior OER catalysts at large current densities.
Collapse
Affiliation(s)
- Wei Hua
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU), Xi'an 710072, China
| | - Huanhuan Sun
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU), Xi'an 710072, China
| | - Zhidong Hou
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU), Xi'an 710072, China
| | - Yueying Li
- New Energy (Photovoltaic) Industry Research Center, Qinghai University, Xining 810016, China
| | - Bingqing Wei
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19716, United States.
| | - Jian-Gan Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Lab of Graphene (NPU), Xi'an 710072, China.
| |
Collapse
|
18
|
Jiang J, Wu Y, Chen H, Wan Z, Ding D, Xia L, Guo X, Yu P. Annealing and electrochemically activated amorphous ribbons: Surface nanocrystallization and oxidation effects enhanced for oxygen evolution performance. J Colloid Interface Sci 2023; 633:303-313. [PMID: 36459935 DOI: 10.1016/j.jcis.2022.11.081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022]
Abstract
Annealing and cyclic voltammetry (CV) are essential for the activation of amorphous alloy ribbons. Various amorphous alloy ribbons have been activated in the fields of environmental catalysts using either annealing or CV. However, the combination of the two methods for improving the oxygen evolution reaction (OER) performance has rarely been reported. This combination is expected to significantly improve the OER performance of amorphous ribbons. Here, we developed an "annealing +CV-activation" integrated strategy to treat a free-standing NiFeBSiP ribbon, which as an efficient and stable oxygen-evolving electrode. The "annealing +CV-activation" strategy induces the nanocrystallization and oxidation effects on the surface of the NiFeBSiP ribbon. The effects significantly increase the electron transfer ability, the Ni/Fe/P oxidation state and the surface area of the NiFeBSiP ribbon, which consequently leads to enhancing the OER performance. As a result, the treated ribbon exhibits a low overpotential of 269 mV at 10 mA cm-2 and a small Tafel slope of 40.5 mV dec-1, which are much better than the OER performance of the as-spun ribbon. The enhanced OER performance of the NiFeBSiP ribbon demonstrates the significant and promising effect of the "annealing +CV-activation" integrated strategy for designing high-efficiency amorphous alloy ribbons electrocatalysts.
Collapse
Affiliation(s)
- Junying Jiang
- Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Yong Wu
- Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Hongguo Chen
- Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Zhuqing Wan
- Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Ding Ding
- Institute of Materials & Laboratory for Microstructure, Shanghai University, Shanghai 200072, China
| | - Lei Xia
- Institute of Materials & Laboratory for Microstructure, Shanghai University, Shanghai 200072, China
| | - Xiaolong Guo
- Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China.
| | - Peng Yu
- Chongqing Key Laboratory of Photo-Electric Functional Materials, College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
19
|
Hao Y, Li J, Cao X, Meng L, Wu J, Yang X, Li Y, Liu Z, Gong M. Origin of the Universal Potential-Dependent Organic Oxidation on Nickel Oxyhydroxide. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- Yaming Hao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Jili Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Xueting Cao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Lingshen Meng
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Jianxiang Wu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Xuejing Yang
- National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai 200237, China
| | - Yefei Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Zhipan Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Ming Gong
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| |
Collapse
|
20
|
Du H, Guo H, Wang K, Du X, Beshiwork BA, Sun S, Luo Y, Liu Q, Li T, Sun X. Durable Electrocatalytic Reduction of Nitrate to Ammonia over Defective Pseudobrookite Fe 2 TiO 5 Nanofibers with Abundant Oxygen Vacancies. Angew Chem Int Ed Engl 2023; 62:e202215782. [PMID: 36468550 DOI: 10.1002/anie.202215782] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
We propose the pseudobrookite Fe2 TiO5 nanofiber with abundant oxygen vacancies as a new electrocatalyst to ambiently reduce nitrate to ammonia. Such catalyst achieves a large NH3 yield of 0.73 mmol h-1 mg-1 cat. and a high Faradaic Efficiency (FE) of 87.6 % in phosphate buffer saline solution with 0.1 M NaNO3 , which is lifted to 1.36 mmol h-1 mg-1 cat. and 96.06 % at -0.9 V vs. RHE for nitrite conversion to ammonia in 0.1 M NaNO2 . It also shows excellent electrochemical durability and structural stability. Theoretical calculation reveals the enhanced conductivity of this catalyst and an extremely low free energy of -0.28 eV for nitrate adsorption at the presence of vacant oxygen.
Collapse
Affiliation(s)
- Hongting Du
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
| | - Haoran Guo
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kaike Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
| | - Xiangning Du
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
| | - Bayu Admasu Beshiwork
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
| | - Shengjun Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Yongsong Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Tingshuai Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China.,College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, Shandong, China
| |
Collapse
|
21
|
Kawashima K, Márquez RA, Son YJ, Guo C, Vaidyula RR, Smith LA, Chukwuneke CE, Mullins CB. Accurate Potentials of Hg/HgO Electrodes: Practical Parameters for Reporting Alkaline Water Electrolysis Overpotentials. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Kenta Kawashima
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Raúl A. Márquez
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Yoon Jun Son
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Clarissa Guo
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rinish Reddy Vaidyula
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Lettie A. Smith
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | | | - C. Buddie Mullins
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
- Center for Electrochemistry, The University of Texas at Austin, Austin, Texas 78712, United States
- H2@UT, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
22
|
Jin L, Ji R, Wan H, He J, Gu P, Lin H, Xu Q, Lu J. Boosting the Electrocatalytic Urea Oxidation Performance by Amorphous–Crystalline Ni-TPA@NiSe Heterostructures and Mechanism Discovery. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Liujun Jin
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, Jiangsu, China
| | - Rui Ji
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, Jiangsu, China
| | - Haibo Wan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jinghui He
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, Jiangsu, China
| | - Peiyang Gu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, Jiangsu, China
| | - Hongzhen Lin
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou 215123, Jiangsu, China
| | - Qingfeng Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|