1
|
Liebich M, Florian M, Nilforoushan N, Mooshammer F, Koulouklidis AD, Wittmann L, Mosina K, Sofer Z, Dirnberger F, Kira M, Huber R. Controlling Coulomb correlations and fine structure of quasi-one-dimensional excitons by magnetic order. NATURE MATERIALS 2025:10.1038/s41563-025-02120-1. [PMID: 39972109 DOI: 10.1038/s41563-025-02120-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 12/23/2024] [Indexed: 02/21/2025]
Abstract
Many surprising properties of quantum materials result from Coulomb correlations defining electronic quasiparticles and their interaction chains. In van der Waals layered crystals, enhanced correlations have been tailored in reduced dimensions, enabling excitons with giant binding energies and emergent phases including ferroelectric, ferromagnetic and multiferroic orders. Yet, correlation design has primarily relied on structural engineering. Here we present quantitative experiment-theory proof that excitonic correlations can be switched through magnetic order. By probing internal Rydberg-like transitions of excitons in the magnetic semiconductor CrSBr, we reveal their binding energy and a dramatic anisotropy of their quasi-one-dimensional orbitals manifesting in strong fine-structure splitting. We switch the internal structure from strongly bound, monolayer-localized states to weakly bound, interlayer-delocalized states by pushing the system from antiferromagnetic to paramagnetic phases. Our analysis connects this transition to the exciton's spin-controlled effective quantum confinement, supported by the exciton's dynamics. In future applications, excitons or even condensates may be interfaced with spintronics; extrinsically switchable Coulomb correlations could shape phase transitions on demand.
Collapse
Affiliation(s)
- M Liebich
- Department of Physics, University of Regensburg, Regensburg, Germany
| | - M Florian
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - N Nilforoushan
- Department of Physics, University of Regensburg, Regensburg, Germany.
- Université Paris Cité, CNRS, Laboratoire Matériaux et Phénomènes Quantiques, Paris, France.
| | - F Mooshammer
- Regensburg Center for Ultrafast Nanoscopy, University of Regensburg, Regensburg, Germany
| | - A D Koulouklidis
- Department of Physics, University of Regensburg, Regensburg, Germany
| | - L Wittmann
- Department of Physics, University of Regensburg, Regensburg, Germany
| | - K Mosina
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Z Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - F Dirnberger
- Institute of Applied Physics, Dresden University of Technology, Dresden, Germany
- Department of Physics, Technical University of Munich, Munich, Germany
| | - M Kira
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA.
| | - R Huber
- Department of Physics, University of Regensburg, Regensburg, Germany
| |
Collapse
|
2
|
Huang X, Song Z, Gao Y, Gu P, Watanabe K, Taniguchi T, Yang S, Chen Z, Ye Y. Intrinsic Localized Excitons in MoSe 2/CrSBr Heterostructure. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413438. [PMID: 39696930 DOI: 10.1002/adma.202413438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/26/2024] [Indexed: 12/20/2024]
Abstract
Despite extensive studies on magnetic proximity effects, the fundamental excitonic properties of the 2D semiconductor-magnet heterostructures remain elusive. Here, the presence of localized excitons in MoSe2/CrSBr heterostructures is unveiled, represented by a new photoluminescence emission feature, X*. Our findings reveal that X* originates from excitons confined by intrinsic defects in the CrSBr layer. Additionally, the degrees of valley polarization of the X* and trion peaks exhibit opposite polarities under a magnetic field and closely correlate with the magnetic order of CrSBr. This is attributed to spin-dependent charge transfer across the heterointerface, supported by density functional theory calculations which reveal a type-II band alignment. Furthermore, the strong in-plane anisotropy of CrSBr induces unique polarization-dependent responses in MoSe2 emissions. This study highlights the crucial role of defects in shaping excitonic properties and offers valuable insights into spectrally resolved proximity effects in semiconductor-magnet van der Waals heterostructures.
Collapse
Affiliation(s)
- Xinyue Huang
- State Key Laboratory for Artificial Microstructure & Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Zhigang Song
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Yuchen Gao
- State Key Laboratory for Artificial Microstructure & Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Pingfan Gu
- State Key Laboratory for Artificial Microstructure & Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Shiqi Yang
- State Key Laboratory for Artificial Microstructure & Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Zuxin Chen
- School of Semiconductor Science and Technology, South China Normal University, Foshan, 528225, China
| | - Yu Ye
- State Key Laboratory for Artificial Microstructure & Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, 100871, China
- Yangtze Delta Institute of Optoelectronics, Peking University, Nantong, Jiangsu, 226010, China
- Liaoning Academy of Materials, Shenyang, 110167, China
| |
Collapse
|
3
|
Boix-Constant C, Rybakov A, Miranda-Pérez C, Martínez-Carracedo G, Ferrer J, Mañas-Valero S, Coronado E. Programmable Magnetic Hysteresis in Orthogonally-Twisted 2D CrSBr Magnets via Stacking Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415774. [PMID: 39780558 DOI: 10.1002/adma.202415774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/24/2024] [Indexed: 01/11/2025]
Abstract
Twisting 2D van der Waals magnets allows the formation and control of different spin-textures, as skyrmions or magnetic domains. Beyond the rotation angle, different spin reversal processes can be engineered by increasing the number of magnetic layers forming the twisted van der Waals heterostructure. Here, pristine monolayers and bilayers of the A-type antiferromagnet CrSBr are considered as building blocks. By rotating 90 degrees these units, symmetric (monolayer/monolayer and bilayer/bilayer) and asymmetric (monolayer/bilayer) heterostructures are fabricated. The magneto-transport properties reveal the appearance of magnetic hysteresis, which is highly dependent upon the magnitude and direction of the applied magnetic field and is determined not only by the twist-angle but also by the number of layers forming the stack. This high tunability allows switching between volatile and non-volatile magnetic memory at zero-field and controlling the appearance of abrupt magnetic reversal processes at either negative or positive field values on demand. The phenomenology is rationalized based on the different spin-switching processes occurring in the layers, as supported by micromagnetic simulations. The results highlight the combination between twist-angle and number of layers as key elements for engineering spin-switching reversals in twisted magnets, of interest toward the miniaturization of spintronic devices and realizing novel spin textures.
Collapse
Affiliation(s)
- Carla Boix-Constant
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, Paterna, 46980, Spain
| | - Andrey Rybakov
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, Paterna, 46980, Spain
| | - Clara Miranda-Pérez
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, Paterna, 46980, Spain
| | - Gabriel Martínez-Carracedo
- Departamento de Física, Universidad de Oviedo, Oviedo, 33007, Spain
- Centro de Investigación en Nanomateriales y Nanotecnología, Universidad de Oviedo-CSIC, El Entrego, 33940, Spain
| | - Jaime Ferrer
- Departamento de Física, Universidad de Oviedo, Oviedo, 33007, Spain
- Centro de Investigación en Nanomateriales y Nanotecnología, Universidad de Oviedo-CSIC, El Entrego, 33940, Spain
| | - Samuel Mañas-Valero
- Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, 2628CJ, The Netherlands
| | - Eugenio Coronado
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, Paterna, 46980, Spain
| |
Collapse
|
4
|
Liu Y, Zhi Y, Liu Q, Liu Y, Jiang X, Zhao J. Lattice thermal conductivity in CrSBr: the effects of interlayer interaction, magnetic ordering and external strain. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2025; 37:125701. [PMID: 39832447 DOI: 10.1088/1361-648x/adac22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/20/2025] [Indexed: 01/22/2025]
Abstract
With the continuous development of digital information and big data technologies, the ambient temperature and heat generation during the operation of magnetic storage devices play an increasingly crucial role in ensuring data security and device stability. In this study, we conducted a thorough investigation on in-plane lattice thermal conductivity of the van der Waals (vdWs) magnetic semiconductor CrSBr from bulk to monolayer using first-principles calculations and phonon Boltzmann transport equation. Our findings indicated that CrSBr show strong anisotropic thermal transport behaviors and layer number and magnetic ordering dependent lattice thermal conductivity. The lowest thermal conductivity is observed in y direction of antiferromagnetic CrSBr bilayer at all temperatures. Through the analysis of phonon spectra, phonon lifetime, heat capacity, scattering probability, phonon-phonon interaction strength, we demonstrated that out of plane acoustic phonon modes soften, the shift of Cr-Br antisymmetrical stretching vibrations, and large phonon band gap are the main factors. These results offer a comprehensive insight into phonon transport phenomena in vdWs magnetic materials.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Yupeng Zhi
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, People's Republic of China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Qinxi Liu
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, People's Republic of China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Yinqiao Liu
- School of Science, Dalian Jiaotong University, Dalian 116028, People's Republic of China
| | - Xue Jiang
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, People's Republic of China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Jijun Zhao
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, People's Republic of China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
5
|
Ni K, Zhou J, Chen Y, Cheng H, Cao Z, Guo J, Söll A, Hou X, Shan L, Sofer Z, Yang M, Yue Y, Xu J, Tian M, Gao W, Jiang Y, Fang Y, Liu X. Spin Canting Promoted Manipulation of Exchange Bias in a Perpendicular Coupled Fe 3GaTe 2/CrSBr Magnetic van der Waals Heterostructure. ACS NANO 2025; 19:2624-2632. [PMID: 39789918 DOI: 10.1021/acsnano.4c14452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Recently, two-dimensional (2D) van der Waals (vdW) magnetic materials have emerged as a promising platform for studying exchange bias (EB) phenomena due to their atomically flat surfaces and highly versatile stacking configurations. Although complex spin configurations between 2D vdW interfaces introduce challenges in understanding their underlying mechanisms, they can offer more possibilities in realizing effective manipulations. In this study, we present a spin-orthogonal arranged 2D Fe3GaTe2 (FGaT)/CrSBr vdW heterostructure, realizing the EB effect with the bias field as large as 1730 Oe at 2 K. Interestingly, this structure induces a positive EB under low cooling field, in contrast to conventional phenomena. Moreover, by employing asymmetric field sweeping methods, we effectively manipulate the zero-field cooling EB of the device with a switchable sign and a tunable magnitude. Thus, these findings not only elucidate a distinct mechanism analysis for EB phenomena with perpendicular coupled spin configurations but also hold promise for promoting contemporary 2D spintronic device applications.
Collapse
Affiliation(s)
- Kaipeng Ni
- Center of Free Electron Laser & High Magnetic Field, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Jiayuan Zhou
- Center of Free Electron Laser & High Magnetic Field, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yang Chen
- Jiangsu Laboratory of Advanced Functional Materials, School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Huanghuang Cheng
- Center of Free Electron Laser & High Magnetic Field, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Ziyi Cao
- Center of Free Electron Laser & High Magnetic Field, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Junming Guo
- Center of Free Electron Laser & High Magnetic Field, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Aljoscha Söll
- Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technicka 5 Prague 6, Prague 166 28, Czech Republic
| | - Xingyuan Hou
- Center of Free Electron Laser & High Magnetic Field, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
- Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Hefei 230601, China
| | - Lei Shan
- Center of Free Electron Laser & High Magnetic Field, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
- Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Hefei 230601, China
| | - Zdenek Sofer
- Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technicka 5 Prague 6, Prague 166 28, Czech Republic
| | - Mengmeng Yang
- Center of Free Electron Laser & High Magnetic Field, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yang Yue
- Center of Free Electron Laser & High Magnetic Field, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Jinsong Xu
- Department of Physics, University of Science and Technology of China, Hefei 230026, China
| | - Mingliang Tian
- School of Physics and Optoelectronics Engineering, Anhui University, Hefei 230601, China
| | - Wenshuai Gao
- Center of Free Electron Laser & High Magnetic Field, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yuxuan Jiang
- Center of Free Electron Laser & High Magnetic Field, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
- School of Physics and Optoelectronics Engineering, Anhui University, Hefei 230601, China
| | - Yong Fang
- Jiangsu Laboratory of Advanced Functional Materials, School of Electronic and Information Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Xue Liu
- Center of Free Electron Laser & High Magnetic Field, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
- Leibniz International Joint Research Center of Materials Sciences of Anhui Province, Hefei 230601, China
| |
Collapse
|
6
|
Beer A, Zollner K, Serati de Brito C, Faria Junior PE, Parzefall P, Ghiasi TS, Ingla-Aynés J, Mañas-Valero S, Boix-Constant C, Watanabe K, Taniguchi T, Fabian J, van der Zant HSJ, Galvão Gobato Y, Schüller C. Proximity-Induced Exchange Interaction and Prolonged Valley Lifetime in MoSe 2/CrSBr Van-Der-Waals Heterostructure with Orthogonal Spin Textures. ACS NANO 2024; 18:31044-31054. [PMID: 39466188 PMCID: PMC11562783 DOI: 10.1021/acsnano.4c07336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
Heterostructures, composed of semiconducting transition-metal dichalcogenides (TMDC) and magnetic van-der-Waals materials, offer exciting prospects for the manipulation of the TMDC valley properties via proximity interaction with the magnetic material. We show that the atomic proximity of monolayer MoSe2 and the antiferromagnetic van-der-Waals crystal CrSBr leads to an unexpected breaking of time-reversal symmetry, with originally perpendicular spin directions in both materials. The observed effect can be traced back to a proximity-induced exchange interaction via first-principles calculations. The resulting spin splitting in MoSe2 is determined experimentally and theoretically to be on the order of a few meV. Moreover, we find a more than 2 orders of magnitude longer valley lifetime of spin-polarized charge carriers in the heterostructure, as compared to monolayer MoSe2/SiO2, driven by a Mott transition in the type-III band-aligned heterostructure.
Collapse
Affiliation(s)
- Andreas Beer
- Institut
für Experimentelle und Angewandte Physik, Universität Regensburg, D-93040 Regensburg, Germany
| | - Klaus Zollner
- Institute
of Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany
| | - Caique Serati de Brito
- Institut
für Experimentelle und Angewandte Physik, Universität Regensburg, D-93040 Regensburg, Germany
- Physics
Department, Federal University of São
Carlos, São
Carlos, SP 13565-905, Brazil
| | - Paulo E. Faria Junior
- Institute
of Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany
| | - Philipp Parzefall
- Institut
für Experimentelle und Angewandte Physik, Universität Regensburg, D-93040 Regensburg, Germany
| | - Talieh S. Ghiasi
- Kavli
Institute of Nanoscience, Delft University
of Technology, Lorentzweg
1, 2628 CJ Delft, The Netherlands
| | - Josep Ingla-Aynés
- Kavli
Institute of Nanoscience, Delft University
of Technology, Lorentzweg
1, 2628 CJ Delft, The Netherlands
| | - Samuel Mañas-Valero
- Instituto
de Ciencia Molecular (ICMol), Universitat
de València, Catedrático
José Beltrán 2, Paterna 46980, Spain
| | - Carla Boix-Constant
- Instituto
de Ciencia Molecular (ICMol), Universitat
de València, Catedrático
José Beltrán 2, Paterna 46980, Spain
| | - Kenji Watanabe
- Research
Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research
Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Jaroslav Fabian
- Institute
of Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany
| | - Herre S. J. van der Zant
- Kavli
Institute of Nanoscience, Delft University
of Technology, Lorentzweg
1, 2628 CJ Delft, The Netherlands
| | - Yara Galvão Gobato
- Physics
Department, Federal University of São
Carlos, São
Carlos, SP 13565-905, Brazil
| | - Christian Schüller
- Institut
für Experimentelle und Angewandte Physik, Universität Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
7
|
Fei F, Mao Y, Fang W, Liu W, Rollins JP, Kondusamy ALN, Lv B, Ping Y, Wang Y, Xiao J. Spin-Mechanical Coupling in 2D Antiferromagnet CrSBr. NANO LETTERS 2024; 24:10467-10474. [PMID: 39096282 DOI: 10.1021/acs.nanolett.4c01751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Spin-mechanical coupling is vital in diverse fields including spintronics, sensing, and quantum transduction. Two-dimensional (2D) magnetic materials provide a unique platform for investigating spin-mechanical coupling, attributed to their mechanical flexibility and novel spin orderings. However, studying their spin-mechanical coupling presents challenges in probing mechanical deformation and thermodynamic property changes at the nanoscale. Here we use nano-optoelectromechanical interferometry to mechanically detect the phase transition and magnetostriction effect in multilayer CrSBr, an air-stable antiferromagnet with large magnon-exciton coupling. The transitions among antiferromagnetism, spin-canted ferromagnetism, and paramagnetism are visualized. Nontrivial magnetostriction coefficient 2.3 × 10-5 and magnetoelastic coupling strength on the order of 106 J/m3 have been found. Moreover, we demonstrate the substantial tunability of the magnetoelastic constant by nearly 50% via gate-induced strain. Our findings demonstrate the strong spin-mechanical coupling in CrSBr and pave the way for developing sensitive magnetic sensing and efficient quantum transduction at the atomically thin limit.
Collapse
Affiliation(s)
- Fan Fei
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Yulu Mao
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Wuzhang Fang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Wenhao Liu
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Jack P Rollins
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Aswin L N Kondusamy
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Bing Lv
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Yuan Ping
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ying Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jun Xiao
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
8
|
Guo X, Liu W, Schwartz J, Sung SH, Zhang D, Shimizu M, Kondusamy ALN, Li L, Sun K, Deng H, Jeschke HO, Mazin II, Hovden R, Lv B, Zhao L. Extraordinary phase transition revealed in a van der Waals antiferromagnet. Nat Commun 2024; 15:6472. [PMID: 39085242 PMCID: PMC11291737 DOI: 10.1038/s41467-024-50900-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
While the surface-bulk correspondence has been ubiquitously shown in topological phases, the relationship between surface and bulk in Landau-like phases is much less explored. Theoretical investigations since 1970s for semi-infinite systems have predicted the possibility of the surface order emerging at a higher temperature than the bulk, clearly illustrating a counterintuitive situation and greatly enriching phase transitions. But experimental realizations of this prediction remain missing. Here, we demonstrate the higher-temperature surface and lower-temperature bulk phase transitions in CrSBr, a van der Waals (vdW) layered antiferromagnet. We leverage the surface sensitivity of electric dipole second harmonic generation (SHG) to resolve surface magnetism, the bulk nature of electric quadrupole SHG to probe bulk spin correlations, and their interference to capture the two magnetic domain states. Our density functional theory calculations show the suppression of ferromagnetic-antiferromagnetic competition at the surface is responsible for this enhanced surface magnetism. Our results not only show counterintuitive, richer phase transitions in vdW magnets, but also provide viable ways to enhance magnetism in their 2D form.
Collapse
Affiliation(s)
- Xiaoyu Guo
- Department of Physics, University of Michigan, Ann Arbor, MI, USA
| | - Wenhao Liu
- Department of Physics, the University of Texas at Dallas, Richardson, TX, USA
| | - Jonathan Schwartz
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Suk Hyun Sung
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Dechen Zhang
- Department of Physics, University of Michigan, Ann Arbor, MI, USA
| | - Makoto Shimizu
- Department of Physics, Okayama University, Okayama, Japan
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Aswin L N Kondusamy
- Department of Physics, the University of Texas at Dallas, Richardson, TX, USA
| | - Lu Li
- Department of Physics, University of Michigan, Ann Arbor, MI, USA
| | - Kai Sun
- Department of Physics, University of Michigan, Ann Arbor, MI, USA
| | - Hui Deng
- Department of Physics, University of Michigan, Ann Arbor, MI, USA
| | - Harald O Jeschke
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, Japan
| | - Igor I Mazin
- Department of Physics and Astronomy, and Quantum Science and Engineering Center, George Mason University, Fairfax, VA, USA
| | - Robert Hovden
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Bing Lv
- Department of Physics, the University of Texas at Dallas, Richardson, TX, USA.
| | - Liuyan Zhao
- Department of Physics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
Tschudin MA, Broadway DA, Siegwolf P, Schrader C, Telford EJ, Gross B, Cox J, Dubois AEE, Chica DG, Rama-Eiroa R, J G Santos E, Poggio M, Ziebel ME, Dean CR, Roy X, Maletinsky P. Imaging nanomagnetism and magnetic phase transitions in atomically thin CrSBr. Nat Commun 2024; 15:6005. [PMID: 39019853 PMCID: PMC11255258 DOI: 10.1038/s41467-024-49717-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/17/2024] [Indexed: 07/19/2024] Open
Abstract
Since their first observation in 2017, atomically thin van der Waals (vdW) magnets have attracted significant fundamental, and application-driven attention. However, their low ordering temperatures, Tc, sensitivity to atmospheric conditions and difficulties in preparing clean large-area samples still present major limitations to further progress, especially amongst van der Waals magnetic semiconductors. The remarkably stable, high-Tc vdW magnet CrSBr has the potential to overcome these key shortcomings, but its nanoscale properties and rich magnetic phase diagram remain poorly understood. Here we use single spin magnetometry to quantitatively characterise saturation magnetization, magnetic anisotropy constants, and magnetic phase transitions in few-layer CrSBr by direct magnetic imaging. We show pristine magnetic phases, devoid of defects on micron length-scales, and demonstrate remarkable air-stability down the monolayer limit. We furthermore address the spin-flip transition in bilayer CrSBr by imaging the phase-coexistence of regions of antiferromagnetically (AFM) ordered and fully aligned spins. Our work will enable the engineering of exotic electronic and magnetic phases in CrSBr and the realization of novel nanomagnetic devices based on this highly promising vdW magnet.
Collapse
Affiliation(s)
| | | | | | | | - Evan J Telford
- Department of Physics, Columbia University, New York, NY, USA
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Boris Gross
- Department of Physics, University of Basel, Basel, Switzerland
| | - Jordan Cox
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Adrien E E Dubois
- Department of Physics, University of Basel, Basel, Switzerland
- QNAMI AG, Hofackerstrasse 40 B, Muttenz, CH-4132, Switzerland
| | - Daniel G Chica
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Ricardo Rama-Eiroa
- Donostia International Physics Center (DIPC), 20018, Donostia-San Sebastián, Basque Country, Spain
- Institute for Condensed Matter Physics and Complex Systems, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD, UK
| | - Elton J G Santos
- Donostia International Physics Center (DIPC), 20018, Donostia-San Sebastián, Basque Country, Spain
- Institute for Condensed Matter Physics and Complex Systems, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD, UK
- Higgs Centre for Theoretical Physics, The University of Edinburgh, Edinburgh, EH9 3FD, UK
| | - Martino Poggio
- Department of Physics, University of Basel, Basel, Switzerland
- Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | | | - Cory R Dean
- Department of Physics, Columbia University, New York, NY, USA
| | - Xavier Roy
- Department of Chemistry, Columbia University, New York, NY, USA
| | | |
Collapse
|
10
|
Hu C, Cheng H, Zhou J, Zhang K, Liu X, Jiang Y. Layer Dependence of Complex Refractive Index in CrSBr. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3430. [PMID: 39063721 PMCID: PMC11277651 DOI: 10.3390/ma17143430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024]
Abstract
CrSBr is a recently discovered two-dimensional anti-ferromagnet. It has attracted much attention due to its superior properties for potential optoelectronic and spintronic applications. However, its complex refractive index with layer dependence has not been systematically studied yet. In this work, we studied the room-temperature complex refractive indices of thin CrSBr flakes of different thicknesses in the visible light range. Using micro-reflectance spectroscopy, we measured the optical contrast of thin CrSBr flakes with respect to different substrates. The complex refractive index was extracted by modeling the optical contrast with the Fresnel equations. We extracted the band gap values of CrSBr in the few-layer limit. We determined the band gaps for monolayer, bilayer, and trilayer CrSBr to be 1.88 eV, 1.81 eV, and 1.77 eV, respectively. As a comparison, the band gap for multilayer CrSBr is outside our measured range, that is, below 1.55 eV. Our results suggest that the band gap of CrSBr decreases as thickness increases.
Collapse
Affiliation(s)
- Chao Hu
- Material Science and Engineering, Anhui University, Hefei 230601, China; (C.H.)
| | - Huanghuang Cheng
- Material Science and Engineering, Anhui University, Hefei 230601, China; (C.H.)
- Center of Free Electron Laser and High Magnetic Field, Anhui University, Hefei 230601, China
| | - Jiayuan Zhou
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Kai Zhang
- School of Physics and Optoelectronics Engineering, Anhui University, Hefei 230601, China
| | - Xue Liu
- Center of Free Electron Laser and High Magnetic Field, Anhui University, Hefei 230601, China
| | - Yuxuan Jiang
- School of Physics and Optoelectronics Engineering, Anhui University, Hefei 230601, China
- Center of Free Electron Laser and High Magnetic Field, Anhui University, Hefei 230601, China
| |
Collapse
|
11
|
Canetta A, Volosheniuk S, Satheesh S, Alvarinhas Batista JP, Castellano A, Conte R, Chica DG, Watanabe K, Taniguchi T, Roy X, van der Zant HSJ, Burghard M, Verstraete MJ, Gehring P. Impact of Spin-Entropy on the Thermoelectric Properties of a 2D Magnet. NANO LETTERS 2024; 24:6513-6520. [PMID: 38652810 DOI: 10.1021/acs.nanolett.4c00809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Heat-to-charge conversion efficiency of thermoelectric materials is closely linked to the entropy per charge carrier. Thus, magnetic materials are promising building blocks for highly efficient energy harvesters as their carrier entropy is boosted by a spin degree of freedom. In this work, we investigate how this spin-entropy impacts heat-to-charge conversion in the A-type antiferromagnet CrSBr. We perform simultaneous measurements of electrical conductance and thermocurrent while changing magnetic order using the temperature and magnetic field as tuning parameters. We find a strong enhancement of the thermoelectric power factor at around the Néel temperature. We further reveal that the power factor at low temperatures can be increased by up to 600% upon applying a magnetic field. Our results demonstrate that the thermoelectric properties of 2D magnets can be optimized by exploiting the sizable impact of spin-entropy and confirm thermoelectric measurements as a sensitive tool to investigate subtle magnetic phase transitions in low-dimensional magnets.
Collapse
Affiliation(s)
- Alessandra Canetta
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium
| | - Serhii Volosheniuk
- Kavli Institute of Nanoscience, Delft University of Technology, 2628CJ Delft, The Netherlands
| | - Sayooj Satheesh
- Max-Planck-Institut für Festkörperforschung, D-70569 Stuttgart, Germany
| | | | - Aloïs Castellano
- Nanomat/Q-MAT/ and European Theoretical Spectroscopy Facility, Université de Liège, B-4000, Liège, Belgium
| | - Riccardo Conte
- Kavli Institute of Nanoscience, Delft University of Technology, 2628CJ Delft, The Netherlands
| | - Daniel George Chica
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Xavier Roy
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Herre S J van der Zant
- Kavli Institute of Nanoscience, Delft University of Technology, 2628CJ Delft, The Netherlands
| | - Marko Burghard
- Max-Planck-Institut für Festkörperforschung, D-70569 Stuttgart, Germany
| | - Matthieu Jean Verstraete
- Nanomat/Q-MAT/ and European Theoretical Spectroscopy Facility, Université de Liège, B-4000, Liège, Belgium
- ITP, Physics Department, Utrecht University, 3508 TA Utrecht, The Netherlands
| | - Pascal Gehring
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
12
|
Tabataba-Vakili F, Nguyen HPG, Rupp A, Mosina K, Papavasileiou A, Watanabe K, Taniguchi T, Maletinsky P, Glazov MM, Sofer Z, Baimuratov AS, Högele A. Doping-control of excitons and magnetism in few-layer CrSBr. Nat Commun 2024; 15:4735. [PMID: 38830857 PMCID: PMC11535057 DOI: 10.1038/s41467-024-49048-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/22/2024] [Indexed: 06/05/2024] Open
Abstract
Magnetism in two-dimensional materials reveals phenomena distinct from bulk magnetic crystals, with sensitivity to charge doping and electric fields in monolayer and bilayer van der Waals magnet CrI3. Within the class of layered magnets, semiconducting CrSBr stands out by featuring stability under ambient conditions, correlating excitons with magnetic order and thus providing strong magnon-exciton coupling, and exhibiting peculiar magneto-optics of exciton-polaritons. Here, we demonstrate that both exciton and magnetic transitions in bilayer and trilayer CrSBr are sensitive to voltage-controlled field-effect charging, exhibiting bound exciton-charge complexes and doping-induced metamagnetic transitions. Moreover, we demonstrate how these unique properties enable optical probes of local magnetic order, visualizing magnetic domains of competing phases across metamagnetic transitions induced by magnetic field or electrostatic doping. Our work identifies few-layer CrSBr as a rich platform for exploring collaborative effects of charge, optical excitations, and magnetism.
Collapse
Affiliation(s)
- Farsane Tabataba-Vakili
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539, München, Germany.
- Munich Center for Quantum Science and Technology (MCQST), 80799, München, Germany.
| | - Huy P G Nguyen
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539, München, Germany
| | - Anna Rupp
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539, München, Germany
| | - Kseniia Mosina
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Anastasios Papavasileiou
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | | | | | - Zdenek Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Anvar S Baimuratov
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539, München, Germany.
| | - Alexander Högele
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539, München, Germany.
- Munich Center for Quantum Science and Technology (MCQST), 80799, München, Germany.
| |
Collapse
|
13
|
Lu L, Wang Q, Duan H, Zhu K, Hu T, Ma Y, Shen S, Niu Y, Liu J, Wang J, Ekahana SA, Dreiser J, Soh Y, Yan W, Wang G, Xiong Y, Hao N, Lu Y, Tian M. Tunable Magnetism in Atomically Thin Itinerant Antiferromagnet with Room-Temperature Ferromagnetic Order. NANO LETTERS 2024; 24:5984-5992. [PMID: 38728101 DOI: 10.1021/acs.nanolett.4c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Addressing the need for modulated spin configurations is crucial, as they serve as the foundational building blocks for next-generation spintronics, particularly in atomically thin structures and at room temperature. In this work, we realize intrinsic ferromagnetism in monolayer flakes and tunable ferro-/antiferromagnetism in (Fe0.56Co0.44)5GeTe2 antiferromagnets. Remarkably, the ferromagnetic ordering (≥1 L) and antiferromagnetic ordering (≥4 L) remain discernible up to room temperature. The TC (∼310 K) of the monolayer flakes sets a record high for known exfoliated monolayer van der Waals magnets. Within the framework of A-type antiferromagnetism, a notable odd-even layer-number effect at elevated temperatures (T = 150 K) is observed. Of particular interest is the strong ferromagnetic order in even-layer flakes at low temperatures. The intricate interplay among magnetic field strength, layer number, and temperature gives rise to a diverse array of phenomena, holding promise not only for new physics but also for practical applications.
Collapse
Affiliation(s)
- Longyu Lu
- School of Materials Science and Engineering, Anhui University, Hefei 230601, China
| | - Qing Wang
- Anhui Province Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hengli Duan
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Kejia Zhu
- School of Physics and Optoelectronics Engineering, Anhui University, Hefei 230601, China
| | - Tao Hu
- School of Materials Science and Engineering, Anhui University, Hefei 230601, China
| | - Yupeng Ma
- School of Physics and Optoelectronics Engineering, Anhui University, Hefei 230601, China
| | - Shengchun Shen
- Department of Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yuran Niu
- MAX IV Laboratory, Lund University, Lund 22100, Sweden
| | - Jiatu Liu
- MAX IV Laboratory, Lund University, Lund 22100, Sweden
| | - Jianlin Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | | | - Jan Dreiser
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Y Soh
- Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Guopeng Wang
- School of Physics and Optoelectronics Engineering, Anhui University, Hefei 230601, China
| | - Yimin Xiong
- School of Physics and Optoelectronics Engineering, Anhui University, Hefei 230601, China
- Hefei National Laboratory, Hefei 230028, China
| | - Ning Hao
- Anhui Province Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Yalin Lu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, Hefei 230028, China
| | - Mingliang Tian
- School of Physics and Optoelectronics Engineering, Anhui University, Hefei 230601, China
| |
Collapse
|
14
|
Han R, Xue X, Li P. Enhanced ferromagnetism, perpendicular magnetic anisotropy and high Curie temperature in the van der Waals semiconductor CrSeBr through strain and doping. Phys Chem Chem Phys 2024; 26:12219-12230. [PMID: 38592675 DOI: 10.1039/d4cp00855c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Two-dimensional (2D) intrinsic van der Waals ferromagnetic semiconductor (FMS) crystals with strong perpendicular magnetic anisotropy and high Curie temperature (TC) are highly desirable and hold great promise for applications in ultrahigh-speed spintronic devices. Here, we systematically investigated the effects of a biaxial strain ranging between -8% and +8% and doping with different charge carrier concentrations (≤0.7 electrons/holes per unit cell) on the electronic structure, magnetic properties, and TC of monolayer CrSeBr by combining first-principles calculations and Monte Carlo (MC) simulations. Our results demonstrate that the pristine CrSeBr monolayer possesses an intrinsic FMS character with a band gap as large as 1.03 eV, an in-plane magnetic anisotropy of 0.131 meV per unit cell, and a TC as high as 164 K. At a biaxial strain of only 0.8% and a hole density of 5.31 × 1013 cm-2, the easy magnetization axis direction transitions from in-plane to out-of-plane. More interestingly, the magnetic anisotropy energy and TC of monolayer CrSeBr are further enhanced to 1.882 meV per unit cell and 279 K, respectively, under application of a tensile biaxial strain of 8%, and the monolayer retains its semiconducting properties throughout the entire range of investigated strains. It was also found that upon doping monolayer CrSeBr with holes with a concentration of 0.7 holes per unit cell, the perpendicular magnetic anisotropy and TC are increased to 0.756 meV per cell and 235 K, respectively, and the system tends to become metallic. These findings will help to advance the application of 2D intrinsic ferromagnetic materials in spintronic devices.
Collapse
Affiliation(s)
- Ruilin Han
- School of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China.
| | - Xiaomin Xue
- Institute of Theoretical Physics, Shanxi University, Taiyuan, 030006, China
| | - Peng Li
- School of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
15
|
Ziebel ME, Feuer ML, Cox J, Zhu X, Dean CR, Roy X. CrSBr: An Air-Stable, Two-Dimensional Magnetic Semiconductor. NANO LETTERS 2024; 24:4319-4329. [PMID: 38567828 DOI: 10.1021/acs.nanolett.4c00624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The discovery of magnetic order at the 2D limit has sparked new exploration of van der Waals magnets for potential use in spintronics, magnonics, and quantum information applications. However, many of these materials feature low magnetic ordering temperatures and poor air stability, limiting their fabrication into practical devices. In this Mini-Review, we present a promising material for fundamental studies and functional use: CrSBr, an air-stable, two-dimensional magnetic semiconductor. Our discussion highlights experimental research on bulk CrSBr, including quasi-1D semiconducting properties, A-type antiferromagnetic order (TN = 132 K), and strong coupling between its electronic and magnetic properties. We then discuss the behavior of monolayer and few-layer flakes and present a perspective on promising avenues for further studies on CrSBr.
Collapse
Affiliation(s)
- Michael E Ziebel
- Columbia University, Department of Chemistry, New York, New York 10027, United States
| | - Margalit L Feuer
- Columbia University, Department of Chemistry, New York, New York 10027, United States
| | - Jordan Cox
- Columbia University, Department of Chemistry, New York, New York 10027, United States
| | - Xiaoyang Zhu
- Columbia University, Department of Chemistry, New York, New York 10027, United States
| | - Cory R Dean
- Columbia University, Department of Physics, New York, New York 10027, United States
| | - Xavier Roy
- Columbia University, Department of Chemistry, New York, New York 10027, United States
| |
Collapse
|
16
|
Jo J, Mañas-Valero S, Coronado E, Casanova F, Gobbi M, Hueso LE. Nonvolatile Electric Control of Antiferromagnet CrSBr. NANO LETTERS 2024; 24:4471-4477. [PMID: 38587318 DOI: 10.1021/acs.nanolett.4c00348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
van der Waals magnets are emerging as a promising material platform for electric field control of magnetism, offering a pathway toward the elimination of external magnetic fields from spintronic devices. A further step is the integration of such magnets with electrical gating components that would enable nonvolatile control of magnetic states. However, this approach remains unexplored for antiferromagnets, despite their growing significance in spintronics. Here, we demonstrate nonvolatile electric field control of magnetoelectric characteristics in van der Waals antiferromagnet CrSBr. We integrate a CrSBr channel in a flash-memory architecture featuring charge trapping graphene multilayers. The electrical gate operation triggers a nonvolatile 200% change in the antiferromagnetic state of CrSBr resistance by manipulating electron accumulation/depletion. Moreover, the nonvolatile gate modulates the metamagnetic transition field of CrSBr and the magnitude of magnetoresistance. Our findings highlight the potential of manipulating magnetic properties of antiferromagnetic semiconductors in a nonvolatile way.
Collapse
Affiliation(s)
- Junhyeon Jo
- CIC nanoGUNE BRTA, 20018 Donostia-San Sebastian, Basque Country, Spain
| | - Samuel Mañas-Valero
- Instituto de Ciencia Molecular (ICMol) Universitat de València, Catedrático José Beltrán 2, Paterna 46980, Spain
| | - Eugenio Coronado
- Instituto de Ciencia Molecular (ICMol) Universitat de València, Catedrático José Beltrán 2, Paterna 46980, Spain
| | - Fèlix Casanova
- CIC nanoGUNE BRTA, 20018 Donostia-San Sebastian, Basque Country, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Basque Country, Spain
| | - Marco Gobbi
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Basque Country, Spain
- Centro de Física de Materiales (CFM-MPC) Centro Mixto CSIC-UPV/EHU, 20018 Donostia-San Sebastián, Basque Country, Spain
| | - Luis E Hueso
- CIC nanoGUNE BRTA, 20018 Donostia-San Sebastian, Basque Country, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Basque Country, Spain
| |
Collapse
|
17
|
Han R, Xue X, Yan Y. Hole-Doping-Induced Perpendicular Magnetic Anisotropy and High Curie Temperature in a CrSX (X = Cl, Br, I) Semiconductor Monolayer. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3105. [PMID: 38133001 PMCID: PMC10745588 DOI: 10.3390/nano13243105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
A large perpendicular magnetic anisotropy and a high Curie temperature (TC) are crucial for the application of two-dimensional (2D) intrinsic ferromagnets to spintronic devices. Here, we investigated the electronic and magnetic properties of carrier-doped Van der Waals layered CrSX (X = Cl, Br, I) ferromagnets using first-principles calculations. It was found that hole doping can increase the magnitude of the magnetic anisotropy energy (MAE) and change the orientation of the easy magnetization axis at small doping amounts of 2.37 × 1013, 3.98 × 1012, and 3.33 × 1012/cm2 for CrSCl, CrSBr, and CrSI monolayers, respectively. The maximum values of the MAE reach 57, 133, and 1597 μeV/u.c. for the critical hole-doped CrSCl, CrSBr, and CrSI with spin orientation along the (001) direction, respectively. Furthermore, the Fermi energy level of lightly hole-doped CrSX (X = Cl, Br, I) moves into the spin-up valence band, leading to the CrSX (X = Cl, Br, I) magnetic semiconductor monolayer becoming first a half-metal and then a metal. In addition, the TC can also be increased up to 305, 317, and 345 K for CrSCl, CrSBr, and CrSI monolayers at doping amounts of 5.94 × 1014, 5.78 × 1014, and 5.55 × 1014/cm2, respectively. These properties suggest that the hole-doping process can render 2D CrSX (X = Cl, Br, I) monolayers remarkable materials for application to electrically controlled spintronic devices.
Collapse
Affiliation(s)
- Ruilin Han
- School of Physics and Electronic Engineering, Shanxi University, Taiyuan 030006, China
| | - Xiaomin Xue
- Institute of Theoretical Physics, Shanxi University, Taiyuan 030006, China;
| | - Yu Yan
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Department of Physics, Jilin University, Changchun 130012, China;
| |
Collapse
|
18
|
Serati de Brito C, Faria Junior PE, Ghiasi TS, Ingla-Aynés J, Rabahi CR, Cavalini C, Dirnberger F, Mañas-Valero S, Watanabe K, Taniguchi T, Zollner K, Fabian J, Schüller C, van der Zant HSJ, Gobato YG. Charge Transfer and Asymmetric Coupling of MoSe 2 Valleys to the Magnetic Order of CrSBr. NANO LETTERS 2023. [PMID: 38019289 DOI: 10.1021/acs.nanolett.3c03431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
van der Waals heterostructures composed of two-dimensional (2D) transition metal dichalcogenides and vdW magnetic materials offer an intriguing platform to functionalize valley and excitonic properties in nonmagnetic TMDs. Here, we report magneto photoluminescence (PL) investigations of monolayer (ML) MoSe2 on the layered A-type antiferromagnetic (AFM) semiconductor CrSBr under different magnetic field orientations. Our results reveal a clear influence of the CrSBr magnetic order on the optical properties of MoSe2, such as an anomalous linear-polarization dependence, changes of the exciton/trion energies, a magnetic-field dependence of the PL intensities, and a valley g-factor with signatures of an asymmetric magnetic proximity interaction. Furthermore, first-principles calculations suggest that MoSe2/CrSBr forms a broken-gap (type-III) band alignment, facilitating charge transfer processes. The work establishes that antiferromagnetic-nonmagnetic interfaces can be used to control the valley and excitonic properties of TMDs, relevant for the development of opto-spintronics devices.
Collapse
Affiliation(s)
- Caique Serati de Brito
- Physics Department, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, D-93040 Regensburg, Germany
| | - Paulo E Faria Junior
- Institute for Theoretical Physics, University of Regensburg, D-93040 Regensburg, Germany
| | - Talieh S Ghiasi
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Josep Ingla-Aynés
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - César Ricardo Rabahi
- Physics Department, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil
| | - Camila Cavalini
- Physics Department, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil
| | - Florian Dirnberger
- Institute of Applied Physics and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität, 01069 Dresden, Germany
| | - Samuel Mañas-Valero
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, Paterna 46980, Spain
| | - Kenji Watanabe
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Klaus Zollner
- Institute for Theoretical Physics, University of Regensburg, D-93040 Regensburg, Germany
| | - Jaroslav Fabian
- Institute for Theoretical Physics, University of Regensburg, D-93040 Regensburg, Germany
| | - Christian Schüller
- Institut für Experimentelle und Angewandte Physik, Universität Regensburg, D-93040 Regensburg, Germany
| | - Herre S J van der Zant
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Yara Galvão Gobato
- Physics Department, Federal University of São Carlos, São Carlos, SP 13565-905, Brazil
| |
Collapse
|
19
|
Zur Y, Noah A, Boix-Constant C, Mañas-Valero S, Fridman N, Rama-Eiroa R, Huber ME, Santos EJG, Coronado E, Anahory Y. Magnetic Imaging and Domain Nucleation in CrSBr Down to the 2D Limit. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2307195. [PMID: 37702506 DOI: 10.1002/adma.202307195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/31/2023] [Indexed: 09/14/2023]
Abstract
Recent advancements in 2D materials have revealed the potential of van der Waals magnets, and specifically of their magnetic anisotropy that allows applications down to the 2D limit. Among these materials, CrSBr has emerged as a promising candidate, because its intriguing magnetic and electronic properties have appeal for both fundamental and applied research in spintronics or magnonics. In this work, nano-SQUID-on-tip (SOT) microscopy is used to obtain direct magnetic imaging of CrSBr flakes with thicknesses ranging from monolayer (N = 1) to few-layer (N = 5). The ferromagnetic order is preserved down to the monolayer, while the antiferromagnetic coupling of the layers starts from the bilayer case. For odd layers, at zero applied magnetic field, the stray field resulting from the uncompensated layer is directly imaged. The progressive spin reorientation along the out-of-plane direction (hard axis) is also measured with a finite applied magnetic field, allowing evaluation of the anisotropy constant, which remains stable down to the monolayer and is close to the bulk value. Finally, by selecting the applied magnetic field protocol, the formation of Néel magnetic domain walls is observed down to the single-layer limit.
Collapse
Affiliation(s)
- Yishay Zur
- The Racah Institute of Physics, The Hebrew University, Jerusalem, 9190401, Israel
- Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Avia Noah
- The Racah Institute of Physics, The Hebrew University, Jerusalem, 9190401, Israel
- Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Carla Boix-Constant
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, Paterna, 46980, Spain
| | - Samuel Mañas-Valero
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, Paterna, 46980, Spain
| | - Nofar Fridman
- The Racah Institute of Physics, The Hebrew University, Jerusalem, 9190401, Israel
- Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Ricardo Rama-Eiroa
- Donostia International Physics Center (DIPC), Basque Country, Donostia-San Sebastián, 20018, Spain
- Institute for Condensed Matter Physics and Complex Systems, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH93FD, UK
| | - Martin E Huber
- Departments of Physics and Electrical Engineering, University of Colorado Denver, Denver, CO, 80217, USA
| | - Elton J G Santos
- Donostia International Physics Center (DIPC), Basque Country, Donostia-San Sebastián, 20018, Spain
- Institute for Condensed Matter Physics and Complex Systems, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH93FD, UK
- Higgs Centre for Theoretical Physics, University of Edinburgh, Edinburgh, EH93FD, UK
| | - Eugenio Coronado
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, Paterna, 46980, Spain
| | - Yonathan Anahory
- The Racah Institute of Physics, The Hebrew University, Jerusalem, 9190401, Israel
- Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
20
|
Liu S, Malik IA, Zhang VL, Yu T. Lightning the Spin: Harnessing the Potential of 2D Magnets in Opto-Spintronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2306920. [PMID: 37905890 DOI: 10.1002/adma.202306920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/20/2023] [Indexed: 11/02/2023]
Abstract
Since the emergence of 2D magnets in 2017, the diversity of these materials has greatly expanded. Their 2D nature (atomic-scale thickness) endows these magnets with strong magnetic anisotropy, layer-dependent and switchable magnetic order, and quantum-confined quasiparticles, which distinguish them from conventional 3D magnetic materials. Moreover, the 2D geometry facilitates light incidence for opto-spintronic applications and potential on-chip integration. In analogy to optoelectronics based on optical-electronic interactions, opto-spintronics use light-spin interactions to process spin information stored in the solid state. In this review, opto-spintronics is divided into three types with respect to the wavelengths of radiation interacting with 2D magnets: 1) GHz (microwave) to THz (mid-infrared), 2) visible, and 3) UV to X-rays. It is focused on the recent research advancements on the newly discovered mechanisms of light-spin interactions in 2D magnets and introduces the potential design of novel opto-spintronic applications based on these interactions.
Collapse
Affiliation(s)
- Sheng Liu
- School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | | | - Vanessa Li Zhang
- School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Ting Yu
- School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
21
|
Cham TMJ, Dorrian RJ, Zhang XS, Dismukes AH, Chica DG, May AF, Roy X, Muller DA, Ralph DC, Luo YK. Exchange Bias Between van der Waals Materials: Tilted Magnetic States and Field-Free Spin-Orbit-Torque Switching. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305739. [PMID: 37800466 DOI: 10.1002/adma.202305739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/06/2023] [Indexed: 10/07/2023]
Abstract
Magnetic van der Waals heterostructures provide a unique platform to study magnetism and spintronics device concepts in the 2D limit. Here, studies of exchange bias from the van der Waals antiferromagnet CrSBr acting on the van der Waals ferromagnet Fe3 GeTe2 (FGT) are reported. The orientation of the exchange bias is along the in-plane easy axis of CrSBr, perpendicular to the out-of-plane anisotropy of the FGT, inducing a strongly tilted magnetic configuration in the FGT. Furthermore, the in-plane exchange bias provides sufficient symmetry breaking to allow deterministic spin-orbit torque switching of the FGT in CrSBr/FGT/Pt samples at zero applied magnetic field. A minimum thickness of the CrSBr of >10 nm is needed to provide a non-zero exchange bias at 30 K.
Collapse
Affiliation(s)
| | | | | | - Avalon H Dismukes
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Daniel G Chica
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Andrew F May
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Xavier Roy
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - David A Muller
- Cornell University, Ithaca, NY, 14850, USA
- Kavli Institute at Cornell, Ithaca, NY, 14853, USA
| | - Daniel C Ralph
- Cornell University, Ithaca, NY, 14850, USA
- Kavli Institute at Cornell, Ithaca, NY, 14853, USA
| | - Yunqiu Kelly Luo
- Cornell University, Ithaca, NY, 14850, USA
- Kavli Institute at Cornell, Ithaca, NY, 14853, USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, 90089, USA
| |
Collapse
|
22
|
Long F, Ghorbani-Asl M, Mosina K, Li Y, Lin K, Ganss F, Hübner R, Sofer Z, Dirnberger F, Kamra A, Krasheninnikov AV, Prucnal S, Helm M, Zhou S. Ferromagnetic Interlayer Coupling in CrSBr Crystals Irradiated by Ions. NANO LETTERS 2023; 23:8468-8473. [PMID: 37669544 PMCID: PMC10540254 DOI: 10.1021/acs.nanolett.3c01920] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/31/2023] [Indexed: 09/07/2023]
Abstract
Layered magnetic materials are becoming a major platform for future spin-based applications. Particularly, the air-stable van der Waals compound CrSBr is attracting considerable interest due to its prominent magneto-transport and magneto-optical properties. In this work, we observe a transition from antiferromagnetic to ferromagnetic behavior in CrSBr crystals exposed to high-energy, non-magnetic ions. Already at moderate fluences, ion irradiation induces a remanent magnetization with hysteresis adapting to the easy-axis anisotropy of the pristine magnetic order up to a critical temperature of 110 K. Structure analysis of the irradiated crystals in conjunction with density functional theory calculations suggests that the displacement of constituent atoms due to collisions with ions and the formation of interstitials favors ferromagnetic order between the layers.
Collapse
Affiliation(s)
- Fangchao Long
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
- TU
Dresden, 01062 Dresden, Germany
| | - Mahdi Ghorbani-Asl
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Kseniia Mosina
- Department
of Inorganic Chemistry, University of Chemistry
and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Yi Li
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
- TU
Dresden, 01062 Dresden, Germany
| | - Kaiman Lin
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
- University
of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai
Jiao Tong University, Shanghai, 200240, China
| | - Fabian Ganss
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - René Hübner
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Zdenek Sofer
- Department
of Inorganic Chemistry, University of Chemistry
and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Florian Dirnberger
- Institute
of Applied Physics and Würzburg-Dresden Cluster of Excellence
ct.qmat, Technische Universität Dresden, 01069 Dresden, Germany
| | - Akashdeep Kamra
- Condensed
Matter Physics Center (IFIMAC) and Departamento de Física Teórica
de la Materia Condensada, Universidad Autónoma
de Madrid, Ciudad Universitaria
de Cantoblanco, 28049, Madrid, Spain
| | - Arkady V. Krasheninnikov
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Slawomir Prucnal
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Manfred Helm
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
- TU
Dresden, 01062 Dresden, Germany
| | - Shengqiang Zhou
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Bautzner Landstrasse 400, 01328 Dresden, Germany
| |
Collapse
|
23
|
Wang B, Wu Y, Bai Y, Shi P, Zhang G, Zhang Y, Liu C. Origin and regulation of triaxial magnetic anisotropy in the ferromagnetic semiconductor CrSBr monolayer. NANOSCALE 2023; 15:13402-13410. [PMID: 37540039 DOI: 10.1039/d3nr02518g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Magnetic anisotropy plays a vital role in stabilizing the long-range magnetic order of two-dimensional ferromagnetic systems. In this work, using the first-principles method, we systematically explored the triaxial magnetic anisotropic properties of a ferromagnetic semiconductor CrSBr monolayer, which is recently exfoliated from its bulk. Further analysis shows that the triaxial magnetic anisotropic properties originate from the coexistence of the magnetic dipole-dipole interaction (shape anisotropy) and the spin-orbit coupling interaction (magnetocrystalline anisotropy). Interestingly, the shape anisotropy, which has been neglected in most previous works, dominates over the magnetocrystalline anisotropy. Besides, the experimental Curie temperature of the CrSBr monolayer is well reproduced using Monte Carlo simulations. What is more, the easy magnetic axes and ferromagnetism in the CrSBr monolayer can be manipulated by strains and are relatively more susceptible to the uniaxial strain in the x direction. Our study not only explains the mechanism of triaxial magnetic anisotropy of the CrSBr monolayer, but also sheds light on how to tune the magnetic anisotropy and Curie temperature in ferromagnetic monolayers.
Collapse
Affiliation(s)
- Bing Wang
- Joint Center for Theoretical Physics, School of Physics and Electronics, Henan University, Kaifeng 475004, People's Republic of China.
| | - Yaxuan Wu
- Joint Center for Theoretical Physics, School of Physics and Electronics, Henan University, Kaifeng 475004, People's Republic of China.
| | - Yihang Bai
- Joint Center for Theoretical Physics, School of Physics and Electronics, Henan University, Kaifeng 475004, People's Republic of China.
| | - Puyuan Shi
- Joint Center for Theoretical Physics, School of Physics and Electronics, Henan University, Kaifeng 475004, People's Republic of China.
| | - Guangbiao Zhang
- Joint Center for Theoretical Physics, School of Physics and Electronics, Henan University, Kaifeng 475004, People's Republic of China.
| | - Yungeng Zhang
- Joint Center for Theoretical Physics, School of Physics and Electronics, Henan University, Kaifeng 475004, People's Republic of China.
| | - Chang Liu
- Joint Center for Theoretical Physics, School of Physics and Electronics, Henan University, Kaifeng 475004, People's Republic of China.
| |
Collapse
|
24
|
Marques-Moros F, Boix-Constant C, Mañas-Valero S, Canet-Ferrer J, Coronado E. Interplay between Optical Emission and Magnetism in the van der Waals Magnetic Semiconductor CrSBr in the Two-Dimensional Limit. ACS NANO 2023; 17:13224-13231. [PMID: 37442121 PMCID: PMC10863932 DOI: 10.1021/acsnano.3c00375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
The van der Waals semiconductor metamagnet CrSBr offers an ideal platform for studying the interplay between optical and magnetic properties in the two-dimensional limit. Here, we carried out an exhaustive optical characterization of this material by means of temperature- and magnetic-field-dependent photoluminescence (PL) on flakes of different thicknesses down to the monolayer. We found a characteristic emission peak that is quenched upon switching the ferromagnetic layers from an antiparallel to a parallel configuration and exhibits a temperature dependence different from that of the peaks commonly ascribed to excitons. The contribution of this peak to the PL is boosted around 30-40 K, coinciding with the hidden order magnetic transition temperature. Our findings reveal the connection between the optical and magnetic properties via the ionization of magnetic donor vacancies. This behavior enables a useful tool for the optical reading of the magnetic states in atomically thin layers of CrSBr and shows the potential of the design of 2D heterostructures with magnetic and excitonic properties.
Collapse
Affiliation(s)
| | - Carla Boix-Constant
- Instituto de Ciencia Molecular
(ICMol), Universitat de València, 46980, Paterna, Spain
| | - Samuel Mañas-Valero
- Instituto de Ciencia Molecular
(ICMol), Universitat de València, 46980, Paterna, Spain
| | - Josep Canet-Ferrer
- Instituto de Ciencia Molecular
(ICMol), Universitat de València, 46980, Paterna, Spain
| | - Eugenio Coronado
- Instituto de Ciencia Molecular
(ICMol), Universitat de València, 46980, Paterna, Spain
| |
Collapse
|
25
|
Zhang C, Guo P, Zhou J. Tailoring Bulk Photovoltaic Effects in Magnetic Sliding Ferroelectric Materials. NANO LETTERS 2022; 22:9297-9305. [PMID: 36441961 DOI: 10.1021/acs.nanolett.2c02802] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The bulk photovoltaic effect that is intimately associated with crystalline symmetry has been extensively studied in various nonmagnetic materials, especially ferroelectrics with a switchable electric polarization. In order to further engineer the symmetry, one could resort to spin-polarized systems possessing an extra magnetic degree of freedom. Here, we investigate the bulk photovoltaic effect in two-dimensional magnetic sliding ferroelectric (MSFE) systems, illustrated in VSe2, FeCl2, and CrI3 bilayers. The transition metal elements in these systems exhibit intrinsic spin polarization, and the stacking mismatch between the two layers produces a finite out-of-plane electric dipole. Through symmetry analyses and first-principles calculations, we show that photoinduced in-plane bulk photovoltaic current can be effectively tuned by their magnetic order and the out-of-plane dipole moment. The underlying mechanism is elucidated from the quantum metric dipole distribution in the reciprocal space. The ease of the fabrication and manipulation of MSFEs guarantee practical optoelectronic applications.
Collapse
Affiliation(s)
- Chunmei Zhang
- School of Physics, Northwest University, Xi'an710069, China
| | - Ping Guo
- School of Physics, Northwest University, Xi'an710069, China
| | - Jian Zhou
- Center for Alloy Innovation and Design, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an710049, China
| |
Collapse
|
26
|
Boix-Constant C, Mañas-Valero S, Ruiz AM, Rybakov A, Konieczny KA, Pillet S, Baldoví JJ, Coronado E. Probing the Spin Dimensionality in Single-Layer CrSBr Van Der Waals Heterostructures by Magneto-Transport Measurements. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204940. [PMID: 36008364 DOI: 10.1002/adma.202204940] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/22/2022] [Indexed: 06/15/2023]
Abstract
2D magnetic materials offer unprecedented opportunities for fundamental and applied research in spintronics and magnonics. Beyond the pioneering studies on 2D CrI3 and Cr2 Ge2 Te6 , the field has expanded to 2D antiferromagnets exhibiting different spin anisotropies and textures. Of particular interest is the layered metamagnet CrSBr, a relatively air-stable semiconductor formed by antiferromagnetically-coupled ferromagnetic layers (Tc ∼150 K) that can be exfoliated down to the single-layer. It presents a complex magnetic behavior with a dynamic magnetic crossover, exhibiting a low-temperature hidden-order below T*∼40 K. Here, the magneto-transport properties of CrSBr vertical heterostructures in the 2D limit are inspected. The results demonstrate the marked low-dimensional character of the ferromagnetic monolayer, with short-range correlations above Tc and an Ising-type in-plane anisotropy, being the spins spontaneously aligned along the easy axis b below Tc . By applying moderate magnetic fields along a and c axes, a spin-reorientation occurs, leading to a magnetoresistance enhancement below T*. In multilayers, a spin-valve behavior is observed, with negative magnetoresistance strongly enhanced along the three directions below T*. These results show that CrSBr monolayer/bilayer provides an ideal platform for studying and controlling field-induced phenomena in two-dimensions, offering new insights regarding 2D magnets and their integration into vertical spintronic devices.
Collapse
Affiliation(s)
- Carla Boix-Constant
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, Paterna, 46980, Spain
| | - Samuel Mañas-Valero
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, Paterna, 46980, Spain
| | - Alberto M Ruiz
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, Paterna, 46980, Spain
| | - Andrey Rybakov
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, Paterna, 46980, Spain
| | | | | | - José J Baldoví
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, Paterna, 46980, Spain
| | - Eugenio Coronado
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, Paterna, 46980, Spain
| |
Collapse
|