1
|
Yu L, Zhang X, Ye Z, Du H, Wang L, Xu P, Dou Y, Cao L, He C. Engineering p-Orbital States via Molecular Modules in All-Organic Electrocatalysts toward Direct Water Oxidation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410507. [PMID: 39661727 PMCID: PMC11792050 DOI: 10.1002/advs.202410507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/29/2024] [Indexed: 12/13/2024]
Abstract
Oxygen evolution reaction (OER) is an indispensable anode reaction for sustainable hydrogen production from water electrolysis, yet overreliance on metal-based catalysts featured with vibrant d-electrons. It still has notable gap between metal-free and metal-based electrocatalysts, due to lacking accurate and efficient p-band regulation methods on non-metal atoms. Herein, a molecular modularization strategy is proposed for fine-tuning the p-orbital states of series metal-free covalent organic frameworks (COFs) for realizing OER performance beyond benchmark precious metal catalysts. Optimized combination of benzodioxazole/benzodiimide-based building blocks achieves an impressive applied potential of 1.670 ± 0.004 V versus reversible hydrogen electrode (RHE) and 1.735 ± 0.006 V versus RHE to deliver enhanced current densities of 0.5 and 1.0 A cm-2, respectively. Moreover, it holds a notable charge transfer amount (stands for a long service life) within operation period that outperforms all reported metal-free electrocatalysts. Operando differential electrochemical mass spectrometry (DEMS) with isotope labeling identifies the adsorbate evolution mechanism (AEM). A variety of spectroscopic techniques and density functional theory (DFT) calculations reveal that the p-band center of these catalysts can be shifted stepwise to optimize the oxygen intermediate adsorption and lower the reaction energy barrier. This work provides a novel perspective for enhancing the electrocatalytic performance of metal-free COFs.
Collapse
Affiliation(s)
- Li‐Hong Yu
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of EducationCollege of Chemistry and MaterialsJiangxi Normal UniversityNanchang330022China
| | - Xue‐Feng Zhang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of EducationCollege of Chemistry and MaterialsJiangxi Normal UniversityNanchang330022China
| | - Zi‐Ming Ye
- Department of ChemistryNorthwestern UniversityEvanstonIL60208USA
| | - Hong‐Gang Du
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of EducationCollege of Chemistry and MaterialsJiangxi Normal UniversityNanchang330022China
| | - Li‐Dong Wang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of EducationCollege of Chemistry and MaterialsJiangxi Normal UniversityNanchang330022China
| | - Ping‐Ping Xu
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of EducationCollege of Chemistry and MaterialsJiangxi Normal UniversityNanchang330022China
| | - Yuhai Dou
- Institute of Energy Materials ScienceUniversity of Shanghai for Science and TechnologyShanghai200093China
| | - Li‐Ming Cao
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of EducationCollege of Chemistry and MaterialsJiangxi Normal UniversityNanchang330022China
| | - Chun‐Ting He
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of EducationCollege of Chemistry and MaterialsJiangxi Normal UniversityNanchang330022China
| |
Collapse
|
2
|
Sato K, Inagi S. Electrochemically Controlled Deposition of Low-Crystalline Covalent Organic Frameworks on Nanocarbon Electrode Toward Metal-Free Oxygen Reduction Electrocatalyst. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410475. [PMID: 39690839 DOI: 10.1002/smll.202410475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/10/2024] [Indexed: 12/19/2024]
Abstract
Morphology-controlled synthesis of covalent organic frameworks (COFs) offers significant potential for electrochemical applications. However, controlling the deposition of nanometer-scale COFs on carbon supports remains challenging due to the need for a slow COF generation rate and the dispersion of carbon supports in liquid-phase synthesis. In this study, nanometer-scale COF/carbon composites are fabricated using electrochemically generated acid (EGA) to assist in the formation of imine-type COFs, which are then deposited onto pre-cast nanocarbon supports on an electrode. A monomer combination of tri(4-aminophenyl)-1,3,5-triazine and 2,5-dimethoxybenzene-1,4-dicarboxaldehyde is utilized due to their suitable oxidation potentials, with 1,2-diphenylhydrazine serving as the EGA source. Through proton generation driven by electrolysis conditions, controlled COF formation is achieved at the single nanometer scale, ranging from 6 to 30 nm, on various nanocarbon supports. The COF/carbon electrode is evaluated as an oxygen reduction reaction (ORR) electrocatalyst, demonstrating superior performance compared to other COF-based electrode materials containing the 1,3,5-triazine moiety. The findings experimentally validate the efficacy of the EGA-assisted COF deposition method for nanostructure construction and its ability to enhance the properties of COF-based electrodes through morphology tuning.
Collapse
Affiliation(s)
- Kosuke Sato
- Department of Chemical Science and Engineering, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Shinsuke Inagi
- Department of Chemical Science and Engineering, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| |
Collapse
|
3
|
Chang Y, Lin C, Wang H, Wu X, Zou L, Shi J, Xiao Q, Xu Q, Li X, Luo W. Catalytic Edges in One-Dimensional Covalent Organic Frameworks for the Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2025; 64:e202414075. [PMID: 39313469 DOI: 10.1002/anie.202414075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/12/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
Metal-free covalent organic frameworks (COFs) are employed in oxygen reduction reactions (ORR) because of their diverse structural units and controllable catalytic sites, and the edge sites have high catalytic activity than the basal sites. However, it is still challenge to modulate the edge sites in COFs, because the extended frameworks in two- or three-dimensional topologies resulted in limited edge parts. In this study, we have demonstrated the edge site modulation engineering based on one dimensional (1D) COFs to catalyze the ORR, which featured distinct edge groups-carbonyl, diaminopyrazine, phenylimidazole, and benzaldehyde imidazole units. The synthesized COFs have same ordered frameworks, similar pore structure, but had different electronic states of the carbons along the edge sites, which results in tailored catalytic properties. Notably, the COF functionalized with a phenylimidazole edge group exhibited superior catalytic performance compared to the other synthesized COFs. And the theoretical calculation further revealed the different edge sites had tunable binding ability of the intermediates OOH*, which contributed modulated activity. Our findings introduce a novel way for designing COFs optimized for ORR applications through molecular level control of edge sites.
Collapse
Affiliation(s)
- Yumeng Chang
- School of New Energy, Ningbo University of Technology, Ningbo, 315211, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Chao Lin
- School of New Energy, Ningbo University of Technology, Ningbo, 315211, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Haifeng Wang
- School of New Energy, Ningbo University of Technology, Ningbo, 315211, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaotong Wu
- School of New Energy, Ningbo University of Technology, Ningbo, 315211, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Luyao Zou
- School of New Energy, Ningbo University of Technology, Ningbo, 315211, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jixin Shi
- School of New Energy, Ningbo University of Technology, Ningbo, 315211, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Qi Xiao
- School of New Energy, Ningbo University of Technology, Ningbo, 315211, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Qing Xu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
| | - Xiaopeng Li
- School of New Energy, Ningbo University of Technology, Ningbo, 315211, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Wei Luo
- School of New Energy, Ningbo University of Technology, Ningbo, 315211, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
4
|
Lin C, Ma H, He JR, Xu Q, Song M, Cui CX, Chen Y, Li CX, Jiao M, Zhai L. Flexible Hydrazone-Linked Metal-Covalent Organic Frameworks with Copper Clusters for Efficient Electrocatalytic Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403775. [PMID: 38949055 DOI: 10.1002/smll.202403775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/18/2024] [Indexed: 07/02/2024]
Abstract
Despite the challenges associated with the synthesis of flexible metal-covalent organic frameworks (MCOFs), these offer the unique advantage of maximizing the atomic utilization efficiency. However, the construction of flexible MCOFs with flexible building units or linkages has rarely been reported. In this study, novel flexible MCOFs are constructed using flexible building blocks and copper clusters with hydrazone linkages. The heterometallic frameworks (Cu, Co) are prepared through the hydrazone linkage coordination method and evaluated as catalysts for the oxygen evolution reaction (OER). Owing to the spatial separation and functional cooperation of the heterometallic MCOF catalysts, the as-synthesized MCOFs exhibited outstanding catalytic activities with an overpotential of 268.8 mV at 10 mA cm-2 for the OER in 1 M KOH, which is superior to those of the reported covalent organic frameworks (COFs)-based OER catalysts. Theoretical calculations further elucidated the synergistic effect of heterometallic active sites within the linkages and frameworks, contributing to the enhanced OER activity. This study thus introduces a novel approach to the fundamental design of flexible MCOF catalysts for the OER, emphasizing their enhanced atomic utilization efficiency.
Collapse
Affiliation(s)
- Chao Lin
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Huayun Ma
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Jun-Ru He
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, P. R. China
| | - Qing Xu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Meng Song
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Cheng-Xing Cui
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, P. R. China
| | - Yong Chen
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Chun-Xiang Li
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, P. R. China
| | - Mingli Jiao
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Lipeng Zhai
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| |
Collapse
|
5
|
Feng JD, Zhang WD, Gu ZG. Covalent Organic Frameworks for Electrocatalysis: Design, Applications, and Perspectives. Chempluschem 2024; 89:e202400069. [PMID: 38955991 DOI: 10.1002/cplu.202400069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/31/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
Covalent organic frameworks (COFs) are an innovative class of crystalline porous polymers composed of light elements such as C, N, O, etc., linked by covalent bonds. The distinctive properties of COFs, including designable building blocks, large specific surface area, tunable pore size, abundant active sites, and remarkable stability, have led their widespread applications in electrocatalysis. In recent years, COF-based electrocatalysts have made remarkable progress in various electrocatalytic fields, including the hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, nitrogen reduction reaction, nitrate reduction reaction, and carbon dioxide reduction reaction. This review begins with an introduction to the design and synthesis strategies employed for COF-based electrocatalysts. These strategies include heteroatom doping, metalation of COF and building monomers, encapsulation of active sites within COF pores, and the development of COF-based derived materials. Subsequently, a systematic overview of the recent advancements in the application of COF-based catalysts in electrocatalysis is presented. Finally, the review discusses the main challenges and outlines possible avenues for the future development of COF-based electrocatalysts.
Collapse
Affiliation(s)
- Jing-Dong Feng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P.R. China
| | - Wen-Da Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P.R. China
| | - Zhi-Guo Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P.R. China
| |
Collapse
|
6
|
Wang R, Zhang Z, Zhou H, Yu M, Liao L, Wang Y, Wan S, Lu H, Xing W, Valtchev V, Qiu S, Fang Q. Structural Modulation of Covalent Organic Frameworks for Efficient Hydrogen Peroxide Electrocatalysis. Angew Chem Int Ed Engl 2024; 63:e202410417. [PMID: 38924241 DOI: 10.1002/anie.202410417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
The electrochemical production of hydrogen peroxide (H2O2) using metal-free catalysts has emerged as a viable and sustainable alternative to the conventional anthraquinone process. However, the precise architectural design of these electrocatalysts poses a significant challenge, requiring intricate structural engineering to optimize electron transfer during the oxygen reduction reaction (ORR). Herein, we introduce a novel design of covalent organic frameworks (COFs) that effectively shift the ORR from a four-electron to a more advantageous two-electron pathway. Notably, the JUC-660 COF, with strategically charge-modified benzyl moieties, achieved a continuous high H2O2 yield of over 1200 mmol g-1 h-1 for an impressive duration of over 85 hours in a flow cell setting, marking it as one of the most efficient metal-free and non-pyrolyzed H2O2 electrocatalysts reported to date. Theoretical computations alongside in situ infrared spectroscopy indicate that JUC-660 markedly diminishes the adsorption of the OOH* intermediate, thereby steering the ORR towards the desired pathway. Furthermore, the versatility of JUC-660 was demonstrated through its application in the electro-Fenton reaction, where it efficiently and rapidly removed aqueous contaminants. This work delineates a pioneering approach to altering the ORR pathway, ultimately paving the way for the development of highly effective metal-free H2O2 electrocatalysts.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, R. P., China
| | - Ziqi Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Haiping Zhou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, R. P., China
| | - Mingrui Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, R. P., China
- State Key Laboratory of Electroanalytical Chemistry, Laboratory of Advanced Power Sources Changchun, Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130012, R. P., China
| | - Li Liao
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, P. R., China
| | - Yan Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, R. P., China
| | - Sheng Wan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, R. P., China
| | - Haiyan Lu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, R. P., China
| | - Wei Xing
- State Key Laboratory of Electroanalytical Chemistry, Laboratory of Advanced Power Sources Changchun, Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130012, R. P., China
| | - Valentin Valtchev
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R., China
- Normandie Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie 6 Marechal Juin, 14050, Caen, France
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, R. P., China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, R. P., China
| |
Collapse
|
7
|
Ambrose B, Madhu R, Ramamurthy K, Kathiresan M, Kundu S. Viologen-Cucurbit[7]uril Based Polyrotaxanated Covalent Organic Networks: A Metal Free Electrocatalyst for Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402403. [PMID: 38682732 DOI: 10.1002/smll.202402403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/17/2024] [Indexed: 05/01/2024]
Abstract
Viologen-based covalent organic networks represent a burgeoning class of materials distinguished by their captivating properties. Here, supramolecular chemistry is harnessed to fabricate polyrotaxanated ionic covalent organic polymers (iCOP) through a Schiff-base condensation reaction under solvothermal conditions. The reaction between 1,1'-bis(4-aminophenyl)-[4,4'-bipyridine]-1,1'-diium dichloride (DPV-NH2) and 1,3,5-triformylphloroglucinol (TPG) in various solvents yields an iCOP-1 and iCOP-2. Likewise, employing cucurbit[7]uril (CB[7]) in the reaction yielded polyrotaxanated iCOPs, denoted as iCOP-CB[7]-1 and iCOP-CB[7]-2. All four iCOPs exhibit exceptional stability under the acidic and basic conditions. iCOP-CB[7]-2 displays outstanding electrocatalytic Oxygen Evolution Reaction (OER) performance, demanding an overpotential of 296 and 332 mV at 10 and 20 mA cm-2, respectively. Moreover, the CB[7] integrated iCOP-2 exhibits a long-term stable nature for 30 h in 1 m KOH environment. Further, intrinsic activity studies like TOF show a 4.2-fold increase in generation of oxygen (O2) molecules than the bare iCOP-2. Also, it is found that iCOP-CB[7]-2 exhibits a high specific (19.48 mA cm-2) and mass activity (76.74 mA mg-1) at 1.59 V versus RHE. Operando-EIS study evident that iCOP-CB[7]-2 commences OER at a relatively low applied potential of 1.5 V versus RHE. These findings pave the way for a novel approach to synthesizing various mechanically interlocked molecules through straightforward solvothermal conditions.
Collapse
Affiliation(s)
- Bebin Ambrose
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
- Electro organic and Materials Electrochemistry (EMED) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
| | - Ragunath Madhu
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
| | - Kalaivanan Ramamurthy
- Electro organic and Materials Electrochemistry (EMED) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
- Centre for Education (CFE), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
| | - Murugavel Kathiresan
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
- Electro organic and Materials Electrochemistry (EMED) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
| |
Collapse
|
8
|
Jia H, Yao N, Jin Y, Wu L, Zhu J, Luo W. Stabilizing atomic Ru species in conjugated sp 2 carbon-linked covalent organic framework for acidic water oxidation. Nat Commun 2024; 15:5419. [PMID: 38926414 PMCID: PMC11208516 DOI: 10.1038/s41467-024-49834-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
Suppressing the kinetically favorable lattice oxygen oxidation mechanism pathway and triggering the adsorbate evolution mechanism pathway at the expense of activity are the state-of-the-art strategies for Ru-based electrocatalysts toward acidic water oxidation. Herein, atomically dispersed Ru species are anchored into an acidic stable vinyl-linked 2D covalent organic framework with unique crossed π-conjugation, termed as COF-205-Ru. The crossed π-conjugated structure of COF-205-Ru not only suppresses the dissolution of Ru through strong Ru-N motifs, but also reduces the oxidation state of Ru by multiple π-conjugations, thereby activating the oxygen coordinated to Ru and stabilizing the oxygen vacancies during oxygen evolution process. Experimental results including X-ray absorption spectroscopy, in situ Raman spectroscopy, in situ powder X-ray diffraction patterns, and theoretical calculations unveil the activated oxygen with elevated energy level of O 2p band, decreased oxygen vacancy formation energy, promoted electrochemical stability, and significantly reduced energy barrier of potential determining step for acidic water oxidation. Consequently, the obtained COF-205-Ru displays a high mass activity with 2659.3 A g-1, which is 32-fold higher than the commercial RuO2, and retains long-term durability of over 280 h. This work provides a strategy to simultaneously promote the stability and activity of Ru-based catalysts for acidic water oxidation.
Collapse
Affiliation(s)
- Hongnan Jia
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Na Yao
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, Hubei, 430073, PR China
| | - Yiming Jin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Liqing Wu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Juan Zhu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Wei Luo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China.
| |
Collapse
|
9
|
Cheng R, He X, Li K, Ran B, Zhang X, Qin Y, He G, Li H, Fu C. Rational Design of Organic Electrocatalysts for Hydrogen and Oxygen Electrocatalytic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402184. [PMID: 38458150 DOI: 10.1002/adma.202402184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Indexed: 03/10/2024]
Abstract
Efficient electrocatalysts are pivotal for advancing green energy conversion technologies. Organic electrocatalysts, as cost-effective alternatives to noble-metal benchmarks, have garnered attention. However, the understanding of the relationships between their properties and electrocatalytic activities remains ambiguous. Plenty of research articles regarding low-cost organic electrocatalysts started to gain momentum in 2010 and have been flourishing recently though, a review article for both entry-level and experienced researchers in this field is still lacking. This review underscores the urgent need to elucidate the structure-activity relationship and design suitable electrode structures, leveraging the unique features of organic electrocatalysts like controllability and compatibility for real-world applications. Organic electrocatalysts are classified into four groups: small molecules, oligomers, polymers, and frameworks, with specific structural and physicochemical properties serving as activity indicators. To unlock the full potential of organic electrocatalysts, five strategies are discussed: integrated structures, surface property modulation, membrane technologies, electrolyte affinity regulation, and addition of anticorrosion species, all aimed at enhancing charge efficiency, mass transfer, and long-term stability during electrocatalytic reactions. The review offers a comprehensive overview of the current state of organic electrocatalysts and their practical applications, bridging the understanding gap and paving the way for future developments of more efficient green energy conversion technologies.
Collapse
Affiliation(s)
- Ruiqi Cheng
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiaoqian He
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Kaiqi Li
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Biao Ran
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xinlong Zhang
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yonghong Qin
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Guanjie He
- Christopher Ingold Laboratory, Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Huanxin Li
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
- Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Chaopeng Fu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
10
|
Gao C, Yao H, Wang P, Zhu M, Shi XR, Xu S. Carbon-Based Composites for Oxygen Evolution Reaction Electrocatalysts: Design, Fabrication, and Application. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2265. [PMID: 38793344 PMCID: PMC11122737 DOI: 10.3390/ma17102265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
The four-electron oxidation process of the oxygen evolution reaction (OER) highly influences the performance of many green energy storage and conversion devices due to its sluggish kinetics. The fabrication of cost-effective OER electrocatalysts via a facile and green method is, hence, highly desirable. This review summarizes and discusses the recent progress in creating carbon-based materials for alkaline OER. The contents mainly focus on the design, fabrication, and application of carbon-based materials for alkaline OER, including metal-free carbon materials, carbon-based supported composites, and carbon-based material core-shell hybrids. The work presents references and suggestions for the rational design of highly efficient carbon-based OER materials.
Collapse
Affiliation(s)
| | | | | | | | - Xue-Rong Shi
- School of Material Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Shusheng Xu
- School of Material Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
11
|
Bora HJ, Nath MP, Medhi PJ, Boruah PJ, Kalita P, Bailung H, Choudhury B, Sen Sarma N, Kalita A. Unveiling the Potential of Covalent Organic Framework Electrocatalyst for Enhanced Oxygen Evolution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9751-9760. [PMID: 38642056 DOI: 10.1021/acs.langmuir.4c00788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2024]
Abstract
The potential for sustainable energy and carbon neutrality has expanded with the development of a highly active electrocatalyst for the oxygen evolution reaction (OER). Covalent Organic Frameworks (COF) have recently garnered attention because of their enormous potential in a number of cutting-edge application sectors, such as gas storage, sensors, fuel cells, and active catalytic supports. A simple and effective COF constructed and integrated by post-alteration plasma modification facilitates high electrocatalytic OER activity under alkaline conditions. Variations in parameters such as voltage and treatment duration have been employed to enhance the factor that demonstrates high OER performance. The overpotential and Tafel slope are the lowest of all when using an optimized parameter, such as plasma treatment for 30 min utilizing 6 kV of voltage, PT-30 COF, measuring 390 mV at a current density of 10 mA.cm-2 and 69 mV.dec-1, respectively, as compared to 652 mV and 235 mV.dec-1 for the Pristine-COF. Our findings provide a method for broadening the scope by post-functionalizing the parent framework for effective water splitting.
Collapse
Affiliation(s)
- Hridoy Jyoti Bora
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Manash P Nath
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Palash Jyoti Medhi
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Palash Jyoti Boruah
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam 781035, India
| | - Parismita Kalita
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Heremba Bailung
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam 781035, India
- Department of Physics, Bodoland University, Kokrajhar, Assam 783370, India
| | - Biswajit Choudhury
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neelotpal Sen Sarma
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anamika Kalita
- Physical Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, Assam 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
12
|
Sadhukhan A, Karmakar A, Koner K, Karak S, Sharma RK, Roy A, Sen P, Dey KK, Mahalingam V, Pathak B, Kundu S, Banerjee R. Functionality Modulation Toward Thianthrene-based Metal-Free Electrocatalysts for Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310938. [PMID: 38245860 DOI: 10.1002/adma.202310938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/08/2024] [Indexed: 01/22/2024]
Abstract
The development of metal-free bifunctional electrocatalysts for hydrogen and oxygen evolution reactions (HER and OER) is significant but rarely demonstrated. Porous organic polymers (POPs) with well-defined electroactive functionalities show superior performance in hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Precise control of the active sites' local environment requires careful modulation of linkers through the judicious selection of building units. Here, a systematic strategy is introduced for modulating functionality to design and synthesize a series of thianthrene-based bifunctional sp2 C═C bonded POPs with hollow spherical morphologies exhibiting superior electrocatalytic activity. This precise structural tuning allowed to gain insight into the effects of heteroatom incorporation, hydrophilicity, and variations in linker length on electrocatalytic activity. The most efficient bifunctional electrocatalyst THT-PyDAN achieves a current density of 10 mA cm─2 at an overpotential (η10) of ≈65 mV (in 0.5 m H2SO4) and ≈283 mV (in 1 m KOH) for HER and OER, respectively. THT-PyDAN exhibits superior activity to all previously reported metal-free bifunctional electrocatalysts in the literature. Furthermore, these investigations demonstrate that THT-PyDAN maintains its performance even after 36 h of chronoamperometry and 1000 CV cycling. Post-catalytic characterization using FT-IR, XPS, and microscopic imaging techniques underscores the long-term durability of THT-PyDAN.
Collapse
Affiliation(s)
- Arnab Sadhukhan
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
- Centre for Advance Functional Materials, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
| | - Arun Karmakar
- Academy of Scientific and Innovative Research Ghaziabad 201002 India, Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
| | - Kalipada Koner
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
- Centre for Advance Functional Materials, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
| | - Shayan Karak
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
- Centre for Advance Functional Materials, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
| | - Rahul Kumar Sharma
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India
| | - Avishek Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
- Centre for Advance Functional Materials, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
| | - Prince Sen
- Department of Physics, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh, 470003, India
| | - Krishna Kishor Dey
- Department of Physics, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh, 470003, India
| | - Venkataramanan Mahalingam
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
- Centre for Advance Functional Materials, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research Ghaziabad 201002 India, Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
| | - Rahul Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
- Centre for Advance Functional Materials, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
| |
Collapse
|
13
|
Zhang Z, Zhang Z, Chen C, Wang R, Xie M, Wan S, Zhang R, Cong L, Lu H, Han Y, Xing W, Shi Z, Feng S. Single-atom platinum with asymmetric coordination environment on fully conjugated covalent organic framework for efficient electrocatalysis. Nat Commun 2024; 15:2556. [PMID: 38519497 PMCID: PMC10960042 DOI: 10.1038/s41467-024-46872-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
Two-dimensional (2D) covalent organic frameworks (COFs) and their derivatives have been widely applied as electrocatalysts owing to their unique nanoscale pore configurations, stable periodic structures, abundant coordination sites and high surface area. This work aims to construct a non-thermodynamically stable Pt-N2 coordination active site by electrochemically modifying platinum (Pt) single atoms into a fully conjugated 2D COF as conductive agent-free and pyrolysis-free electrocatalyst for the hydrogen evolution reaction (HER). In addition to maximizing atomic utilization, single-atom catalysts with definite structures can be used to investigate catalytic mechanisms and structure-activity relationships. In this work, in-situ characterizations and theoretical calculations reveal that a nitrogen-rich graphene analogue COF not only exhibits a favorable metal-support effect for Pt, adjusting the binding energy between Pt sites to H* intermediates by forming unique Pt-N2 instead of the typical Pt-N4 coordination environment, but also enhances electron transport ability and structural stability, showing both conductivity and stability in acidic environments.
Collapse
Affiliation(s)
- Ziqi Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Zhe Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Cailing Chen
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Rui Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Minggang Xie
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Sheng Wan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Ruige Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Linchuan Cong
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Haiyan Lu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Yu Han
- Electron Microscopy Center, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Wei Xing
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
14
|
Ghosh A, Mondal M, Nath Manna R, Bhaumik A. Targeted synthesis of a metal-free thiadiazolate based nitrogen and sulfur rich porous organic polymer for an unprecedented hydrogen evolution in the electrochemical water splitting. J Colloid Interface Sci 2024; 658:415-424. [PMID: 38118188 DOI: 10.1016/j.jcis.2023.12.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/22/2023]
Abstract
Water splitting is a long-standing quest to material research for mitigating the global energy crisis. Despite high efficiency shown by several high cost noble metal containing electrocatalysts in the water splitting reaction, scientists are focused on alternate metal-free carbon or polymer based materials with comparable activity to make the process economical. In this article, we have strategically designed a noble metal-free thiadiazole (TDA) and triazine (Trz) linked porous organic polymer (TDA-Trz-POP) having N- and S-rich surface. Powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR), solid state 13C magic angle spinning nuclear magnetic resonance (MAS-NMR) and X-ray photoelectron spectroscopic (XPS) analyses have been performed to predict its probable framework structure. This scrunch paper type TDA-Trz-POP shows an extravagant potential for the hydrogen evolution reaction (HER) with a low overpotential (129.2 mV w.r.t. RHE for 10 mA cm-2 current density) and low Tafel slope (82.1 mV deg-1). Again, this metal-free catalyst shows oxygen evolution reaction (OER) at 410 mV overpotential w.r.t RHE for 10 mA cm-2 current density with a lower Tafel slope of 104.5 mV deg-1. This bifunctional activity was further tested in two electrodes set-up under different pH conditions. The porosity seems to be a blessing in the electrocatalytic performance of this metal-free electrocatalyst material. Further, the mystery behind the activity of both HER and OER has been resolved through the density functional theory (DFT) analysis. This work provides an insight to the material scientists for low cost, metal-free material design for the efficient water splitting reaction.
Collapse
Affiliation(s)
- Anirban Ghosh
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Mousumi Mondal
- Physical Chemistry Section, Department of Chemistry, Jadavpur University, Jadavpur, Kolkata 700032, India
| | - Rabindra Nath Manna
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
15
|
Wu X, Tang X, Zhang K, Harrod C, Li R, Wu J, Yang X, Zheng S, Fan J, Zhang W, Li X, Cai S. Tuning the Topology of Two-Dimensional Covalent Organic Frameworks through Site-Selective Synthetic Strategy. Chemistry 2024; 30:e202303781. [PMID: 38196025 DOI: 10.1002/chem.202303781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/16/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024]
Abstract
Tuning the topology of two-dimensional (2D) covalent organic frameworks (COFs) is of paramount scientific interest but remains largely unexplored. Herein, we present a site-selective synthetic strategy that enables the tuning of 2D COF topology by simply adjusting the molar ratio of an amine-functionalized dihydrazide monomer (NH2 -Ah) and 4,4',4''-(1,3,5-triazine-2,4,6-triyl)tribenzaldehyde (Tz). This approach resulted in the formation of two distinct COFs: a clover-like 2D COF with free amine groups (NH2 -Ah-Tz) and a honeycomb-like COF without amine groups (Ah-Tz). Both COFs exhibited good crystallinity and moderate porosity. Remarkably, the clover-shaped NH2 -Ah-Tz COF, with abundant free amine groups, displayed significantly enhanced adsorption capacities toward crystal violet (CV, 261 mg/g) and congo red (CR, 1560 mg/g) compared to the non-functionalized honeycomb-like Ah-Tz COF (123 mg/g for CV and 1340 mg/g for CR), underscoring the pivotal role of free amine functional groups in enhancing adsorption capacities for organic dyes. This work highlights that the site-selective synthetic strategy paves a new avenue for manipulating 2D COF topology by adjusting the monomer feeding ratio, thereby modulating their adsorption performances toward organic dyes.
Collapse
Affiliation(s)
- Xueying Wu
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Xihao Tang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Kai Zhang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Chelsea Harrod
- Department of Chemistry, Clark Atlanta University, Atlanta, Georgia, 30314, United States
| | - Rui Li
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Jialin Wu
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Xi Yang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Shengrun Zheng
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
- Guangdong Longsmall Biochemical Technology Co. Ltd., Qingyuan, 511517, China
| | - Jun Fan
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
- Guangdong Longsmall Biochemical Technology Co. Ltd., Qingyuan, 511517, China
| | - Weiguang Zhang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
- Guangdong Longsmall Biochemical Technology Co. Ltd., Qingyuan, 511517, China
| | - Xinle Li
- Department of Chemistry, Clark Atlanta University, Atlanta, Georgia, 30314, United States
| | - Songliang Cai
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
- Guangdong Longsmall Biochemical Technology Co. Ltd., Qingyuan, 511517, China
| |
Collapse
|
16
|
Kumar Y, Ahmad I, Rawat A, Pandey RK, Mohanty P, Pandey R. Flexible Linker-Based Triazine-Functionalized 2D Covalent Organic Frameworks for Supercapacitor and Gas Sorption Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11605-11616. [PMID: 38407024 DOI: 10.1021/acsami.4c00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Covalent organic frameworks (COFs) having a large surface area, porosity, and substantial amounts of heteroatom content are recognized as the ideal class of materials for energy storage and gas sorption applications. In this work, we have synthesized four different porous COF materials by the polycondensation of a heteroatom-rich flexible triazine-based trialdehyde linker, namely 2,4,6-tris(4-formylphenoxy)-1,3,5-triazine (TPT-CHO), with four different triamine linkers. Triamine linkers were chosen based on differences in size, symmetry, planarity, and heteroatom content, leading to the synthesis of four different COF materials named IITR-COF-1, IITR-COF-2, IITR-COF-3, and IITR-COF-4. IITR-COF-1, synthesized within 24 h from the most planar and largest amine monomer, exhibited the largest Brunauer-Emmett-Teller (BET) surface area of 2830 m2 g-1, superior crystallinity, and remarkable reproducibility compared to the other COFs. All of the synthesized COFs were explored for energy and gas storage applications. It is shown that the surface area and redox-active triazene rings in the materials have a profound effect on energy and gas storage enhancement. In a three-electrode setup, IITR-COF-1 achieved an electrochemical stability potential window (ESPW) of 2.0 V, demonstrating a high specific capacitance of 182.6 F g-1 with energy and power densities of 101.5 Wh kg-1 and 298.3 W kg-1, respectively, at a current density of 0.3 A g-1 in 0.5 M K2SO4 (aq) with long-term durability. The symmetric supercapacitor of IITR-COF-1//IITR-COF-1 exhibited a notable specific capacitance of 30.5 F g-1 and an energy density of 17.0 Wh kg-1 at a current density of 0.12 A g-1. At the same time, it demonstrated 111.3% retention of its initial specific capacitance after 10k charge-discharge cycles. Moreover, it exhibited exceptional CO2 capture capacity of 25.90 and 10.10 wt % at 273 and 298 K, respectively, with 2.1 wt % of H2 storage capacity at 77 K and 1 bar.
Collapse
Affiliation(s)
- Yogesh Kumar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ikrar Ahmad
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Anuj Rawat
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Rakesh K Pandey
- Department of Chemistry, Mahatma Gandhi Central University, Motihari 845401, Bihar, India
| | - Paritosh Mohanty
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Ravindra Pandey
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
17
|
Li Y, Wu L, Wang K, Zhou B, Li Q, Li Z, Yan B, Gong C, Wang Q, Jia J, Shen HM, Deng S, Zhang W, She Y. Nitrogen-Rich Conjugated Microporous Polymers with Improved Cobalt(II) Density for Highly Efficient Electrocatalytic Oxygen Evolution. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8903-8912. [PMID: 38324390 DOI: 10.1021/acsami.3c18620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Developing efficient oxygen evolution catalysts (OECs) made from earth-abundant elements is extremely important since the oxygen evolution reaction (OER) with sluggish kinetics hinders the development of many energy-related electrochemical devices. Herein, an efficient strategy is developed to prepare conjugated microporous polymers (CMPs) with abundant and uniform coordination sites by coupling the N-rich organic monomer 2,4,6-tris(5-bromopyrimidin-2-yl)-1,3,5-triazine (TBPT) with Co(II) porphyrin. The resulting CMP-Py(Co) is further metallized with Co2+ ions to obtain CMP-Py(Co)@Co. Structural characterization results reveal that CMP-Py(Co)@Co has higher Co2+ content (12.20 wt %) and affinity toward water compared with CMP-Py(Co). Moreover, CMP-Py(Co)@Co exhibits an excellent OER activity with a low overpotential of 285 mV vs RHE at 10 mA cm-2 and a Tafel slope of 80.1 mV dec-1, which are significantly lower than those of CMP-Py(Co) (335 mV vs RHE and 96.8 mV dec-1). More interestingly, CMP-Py(Co)@Co outperforms most reported porous organic polymer-based OECs and the benchmark RuO2 catalyst (320 mV vs RHE and 87.6 mV dec-1). Additionally, Co2+-free CMP-Py(2H) has negligible OER activity. Thereby, the enhanced OER activity of CMP-Py(Co)@Co is attributed to the incorporation of Co2+ ions leading to rich active sites and enlarged electrochemical surface areas. Density functional theory (DFT) calculations reveal that Co2+-TBPT sites have higher activity than Co2+-porphyrin sites for the OER. These results indicate that the introduction of rich active metal sites in stable and conductive CMPs could provide novel guidance for designing efficient OECs.
Collapse
Affiliation(s)
- Yanzhe Li
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Liang Wu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Keke Wang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bolin Zhou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qiang Li
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhengrun Li
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bin Yan
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chengtao Gong
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qin Wang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianhong Jia
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hai-Min Shen
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shengwei Deng
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wang Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuanbin She
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
18
|
Jhariat P, Warrier A, Sasmal A, Das S, Sarfudeen S, Kumari P, Nayak AK, Panda T. Reticular synthesis of two-dimensional ionic covalent organic networks as metal-free bifunctional electrocatalysts for oxygen reduction and evolution reactions. NANOSCALE 2024. [PMID: 38312071 DOI: 10.1039/d3nr05277j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) are the heart of metal-air batteries, fuel cells, and other energy storage systems. Here, we report a series of a novel class of redox-active viologen-based ionic covalent organic networks (vCONs) which are directly used as metal-free bifunctional electrocatalysts towards ORR and OER applications. These vCONs (named vGC, vGAC, vMEL and vBPDP) were synthesized by the well-known Zincke reaction. The installation of redox-active viologen moieties among the extended covalent organic architectures played a crucial role for exceptional acid/base stability, as well as bifunctional ORR and OER activities, confirmed by the cyclic voltammetry (CV) curves. Among all of them, vBPDP showed high ORR efficiency with a half-wave potential of 0.72 V against a reversible hydrogen electrode (RHE) in 1 M KOH electrolyte. In contrast, vMEL demonstrated high OER activity with an overpotential of 320 mV at a current density of 10 mAcm-2 and a Tafel slope of 109.4 mV dec-1 in 1 M KOH electrolyte solution. This work is exceptional and unique in terms of directly used pristine ionic covalent organic networks that are used as bifunctional (ORR and OER) electrocatalysts without adding any metals or conductive materials.
Collapse
Affiliation(s)
- Pampa Jhariat
- Centre for Clean Environment, Vellore Institute of Technology, Tamil Nadu, 632014, India.
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 623014, India
| | - Arjun Warrier
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 623014, India
| | - Ananta Sasmal
- Department of Physics, School of Advanced Sciences, VIT, Vellore, Tamil Nadu, 623014, India
| | - Subhadip Das
- Department of chemistry, Chaudhary Ranbir Singh University, Jind, Haryana, 126102, India
| | - Shafeeq Sarfudeen
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 623014, India
| | - Priyanka Kumari
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 623014, India
| | - Arpan Kumar Nayak
- Department of Energy Engineering, Konkuk University, 120 Neungdong-ro, Seoul, 05029, Republic of Korea
| | - Tamas Panda
- Centre for Clean Environment, Vellore Institute of Technology, Tamil Nadu, 632014, India.
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 623014, India
| |
Collapse
|
19
|
Cui X, Wu M, Liu X, He B, Zhu Y, Jiang Y, Yang Y. Engineering organic polymers as emerging sustainable materials for powerful electrocatalysts. Chem Soc Rev 2024; 53:1447-1494. [PMID: 38164808 DOI: 10.1039/d3cs00727h] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Cost-effective and high-efficiency catalysts play a central role in various sustainable electrochemical energy conversion technologies that are being developed to generate clean energy while reducing carbon emissions, such as fuel cells, metal-air batteries, water electrolyzers, and carbon dioxide conversion. In this context, a recent climax in the exploitation of advanced earth-abundant catalysts has been witnessed for diverse electrochemical reactions involved in the above mentioned sustainable pathways. In particular, polymer catalysts have garnered considerable interest and achieved substantial progress very recently, mainly owing to their pyrolysis-free synthesis, highly tunable molecular composition and microarchitecture, readily adjustable electrical conductivity, and high stability. In this review, we present a timely and comprehensive overview of the latest advances in organic polymers as emerging materials for powerful electrocatalysts. First, we present the general principles for the design of polymer catalysts in terms of catalytic activity, electrical conductivity, mass transfer, and stability. Then, the state-of-the-art engineering strategies to tailor the polymer catalysts at both molecular (i.e., heteroatom and metal atom engineering) and macromolecular (i.e., chain, topology, and composition engineering) levels are introduced. Particular attention is paid to the insightful understanding of structure-performance correlations and electrocatalytic mechanisms. The fundamentals behind these critical electrochemical reactions, including the oxygen reduction reaction, hydrogen evolution reaction, CO2 reduction reaction, oxygen evolution reaction, and hydrogen oxidation reaction, as well as breakthroughs in polymer catalysts, are outlined as well. Finally, we further discuss the current challenges and suggest new opportunities for the rational design of advanced polymer catalysts. By presenting the progress, engineering strategies, insightful understandings, challenges, and perspectives, we hope this review can provide valuable guidelines for the future development of polymer catalysts.
Collapse
Affiliation(s)
- Xun Cui
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Mingjie Wu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Xueqin Liu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Bing He
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Yunhai Zhu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Yalong Jiang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Yingkui Yang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
20
|
Zhi Q, Jiang R, Yang X, Jin Y, Qi D, Wang K, Liu Y, Jiang J. Dithiine-linked metalphthalocyanine framework with undulated layers for highly efficient and stable H 2O 2 electroproduction. Nat Commun 2024; 15:678. [PMID: 38263147 PMCID: PMC10805717 DOI: 10.1038/s41467-024-44899-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
Realization of stable and industrial-level H2O2 electroproduction still faces great challenge due large partly to the easy decomposition of H2O2. Herein, a two-dimensional dithiine-linked phthalocyaninato cobalt (CoPc)-based covalent organic framework (COF), CoPc-S-COF, was afforded from the reaction of hexadecafluorophthalocyaninato cobalt (II) with 1,2,4,5-benzenetetrathiol. Introduction of the sulfur atoms with large atomic radius and two lone-pairs of electrons in the C-S-C linking unit leads to an undulated layered structure and an increased electron density of the Co center for CoPc-S-COF according to a series of experiments in combination with theoretical calculations. The former structural effect allows the exposition of more Co sites to enhance the COF catalytic performance, while the latter electronic effect activates the 2e- oxygen reduction reaction (2e- ORR) but deactivates the H2O2 decomposition capability of the same Co center, as a total result enabling CoPc-S-COF to display good electrocatalytic H2O2 production performance with a remarkable H2O2 selectivity of >95% and a stable H2O2 production with a concentration of 0.48 wt% under a high current density of 125 mA cm-2 at an applied potential of ca. 0.67 V versus RHE for 20 h in a flow cell, representing the thus far reported best H2O2 synthesis COFs electrocatalysts.
Collapse
Affiliation(s)
- Qianjun Zhi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Rong Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiya Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Dongdong Qi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kang Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Yunpeng Liu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Science, Beijing, 100049, China.
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
21
|
Liu J, Zhao J, Li C, Liu Y, Li D, Li H, Valtchev V, Qiu S, Wang Y, Fang Q. Precise Modulation of Carbon Activity Sites in Metal-Free Covalent Organic Frameworks for Enhanced Oxygen Reduction Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305759. [PMID: 37700638 DOI: 10.1002/smll.202305759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/25/2023] [Indexed: 09/14/2023]
Abstract
Metal-free carbon-based materials have gained recognition as potential electrocatalysts for the oxygen reduction reaction (ORR) in new environmentally-friendly electrochemical energy conversion technologies. The presence of effective active centers is crucial for achieving productive ORR. In this study, we present the synthesis of two metal-free dibenzo[a,c]phenazine-based covalent organic frameworks (DBP-COFs), specifically JUC-650 and JUC-651, which serve as ORR electrocatalysts. Among them, JUC-650 demonstrates exceptional catalytic performance for ORR in alkaline electrolytes, exhibiting an onset potential of 0.90 V versus RHE and a half-wave potential of 0.72 V versus RHE. Consequently, JUC-650 stands out as one of the most outstanding metal-free COF-based ORR electrocatalysts report to date. Experimental investigations and density functional theory calculations confirm that modulation of the frameworks' electronic configuration allows for the reduction of adsorption energy at the Schiff-base carbon active sites, leading to more efficient ORR processes. Moreover, the DBP-COFs can be assembled as excellent air cathode catalysts for zinc-air batteries (ZAB), rivaling the performance of commercial Pt/C. This study provides valuable insights for the development of efficient metal-free organoelectrocatalysts through precise regulation of active site strategies.
Collapse
Affiliation(s)
- Jianchuan Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jie Zhao
- SINOPEC Research Institute of Petroleum Processing, Beijing, 100083, P. R. China
| | - Cuiyan Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yaozu Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Daohao Li
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Hui Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Valentin Valtchev
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Laoshan District, Qingdao, Shandong, 266101, P. R. China
- Normandie Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, 6 Marechal Juin, Caen, 14050, France
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yujie Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
22
|
Zhang Y, Qiao Z, Zhang R, Wang Z, Wang HJ, Zhao J, Cao D, Wang S. Multicomponent Synthesis of Imidazole-Linked Fully Conjugated 3D Covalent Organic Framework for Efficient Electrochemical Hydrogen Peroxide Production. Angew Chem Int Ed Engl 2023; 62:e202314539. [PMID: 37880874 DOI: 10.1002/anie.202314539] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 10/27/2023]
Abstract
The semiconducting properties and applications of three dimensional (3D) covalent organic frameworks (COFs) are greatly hampered because of their long-ranged non-conjugated skeletons and relatively unstable linkages. Here, a robust imidazole-linked fully conjugated 3D covalent organic framework (BUCT-COF-7) is synthesized through the one-pot multicomponent Debus-Radziszewski reaction of the saddle-shaped aldehyde-substituted cyclooctatetrathiophene, pyrene-4,5,9,10-tetraone, and ammonium acetate. The semiconducting BUCT-COF-7, as a metal-free catalyst, shows excellent two electron oxygen reduction reaction (ORR) activity in alkaline medium with high hydrogen peroxide (H2 O2 ) selectivity of 83.4 %. When the BUCT-COF-7 as cathode catalyst is assembled into the electrolyzer, the devices showed high electrochemical production rate of H2 O2 up to 326.9 mmol g-1 h-1 . The accumulative amount of H2 O2 could totally degrade the dye methylene blue via Fenton reaction for wastewater treatment. This is the first report about intrinsic 3D COFs for efficient electrochemical synthesis of H2 O2 , revealing the promising applications of fully conjugated 3D COFs in the environment-related field.
Collapse
Affiliation(s)
- Yuting Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zelong Qiao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Rui Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhengqi Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Hui-Juan Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jie Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shitao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
23
|
Saeed S, Zahoor AF, Kamal S, Raza Z, Bhat MA. Unfolding the Antibacterial Activity and Acetylcholinesterase Inhibition Potential of Benzofuran-Triazole Hybrids: Synthesis, Antibacterial, Acetylcholinesterase Inhibition, and Molecular Docking Studies. Molecules 2023; 28:6007. [PMID: 37630258 PMCID: PMC10459521 DOI: 10.3390/molecules28166007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 08/27/2023] Open
Abstract
In this study, a series of novel benzofuran-based 1,2,4-triazole derivatives (10a-e) were synthesized and evaluated for their inhibitory potential against acetylcholinesterase (AChE) and bacterial strains (E. coli and B. subtilis). Preliminary results revealed that almost all assayed compounds displayed promising efficacy against AChE, while compound 10d was found to be a highly potent inhibitor of AChE. Similarly, these 5-bromobenzofuran-triazoles 10a-e were screened against B. subtilis QB-928 and E. coli AB-274 to evaluate their antibacterial potential in comparison to the standard antibacterial drug penicillin. Compound 10b was found to be the most active among all screened scaffolds, with an MIC value of 1.25 ± 0.60 µg/mL against B. subtilis, having comparable therapeutic efficacy to the standard drug penicillin (1 ± 1.50 µg/mL). Compound 10a displayed excellent antibacterial therapeutic efficacy against the E. coli strain with comparable MIC of 1.80 ± 0.25 µg/mL to that of the commercial drug penicillin (2.4 ± 1.00 µg/mL). Both the benzofuran-triazole molecules 10a and 10b showed a larger zone of inhibition. Moreover, IFD simulation highlighted compound 10d as a novel lead anticholinesterase scaffold conforming to block entrance, limiting the swinging gate, and disrupting the catalytic triad of AChE, and further supported its significant AChE inhibition with an IC50 value of 0.55 ± 1.00 µM. Therefore, compound 10d might be a promising candidate for further development in Alzheimer's disease treatment, and compounds 10a and 10b may be lead antibacterial agents.
Collapse
Affiliation(s)
- Sadaf Saeed
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Shagufta Kamal
- Department of Biochemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Zohaib Raza
- Department of Chemistry, School of Physical Sciences, University of Adelaide, Adelaide, SA 5000, Australia;
| | - Mashooq Ahmad Bhat
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
24
|
Aksu GO, Keskin S. Advancing CH 4/H 2 separation with covalent organic frameworks by combining molecular simulations and machine learning. JOURNAL OF MATERIALS CHEMISTRY. A 2023; 11:14788-14799. [PMID: 37441278 PMCID: PMC10335334 DOI: 10.1039/d3ta02433d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/05/2023] [Indexed: 07/15/2023]
Abstract
A high-throughput computational screening approach combined with machine learning (ML) was introduced to unlock the potential of both synthesized and hypothetical COFs (hypoCOFs) for adsorption-based CH4/H2 separation. We studied 597 synthesized COFs for adsorption of a CH4/H2 mixture using Grand Canonical Monte Carlo (GCMC) simulations under pressure-swing adsorption (PSA) and vacuum-swing adsorption (VSA) conditions. Based on the simulation results, the CH4/H2 selectivities, CH4 working capacities, adsorbent performance scores, and regenerabilities of the synthesized COFs were assessed and the structural properties of the top-performing COFs were identified. The hypoCOF database composed of 69 840 materials was then filtered to identify 7737 hypothetical materials having similar structural properties to the top synthesized COFs. These hypothetical COFs were then examined for CH4/H2 separation using molecular simulations and the results showed that the top hypoCOFs have CH4 selectivities and working capacities in the ranges of 21.9-28.7 (64.7-128.6) and 5.8-7.6 (1.3-3.1) mol kg-1 under PSA (VSA) conditions, respectively, outperforming the synthesized COFs and metal-organic frameworks (MOFs). ML models were then developed based on the hypoCOF simulation results to accurately predict the CH4/H2 mixture adsorption properties of all remaining hypothetical materials when their structural and chemical properties are fed into the models. These models accurately assessed the CH4/H2 mixture separation performances of any hypoCOF within seconds without performing computationally demanding molecular simulations. The computational approach that we have proposed in this study will provide an accurate and efficient assessment of COF materials for CH4/H2 separation and significantly accelerate the experimental efforts towards the design and discovery of new high-performing COF adsorbents.
Collapse
Affiliation(s)
- Gokhan Onder Aksu
- Department of Chemical and Biological Engineering, Koc University Rumelifeneri Yolu, Sariyer 34450 Istanbul Turkey +90 212 338 1362
| | - Seda Keskin
- Department of Chemical and Biological Engineering, Koc University Rumelifeneri Yolu, Sariyer 34450 Istanbul Turkey +90 212 338 1362
| |
Collapse
|
25
|
Chhetri A, Karthick K, Karmakar A, Kundu S, Mitra J. Melamine-Based Hydrogen-bonded Systems as Organoelectrocatalysts for Water Oxidation Reaction. CHEMSUSCHEM 2023; 16:e202300220. [PMID: 36852710 DOI: 10.1002/cssc.202300220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/22/2023] [Indexed: 06/10/2023]
Abstract
Applications of small organic molecules and hydrogen-bonded aggregates, instead of traditional transition-metal-based electrocatalysts, are gaining momentum for addressing the issue of low-cost generation of H2 to power a sustainable environment. Such systems offer the possibility to integrate desired functional moieties with predictive structural repetition for modulating their properties. Despite these advantages, hydrogen-bonded organic systems have largely remained unexplored, especially as electrocatalysts. Melamine and adipic acid-based hydrogen-bonded organic ionic (BMA) and co-crystal systems developed under varying temperatures are explored as electrocatalysts for water oxidation reaction (WOR). These systems are easily modifiable with precisely designed molecular architecture and judiciously positioned nitrogen atoms. Combined effect of charge-assisted hydrogen bonding stabilizes the ionic BMA system under corrosive alkaline conditions and augments its remarkable electrocatalytic WOR activity, achieving a current density of 10 mA cm-2 at an overpotential of 387 mV and Faradaic efficiency ∼94.5 %. The enhanced electrocatalytic ability of BMA is attributed to its hydrophilic nature, unique molecular composition with complementary hydrogen-bonded motifs and a high density of positively charged nitrogen atoms on the surface, that facilitates electrostatic interactions and accelerate charge and mass transport processes culminating in a turnover frequency of ∼0.024 s-1 . This work validates the potential of hydrogen-bonded molecular organo-electrocatalysts towards WOR.
Collapse
Affiliation(s)
- Ashis Chhetri
- Inorganic Materials & Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, 364002, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters, CSIR-HRDC Campus, Sector-19, Kamla Nehru Nagar, 201002, Ghaziabad, U.P., India
- Centre for Advanced Materials & Industrial Chemistry, RMIT University, 3000, Melbourne, VIC, Australia
| | - Kannimuthu Karthick
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters, CSIR-HRDC Campus, Sector-19, Kamla Nehru Nagar, 201002, Ghaziabad, U.P., India
- Electrochemical Process Engineering (EPE) Division, CSIR-CECRI, 630003, Karaikudi, Tamil Nadu, India
| | - Arun Karmakar
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters, CSIR-HRDC Campus, Sector-19, Kamla Nehru Nagar, 201002, Ghaziabad, U.P., India
- Electrochemical Process Engineering (EPE) Division, CSIR-CECRI, 630003, Karaikudi, Tamil Nadu, India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters, CSIR-HRDC Campus, Sector-19, Kamla Nehru Nagar, 201002, Ghaziabad, U.P., India
- Electrochemical Process Engineering (EPE) Division, CSIR-CECRI, 630003, Karaikudi, Tamil Nadu, India
| | - Joyee Mitra
- Inorganic Materials & Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, 364002, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), AcSIR Headquarters, CSIR-HRDC Campus, Sector-19, Kamla Nehru Nagar, 201002, Ghaziabad, U.P., India
| |
Collapse
|
26
|
Wang FD, Yang LJ, Wang XX, Rong Y, Yang LB, Zhang CX, Yan FY, Wang QL. Pyrazine-Functionalized Donor-Acceptor Covalent Organic Frameworks for Enhanced Photocatalytic H 2 Evolution with High Proton Transport. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207421. [PMID: 36890778 DOI: 10.1002/smll.202207421] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/13/2023] [Indexed: 06/08/2023]
Abstract
The well-defined 2D or 3D structure of covalent organic frameworks (COFs) makes it have great potential in photoelectric conversion and ions conduction fields. Herein, a new donor-accepter (D-A) COF material, named PyPz-COF, constructed from electron donor 4,4',4″,4'″-(pyrene-1,3,6,8-tetrayl)tetraaniline and electron accepter 4,4'-(pyrazine-2,5-diyl)dibenzaldehyde with an ordered and stable π-conjugated structure is reported. Interestingly, the introduction of pyrazine ring endows the PyPz-COF a distinct optical, electrochemical, charge-transfer properties, and also brings plentiful CN groups that enrich the proton by hydrogen bonds to enhance the photocatalysis performance. Thus, PyPz-COF exhibits a significantly improved photocatalytic hydrogen generation performance up to 7542 µmol g-1 h-1 with Pt as cocatalyst, also in clear contrast to that of PyTp-COF without pyrazine introduction (1714 µmol g-1 h-1 ). Moreover, the abundant nitrogen sites of the pyrazine ring and the well-defined 1D nanochannels enable the as-prepared COFs to immobilize H3 PO4 proton carriers in COFs through hydrogen bond confinement. The resulting material has an impressive proton conduction up to 8.10 × 10-2 S cm-1 at 353 K, 98% RH. This work will inspire the design and synthesis of COF-based materials with both efficient photocatalysis and proton conduction performance in the future.
Collapse
Affiliation(s)
- Feng-Dong Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Li-Juan Yang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Xin-Xin Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Yi Rong
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Li-Bin Yang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Chen-Xi Zhang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
- Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Fang-You Yan
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Qing-Lun Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
27
|
Tang X, Yang Y, Li X, Wang X, Guo D, Zhang S, Zhang K, Wu J, Zheng J, Zheng S, Fan J, Zhang W, Cai S. Postmodification of an Amine-Functionalized Covalent Organic Framework for Enantioselective Adsorption of Tyrosine. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24836-24845. [PMID: 37191124 DOI: 10.1021/acsami.3c02025] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The development of chiral covalent organic frameworks (COFs) by postsynthetic modification is challenging due to the common occurrences of racemization and crystallinity decrement under harsh modification conditions. Herein, we employ an effective site-selective synthetic strategy for the fabrication of an amine-functionalized hydrazone-linked COF, NH2-Th-Tz COF, by the Schiff-base condensation between aminoterephthalohydrazide (NH2-Th) and 4,4',4″-(1,3,5-triazine-2,4,6-triyl)tribenzaldehyde (Tz). The resulting NH2-Th-Tz COF with free amine groups on the pore walls provides an appealing platform to install desired chiral moieties through postsynthetic modification. Three chiral moieties including tartaric acid, camphor-10-sulfonyl chloride, and diacetyl-tartaric anhydride were postsynthetically integrated into NH2-Th-Tz COF by reacting amine groups with acid, acyl chloride, and anhydride, giving rise to a series of chiral COFs with distinctive chiral pore surfaces. Moreover, the crystallinity, porosity, and chirality of chiral COFs were retained after modification. Remarkably, the chiral COFs exhibited an exceptional enantioselective adsorption capability toward tyrosine with a maximum enantiomeric excess (ee) value of up to 25.20%. Molecular docking simulations along with experimental results underscored the pivotal role of hydrogen bonds between chiral COFs and tyrosine in enantioselective adsorption. This work highlights the potential of site-selective synthesis as an effective tool for the preparation of highly crystalline and robust amine-decorated COFs, which offer an auspicious platform for the facile synthesis of tailor-made chiral COFs for enantioselective adsorption and beyond.
Collapse
Affiliation(s)
- Xihao Tang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, And Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Yixuan Yang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, And Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Xinle Li
- Department of Chemistry, Clark Atlanta University, Atlanta, Georgia 30314, United States
| | - Xingjie Wang
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Dong Guo
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, And Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Shuyuan Zhang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, And Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Kai Zhang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, And Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Jialin Wu
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, And Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Jiayue Zheng
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, And Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Shengrun Zheng
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, And Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Jun Fan
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, And Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Weiguang Zhang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, And Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Songliang Cai
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, And Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
28
|
Jawhari AH, Hasan N. Nanocomposite Electrocatalysts for Hydrogen Evolution Reactions (HERs) for Sustainable and Efficient Hydrogen Energy-Future Prospects. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3760. [PMID: 37241385 PMCID: PMC10220912 DOI: 10.3390/ma16103760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Hydrogen is considered a good clean and renewable energy substitute for fossil fuels. The major obstacle facing hydrogen energy is its efficacy in meeting its commercial-scale demand. One of the most promising pathways for efficient hydrogen production is through water-splitting electrolysis. This requires the development of active, stable, and low-cost catalysts or electrocatalysts to achieve optimized electrocatalytic hydrogen production from water splitting. The objective of this review is to survey the activity, stability, and efficiency of various electrocatalysts involved in water splitting. The status quo of noble-metal- and non-noble-metal-based nano-electrocatalysts has been specifically discussed. Various composites and nanocomposite electrocatalysts that have significantly impacted electrocatalytic HERs have been discussed. New strategies and insights in exploring nanocomposite-based electrocatalysts and utilizing other new age nanomaterial options that will profoundly enhance the electrocatalytic activity and stability of HERs have been highlighted. Recommendations on future directions and deliberations for extrapolating information have been projected.
Collapse
Affiliation(s)
| | - Nazim Hasan
- Department of Chemistry, Faculty of Science, Jazan University, Jazan 45142, Saudi Arabia;
| |
Collapse
|
29
|
Chung WT, Mekhemer IM, Mohamed MG, Elewa AM, EL-Mahdy AF, Chou HH, Kuo SW, Wu KCW. Recent advances in metal/covalent organic frameworks based materials: Their synthesis, structure design and potential applications for hydrogen production. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
30
|
An S, Li X, Shang S, Xu T, Yang S, Cui CX, Peng C, Liu H, Xu Q, Jiang Z, Hu J. One-Dimensional Covalent Organic Frameworks for the 2e - Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2023; 62:e202218742. [PMID: 36655733 DOI: 10.1002/anie.202218742] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/06/2023] [Accepted: 01/19/2023] [Indexed: 01/20/2023]
Abstract
Two-dimensional covalent organic frameworks (2D COFs) are often employed for electrocatalytic systems because of their structural diversity. However, the efficiency of atom utilization is still in need of improvement, because the catalytic centers are located in the basal layers and it is difficult for the electrolytes to access them. Herein, we demonstrate the use of 1D COFs for the 2e- oxygen reduction reaction (ORR). The use of different four-connectivity blocks resulted in the prepared 1D COFs displaying good crystallinity, high surface areas, and excellent chemical stability. The more exposed catalytic sites resulted in the 1D COFs showing large electrochemically active surface areas, 4.8-fold of that of a control 2D COF, and thus enabled catalysis of the ORR with a higher H2 O2 selectivity of 85.8 % and activity, with a TOF value of 0.051 s-1 at 0.2 V, than a 2D COF (72.9 % and 0.032 s-1 ). This work paves the way for the development of COFs with low dimensions for electrocatalysis.
Collapse
Affiliation(s)
- Shuhao An
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Xuewen Li
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), 201210, Shanghai, P. R. China.,School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China.,Shanghai Institute of Applied Physics, Chinese Academy of Science, 201210, Shanghai, P. R. China
| | - Shuaishuai Shang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Ting Xu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Shuai Yang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), 201210, Shanghai, P. R. China.,School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Cheng-Xing Cui
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, 453003, Xinxiang, P. R. China
| | - Changjun Peng
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Honglai Liu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Qing Xu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), 201210, Shanghai, P. R. China.,School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Zheng Jiang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), 201210, Shanghai, P. R. China.,School of Chemical Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China.,Shanghai Institute of Applied Physics, Chinese Academy of Science, 201210, Shanghai, P. R. China
| | - Jun Hu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| |
Collapse
|
31
|
Ruidas S, Chowdhury A, Ghosh A, Ghosh A, Mondal S, Wonanke ADD, Addicoat M, Das AK, Modak A, Bhaumik A. Covalent Organic Framework as a Metal-Free Photocatalyst for Dye Degradation and Radioactive Iodine Adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4071-4081. [PMID: 36905363 DOI: 10.1021/acs.langmuir.2c03379] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Exploring a covalent organic framework (COF) material as an efficient metal-free photocatalyst and as an adsorbent for the removal of pollutants from contaminated water is very challenging in the context of sustainable chemistry. Herein, we report a new porous crystalline COF, C6-TRZ-TPA COF, via segregation of donor-acceptor moieties through the extended Schiff base condensation between tris(4-formylphenyl)amine and 4,4',4″-(1,3,5-triazine-2,4,6-triyl)trianiline. This COF displayed a Brunauer-Emmett-Teller (BET) surface area of 1058 m2 g-1 with a pore volume of 0.73 cc g-1. Again, extended π-conjugation, the presence of heteroatoms throughout the framework, and a narrow band gap of 2.2 eV, all these features collectively work for the environmental remediation in two different perspectives: it could harness solar energy for environmental clean-up, where the COF has been explored as a robust metal-free photocatalyst for wastewater treatment and as an adsorbent for iodine capture. In our endeavor of wastewater treatment, we have conducted the photodegradation of rose bengal (RB) and methylene blue (MB) as model pollutants since these are extremely toxic, are health hazard, and bioaccumulative in nature. The catalyst C6-TRZ-TPA COF showed a very high catalytic efficiency of 99% towards the degradation of 250 parts per million (ppm) of RB solution in 80 min under visible light irradiation with the rate constant of 0.05 min-1. Further, C6-TRZ-TPA COF is found to be an excellent adsorbent as it efficiently adsorbed radioactive iodine from its solution as well as from the vapor phase. The material exhibits a very rapid iodine capturing tendency with an outstanding iodine vapor uptake capacity of 4832 mg g-1.
Collapse
Affiliation(s)
- Santu Ruidas
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Avik Chowdhury
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Anirban Ghosh
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Avik Ghosh
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Sujan Mondal
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - A D Dinga Wonanke
- School of Science and Technology, Nottingham Trent University, Clifton Lane, NG11 8NS Nottingham, U.K
| | - Matthew Addicoat
- School of Science and Technology, Nottingham Trent University, Clifton Lane, NG11 8NS Nottingham, U.K
| | - Abhijit Kumar Das
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Arindam Modak
- Amity Institute of Applied Sciences, Amity University, Noida, Amity Rd, Sector 125, Noida, Uttar Pradesh 201301, India
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
32
|
Chongdar S, Mondal U, Chakraborty T, Banerjee P, Bhaumik A. A Ni-MOF as Fluorescent/Electrochemical Dual Probe for Ultrasensitive Detection of Picric Acid from Aqueous Media. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36893380 DOI: 10.1021/acsami.3c00604] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A water-stable, microporous, luminescent Ni(II)-based metal-organic framework (MOF) (Ni-OBA-Bpy-18) with a 4-c uninodal sql topology was solvothermally synthesized using mixed N-, O-donor-directed π-conjugated co-ligands. The extraordinary performance of this MOF toward rapid monitoring of mutagenic explosive trinitrophenol (TNP) in aqueous and vapor phases by the fluorescence "Turn-off" technique with an ultralow detection limit of 66.43 ppb (Ksv: 3.45 × 105 M-1) was governed by a synchronous occurrence of photoinduced electron transfer-resonance energy transfer-intermolecular charge transfer (PET-RET-ICT) and non-covalent π···π weak interactions, as revealed from density functional theory studies. The recyclable nature of the MOF, detection from complex environmental matrices, and fabrication of a handy MOF@cotton-swab detection kit certainly escalated the on-field viability of the probe. Interestingly, the presence of electron-withdrawing TNP decisively facilitated the redox events of the reversible NiIII/II and NiIV/III couples under an applied voltage based on which electrochemical recognition of TNP was realized by the Ni-OBA-Bpy-18 MOF/glassy carbon electrode, with an excellent detection limit of ∼0.6 ppm. Such detection of a specific analyte by MOF-based probe via two divergent yet coherent techniques is unprecedented and yet to be explored in relevant literature.
Collapse
Affiliation(s)
- Sayantan Chongdar
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Udayan Mondal
- Surface Engineering & Tribology Division, CSIR-Central Mechanical Engineering Research Institute, M. G. Avenue, Durgapur 713209, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Tonmoy Chakraborty
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Priyabrata Banerjee
- Surface Engineering & Tribology Division, CSIR-Central Mechanical Engineering Research Institute, M. G. Avenue, Durgapur 713209, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
33
|
Zhao K, Han S, Ke L, Wu X, Yan X, Cao X, Li L, Jiang X, Wang Z, Liu H, Yan N. Operando Studies of Electrochemical Denitrogenation and Its Mitigation of N-Doped Carbon Catalysts in Alkaline Media. ACS Catal 2023; 13:2813-2821. [PMID: 36910874 PMCID: PMC9990068 DOI: 10.1021/acscatal.2c05590] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/17/2023] [Indexed: 02/11/2023]
Abstract
N-doped carbons (NCs) have excellent electrocatalytic performance in oxygen reduction reaction, particularly in alkaline conditions, showing great promise of replacing commercial Pt/C catalysts in fuel cells and metal-air batteries. However, NCs are vulnerable when biased at high potentials, which suffer from denitrogenation and carbon corrosion. Such material degradation drastically undermines the activity, yet its dynamic evolution in response to the applied potentials is challenging to examine experimentally. In this work, we used differential electrochemical mass spectroscopy coupled with an optimized cell and observed the dynamic behaviors of NCs under operando conditions in KOH electrolyte. The corrosion of carbon occurred at ca. 1.2 V vs RHE, which was >0.3 V below the measured onset potential of water oxidation. Denitrogenation proceeded in parallel with carbon corrosion, releasing both NO and NO2. Combined with the ex situ characterizations and density-functional theory calculations, we identified that the pyridinic nitrogen moieties were particularly in peril. Three denitrogenation pathways were also proposed. Finally, we demonstrated that transferring the oxidation reaction sites to the well-deposited metal hydroxide with optimized loading was effective in suppressing the N leaching. This work showed the dynamic evolution of NC under potential bias and might cast light on understanding and mitigating NC deactivation for practical applications.
Collapse
Affiliation(s)
- Kai Zhao
- School
of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Shihao Han
- School
of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Le Ke
- School
of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xiaoyu Wu
- School
of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xiaoyu Yan
- School
of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xiaojuan Cao
- School
of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Lingjiao Li
- School
of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xiaoyi Jiang
- School
of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Zhiping Wang
- School
of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Huijun Liu
- School
of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Ning Yan
- School
of Physics and Technology, Wuhan University, Wuhan 430072, China
- Van’t
Hoff Institute for Molecular Sciences, University
of Amsterdam, Amsterdam 1098XH, The Netherlands
| |
Collapse
|
34
|
You Z, Wang B, Zhao Z, Zhang Q, Song W, Zhang C, Long X, Xia Y. Metal-Free Carbon-Based Covalent Organic Frameworks with Heteroatom-Free Units Boost Efficient Oxygen Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209129. [PMID: 36427268 DOI: 10.1002/adma.202209129] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Accurate identification of carbon-based metal-free electrocatalyst (CMFE) activity and enhancing their catalytic efficiency for O2 conversion is an urgent and challenging task. This study reports a promising strategy to simultaneously develop a series of covalent organic frameworks (COFs) with well-defined heterocyclic-free biphenyl or fluorenyl units. Unlike heteroatom doping, the developed method not only supplies methyl-induced molecular configuration to promote activity, but also provides a direct opportunity to identify heteroatom-free carbon active centers. The introduction of methyl groups (MGs) with reversible valence bonds into a pristine biphenyl-based COF results in an excellent performance with a half-wave potential of 0.74 V versus the reversible hydrogen electrode (RHE), which is among the highest values for CMFE-COFs as oxygen reduction reaction (ORR) electrocatalysts. Combined with in situ Raman spectra and theoretical calculations, the MG-bound skeleton (DAF-COF) is found to produce ortho activation, confirming the ortho carbon (site-5) adjacent to MGs as active centers. This may be attributed to the opening and binding of MGs, which effectively regulate the molecular configuration and charge redistribution, as well as improve charge transfer and reduce the energy barrier. This study provides insight into the design of highly efficient metal-free organic electrocatalysts via the regulation of valence bonds.
Collapse
Affiliation(s)
- Zhihu You
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Bingbing Wang
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Zijie Zhao
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Qiankun Zhang
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Weichen Song
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Chuanhui Zhang
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xiaojing Long
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Yanzhi Xia
- State Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
35
|
Bao R, Xiang Z, Qiao Z, Yang Y, Zhang Y, Cao D, Wang S. Designing Thiophene-Enriched Fully Conjugated 3D Covalent Organic Framework as Metal-Free Oxygen Reduction Catalyst for Hydrogen Fuel Cells. Angew Chem Int Ed Engl 2023; 62:e202216751. [PMID: 36428273 DOI: 10.1002/anie.202216751] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022]
Abstract
The application of three-dimensional (3D) covalent organic frameworks (COFs) in renewable energy fields is greatly limited due to their non-conjugated skeletons. Here, we design and successfully synthesize a thiophene-enriched fully conjugated 3D COF (BUCT-COF-11) through an all-thiophene-linked saddle-shaped building block (COThTh-CHO). The BUCT-COF-11 exhibits excellent semiconducting property with intrinsic metal-free oxygen reduction reaction (ORR) activity. Using the COF as cathode catalyst, the assembled anion-exchange membrane fuel cells (AEMFCs) exhibited a high peak power density up to 493 mW cm-2 . DFT calculations reveal that thiophene introduction in the COF not only improves the conductivity but also optimizes the electronic structure of the sample, which therefore boosts the ORR performance. This is the first report on the application of COFs as metal-free catalysts in fuel cells, demonstrating the great potential of fully conjugated 3D COFs as promising semiconductors in energy fields.
Collapse
Affiliation(s)
- Rui Bao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhehao Xiang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zelong Qiao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yongping Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yuting Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shitao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
36
|
Novel Bifunctional Nitrogen Doped MoS2/COF-C4N Vertical Heterostructures for Electrocatalytic HER and OER. Catalysts 2023. [DOI: 10.3390/catal13010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Highly active and earth-abundant catalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) play vital roles in developing efficient water splitting to produce hydrogen fuels. Here, we reported an effective strategy to fabricate a completely new nitrogen-doped MoS2/COF-C4N vertical heterojunction (N-MoS2/COF-C4N) as precious-metal-free bifunctional electrocatalysts for both HER and OER. Compared with MoS2 and COF-C4N, the obtained vertical N-MoS2/COF-C4N catalyst showed enhanced HER with a low overpotential of 106 mV at 10 mA cm−2, which is six times lower than MoS2. The superior acidic HER activity, molecular mechanism, and charge transfer characteristic of this vertical N-MoS2/COF-C4N were investigated experimentally and theoretically in detail. Its basic OER activity is almost equal to that of COF-C4N with an overpotential of 349 mV at 10 mA cm−2, which showed that the in-situ growing method maintains the exposure of the C active sites to the greatest extent. The preparation and investigation for vertical N-MoS2/COF-C4N provide ideas and a research basis for us to further explore promising overall water-splitting electrocatalysts.
Collapse
|
37
|
Heravifard Z, Akbarzadeh AR, Tayebi L, Rahimi R. Structural Properties Covalent Organic Frameworks (COFs): From Dynamic Covalent Bonds to their Applications. ChemistrySelect 2022. [DOI: 10.1002/slct.202202005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Zahra Heravifard
- Department of Chemistry Iran University of Science and Technology, P.O. Box 16846-13114 Tehran Islamic Republic of Iran
| | - Ali Reza Akbarzadeh
- Department of Chemistry Iran University of Science and Technology, P.O. Box 16846-13114 Tehran Islamic Republic of Iran
| | - Leila Tayebi
- Department of Chemistry Iran University of Science and Technology, P.O. Box 16846-13114 Tehran Islamic Republic of Iran
| | - Rahmatollah Rahimi
- Department of Chemistry Iran University of Science and Technology, P.O. Box 16846-13114 Tehran Islamic Republic of Iran
| |
Collapse
|
38
|
Ghoshal S, Ghosh A, Roy P, Ball B, Pramanik A, Sarkar P. Recent Progress in Computational Design of Single-Atom/Cluster Catalysts for Electrochemical and Solar-Driven N 2 Fixation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sourav Ghoshal
- Department of Chemistry, Visva-Bharati University, Santiniketan731 235, India
| | - Atish Ghosh
- Department of Chemistry, Visva-Bharati University, Santiniketan731 235, India
| | - Prodyut Roy
- Department of Chemistry, Visva-Bharati University, Santiniketan731 235, India
| | - Biswajit Ball
- Department of Chemistry, Visva-Bharati University, Santiniketan731 235, India
| | - Anup Pramanik
- Department of Chemistry, Sidho-Kanho-Birsha University, Purulia723 104, India
| | - Pranab Sarkar
- Department of Chemistry, Visva-Bharati University, Santiniketan731 235, India
| |
Collapse
|
39
|
Hu B, Li J, Wang Y, Hu X, Shi Y, Jin L. Design, electrosynthesis and electrochromic properties of conjugated microporous polymer films based on butterfly-shaped diphenylamine-thiophene derivatives. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
40
|
Saini S, Chakraborty D, Erakulan ES, Thapa R, Bal R, Bhaumik A, Jain SL. Visible Light-Driven Metal-Organic Framework-Mediated Activation and Utilization of CO 2 for the Thiocarboxylation of Olefins. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50913-50922. [PMID: 36326441 DOI: 10.1021/acsami.2c14462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Visible light-mediated photoredox catalysis has emerged to be a fascinating approach for the activation of CO2 and its subsequent fixation into valuable chemicals utilizing renewable and inexhaustible solar energy. Although great progress has been made in CO2 photoreduction, visible light-assisted organic synthesis using CO2 as a reactive substrate is rarely explored. Herein, we report an efficient, facile, and economically viable photoredox-mediated approach for the synthesis of important β-thioacids via carboxylation of olefins with CO2 and thiols over a porous functionalized metal-organic framework (MOF), Fe-MIL-101-NH2, as a photocatalyst under ambient conditions. This multicomponent reaction offers wide substrate scope, mild reaction conditions, easy work-up, cost-effective and reusable photocatalysts, and higher product selectivity. Computational studies suggested that CO2 interacts with the thiophenol-styrene adduct to facilitate the synthesis of β-thioacids in almost quantitative yields.
Collapse
Affiliation(s)
- Sandhya Saini
- Chemical & Material Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Mohkampur, Dehradun 248005, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201 002, India
| | - Debabrata Chakraborty
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - E S Erakulan
- Department of Physics, SRM University-AP, Amaravati 522240, Andhra Pradesh, India
| | - Ranjit Thapa
- Department of Physics, SRM University-AP, Amaravati 522240, Andhra Pradesh, India
| | - Rajaram Bal
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201 002, India
- Light Stock Process Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Mohkampur, Dehradun 248005, India
| | - Asim Bhaumik
- School of Materials Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India
| | - Suman L Jain
- Chemical & Material Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Mohkampur, Dehradun 248005, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201 002, India
| |
Collapse
|
41
|
Ruidas S, Das A, Kumar S, Dalapati S, Manna U, Bhaumik A. Non‐Fluorinated and Robust Superhydrophobic Modification on Covalent Organic Framework for Crude‐Oil‐in‐Water Emulsion Separation. Angew Chem Int Ed Engl 2022; 61:e202210507. [DOI: 10.1002/anie.202210507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Santu Ruidas
- School of Materials Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata 700032 India
| | - Avijit Das
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Saurav Kumar
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Sasanka Dalapati
- Department of Materials Science, School of Technology Central University of Tamil Nadu (CUTN) Thiruvarur 610005 Tamil Nadu India
| | - Uttam Manna
- Department of Chemistry Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
- Centre for Nanotechnology Indian Institute of Technology-Guwahati Kamrup Assam 781039 India
| | - Asim Bhaumik
- School of Materials Sciences Indian Association for the Cultivation of Science Jadavpur Kolkata 700032 India
| |
Collapse
|
42
|
Luo QX, Cai YJ, Mao XL, Li YJ, Zhang CR, Liu X, Chen XR, Liang RP, Qiu JD. Tuned-Potential Covalent organic framework Electrochemiluminescence platform for lutetium analysis. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Li X, Liu Q, Yang B, Liao Z, Yan W, Xiang Z. An Initial Covalent Organic Polymer with Closed-F Edges Directly for Proton-Exchange-Membrane Fuel Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204570. [PMID: 35863906 DOI: 10.1002/adma.202204570] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Covalent organic polymers (COPs) are a class of rising electrocatalysts for the oxygen reduction reaction (ORR) due to the atomically metrical control of the organic molecular components along with highly architectural robustness and thermodynamic stability even in acid or alkaline media. However, the direct application of pristine COPs as acidic ORR electrocatalysts, especially in device manner, e.g., in proton-exchange-membrane fuel cells (PEMFCs), remains a big challenge. Currently, the decoration toward electronic structures of active sites is considered a vital pathway to enhancing the acidic ORR activity of carbon-based electrocatalysts. Here, an initial F-decorated fully closed π-conjugated quasi-phthalocyanine COP (denoted as COPBTC -F) is reported. The introduction of the closed-F edges stepwise drags more electrons from FeN4 sites in COPBTC -F into the catalyst margin, which weakens the occupied numbers of bonding orbitals between COPBTC -F and OH* intermediates at the rate-determining step, exhibiting over five times intrinsic performance beyond the counterpart without F functionalities (termed as COPBTC ). Significantly, the maximum power density utilizing COPBTC -F as a cathode catalyst in PEMFCs is remarkably increased by an order of magnitude compared with COPBTC , which is a stride forward among catalysts based on a pyrolysis-free conjugated-polymer network in device manner to date.
Collapse
Affiliation(s)
- Xueli Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qingbin Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Bolong Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhijian Liao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- College of Marine Science and Technology, Hainan Tropical Ocean University, Sanya, 572022, P. R. China
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Zhonghua Xiang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
44
|
Zhang M, Lai C, Xu F, Huang D, Liu S, Fu Y, Li L, Yi H, Qin L, Chen L. Atomically dispersed metal catalysts confined by covalent organic frameworks and their derivatives for electrochemical energy conversion and storage. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
45
|
Ruidas S, Das A, Kumar S, Dalapati S, Manna U, Bhaumik A. Non‐Fluorinated and Robust Superhydrophobic Modification on Covalent Organic Framework for Crude‐Oil‐in‐Water Emulsion Separation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Santu Ruidas
- Indian Association for the Cultivation of Science School of Materials Sciences 2A & 2B Raja S C Mullick Road, Jadavpur 700032 Kolkata INDIA
| | - Avijit Das
- Indian Institute of Technology Guwahati Dapartment of Chemistry INDIA
| | - Saurav Kumar
- Indian Institute of Technology Guwahati Dapartment of Chemistry INDIA
| | - Sasanka Dalapati
- Central University of Tamil Nadu Department of Materials Science INDIA
| | - Uttam Manna
- Indian Institute of Technology Guwahati Dapartment of Chemistry INDIA
| | - Asim Bhaumik
- Indian Association for the Cultivation of Science Department of Materials Science 2A & B Raja S. C. Mullick RoadJadavpur 700032 Kolkata INDIA
| |
Collapse
|
46
|
Li W, Wang J, Chen J, Chen K, Wen Z, Huang A. Core-Shell Carbon-Based Bifunctional Electrocatalysts Derived from COF@MOF Hybrid for Advanced Rechargeable Zn-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202018. [PMID: 35808960 DOI: 10.1002/smll.202202018] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The development of highly active carbon-based bifunctional electrocatalysts for both the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is highly desired, but still full of challenges in rechargeable Zn-air batteries. Metal organic frameworks (MOFs) and covalent organic frameworks (COFs) have gained great attention for various applications due to their attractive features of structural tunability, high surface area and high porosity. Herein, a core-shell structured carbon-based hybrid electrocatalyst (H-NSC@Co/NSC), which contains high density active sites of MOF-derived shell (Co/NSC) and COF-derived hollow core (H-NSC), is successfully fabricated by direct pyrolysis of covalently-connected COF@ZIF-67 hybrid. The core-shell H-NSC@Co/NSC hybrid manifests excellent catalytic properties toward both OER and ORR with a small potential gap (∆E = 0.75 V). The H-NSC@Co/NSC assembled Zn-air battery exhibits a high power-density of 204.3 mW cm-2 and stable rechargeability, outperforming that of Pt/C+RuO2 assembled Zn-air battery. Density functional theory calculations reveal that the electronic structure of the carbon frameworks on the Co/NSC shell can be effectively modulated by the embedded Co nanoparticles (NPs), facilitating the adsorption of oxygen intermediates and leading to enhanced catalytic activity. This work will provide a strategy to design highly-efficient electrocatalysts for application in energy conversion and storage.
Collapse
Affiliation(s)
- Wei Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Jingyun Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| | - Junxiang Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Kai Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Zhenhai Wen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Aisheng Huang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai, 200241, China
| |
Collapse
|
47
|
Giri L, Mohanty B, Thapa R, Jena BK, Pedireddi VR. Hydrogen-Bonded Organic Framework Structure: A Metal-Free Electrocatalyst for the Evolution of Hydrogen. ACS OMEGA 2022; 7:22440-22446. [PMID: 35811884 PMCID: PMC9260925 DOI: 10.1021/acsomega.2c01585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
The hydrogen-bonded organic frameworks (HOFs) have gained significant attention due to their various alluring applications in the fascinating field of supramolecular chemistry. Herein, we report the electrocatalytic activity of HOFs toward the hydrogen evolution reaction (HER) by utilizing the molecular adduct of cyanuric and trithiocyanuric acid with various organic substrates (melamine and 4,4'-bipyridine). Both the experimental and theoretical findings provide insights and validate the electrocatalytic activity toward HER applications. This work contributes significantly to designing novel highly efficient metal-free HOF-based electrocatalysts for the HER.
Collapse
Affiliation(s)
- Lopamudra Giri
- CSIR-Institute
of Minerals and Materials Technology, Bhubaneswar, 751013 Odisha, India
- Solid
State and Supramolecular Structural Chemistry Laboratory, School of
Basic Sciences, Indian Institute of Technology
Bhubaneswar, Argul, Bhubaneswar 752 050, India
| | - Bishnupad Mohanty
- CSIR-Institute
of Minerals and Materials Technology, Bhubaneswar, 751013 Odisha, India
| | - Ranjit Thapa
- Department
of Physics, SRM University—AP, Amaravati, 52240 Andhra Pradesh, India
| | - Bikash Kumar Jena
- CSIR-Institute
of Minerals and Materials Technology, Bhubaneswar, 751013 Odisha, India
- Academy
of Scientific & Innovative Research, Ghaziabad 201002, India
| | - Venkateswara Rao Pedireddi
- Solid
State and Supramolecular Structural Chemistry Laboratory, School of
Basic Sciences, Indian Institute of Technology
Bhubaneswar, Argul, Bhubaneswar 752 050, India
| |
Collapse
|
48
|
Das M, Khan ZB, Banerjee M, Biswas A, Dey RS. Three-dimensional nickel and copper-based foam-in-foam architecture as an electrode for efficient water electrolysis. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
49
|
Patra A, Samal R, Rout CS. Promising Water Splitting Applications of Synergistically Assembled Robust Orthorhombic CoSe2 and 2D Ti3C2Tx MXene Hybrids. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.07.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
50
|
Chatenet M, Pollet BG, Dekel DR, Dionigi F, Deseure J, Millet P, Braatz RD, Bazant MZ, Eikerling M, Staffell I, Balcombe P, Shao-Horn Y, Schäfer H. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments. Chem Soc Rev 2022; 51:4583-4762. [PMID: 35575644 PMCID: PMC9332215 DOI: 10.1039/d0cs01079k] [Citation(s) in RCA: 276] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 12/23/2022]
Abstract
Replacing fossil fuels with energy sources and carriers that are sustainable, environmentally benign, and affordable is amongst the most pressing challenges for future socio-economic development. To that goal, hydrogen is presumed to be the most promising energy carrier. Electrocatalytic water splitting, if driven by green electricity, would provide hydrogen with minimal CO2 footprint. The viability of water electrolysis still hinges on the availability of durable earth-abundant electrocatalyst materials and the overall process efficiency. This review spans from the fundamentals of electrocatalytically initiated water splitting to the very latest scientific findings from university and institutional research, also covering specifications and special features of the current industrial processes and those processes currently being tested in large-scale applications. Recently developed strategies are described for the optimisation and discovery of active and durable materials for electrodes that ever-increasingly harness first-principles calculations and machine learning. In addition, a technoeconomic analysis of water electrolysis is included that allows an assessment of the extent to which a large-scale implementation of water splitting can help to combat climate change. This review article is intended to cross-pollinate and strengthen efforts from fundamental understanding to technical implementation and to improve the 'junctions' between the field's physical chemists, materials scientists and engineers, as well as stimulate much-needed exchange among these groups on challenges encountered in the different domains.
Collapse
Affiliation(s)
- Marian Chatenet
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Bruno G Pollet
- Hydrogen Energy and Sonochemistry Research group, Department of Energy and Process Engineering, Faculty of Engineering, Norwegian University of Science and Technology (NTNU) NO-7491, Trondheim, Norway
- Green Hydrogen Lab, Institute for Hydrogen Research (IHR), Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G9A 5H7, Canada
| | - Dario R Dekel
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- The Nancy & Stephen Grand Technion Energy Program (GTEP), Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Fabio Dionigi
- Department of Chemistry, Chemical Engineering Division, Technical University Berlin, 10623, Berlin, Germany
| | - Jonathan Deseure
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Pierre Millet
- Paris-Saclay University, ICMMO (UMR 8182), 91400 Orsay, France
- Elogen, 8 avenue du Parana, 91940 Les Ulis, France
| | - Richard D Braatz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Martin Z Bazant
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Michael Eikerling
- Chair of Theory and Computation of Energy Materials, Division of Materials Science and Engineering, RWTH Aachen University, Intzestraße 5, 52072 Aachen, Germany
- Institute of Energy and Climate Research, IEK-13: Modelling and Simulation of Materials in Energy Technology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Iain Staffell
- Centre for Environmental Policy, Imperial College London, London, UK
| | - Paul Balcombe
- Division of Chemical Engineering and Renewable Energy, School of Engineering and Material Science, Queen Mary University of London, London, UK
| | - Yang Shao-Horn
- Research Laboratory of Electronics and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Helmut Schäfer
- Institute of Chemistry of New Materials, The Electrochemical Energy and Catalysis Group, University of Osnabrück, Barbarastrasse 7, 49076 Osnabrück, Germany.
| |
Collapse
|