1
|
Xiang Y, Fan B, Shang P, Ding R, Du J, Zhu T, Zhang H, Yan X. VR23 and Bisdemethoxycurcumin Enhanced Nanofiber Niche with Durable Bidirectional Functions for Promoting Wound Repair and Inhibiting Scar Formation. SMALL METHODS 2024; 8:e2400273. [PMID: 38733258 DOI: 10.1002/smtd.202400273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/11/2024] [Indexed: 05/13/2024]
Abstract
Chronic wounds pose a significant clinical challenge worldwide, which is characterized by impaired tissue regeneration and excessive scar formation due to over-repair. Most studies have focused on developing wound repair materials that either facilitate the healing process or control hyperplastic scars caused by over-repair, respectively. However, there are limited reports on wound materials that can both promote wound healing and prevent scar hyperplasia at the same time. In this study, VR23-loaded dendritic mesoporous bioglass nanoparticles (dMBG) are synthesized and electrospun in poly(ester-curcumin-urethane)urea (PECUU) random composite nanofibers (PCVM) through the synergistic effects of physical adsorption, hydrogen bond, and electrospinning. The physicochemical characterization reveals that PCVM presented matched mechanical properties, suitable porosity, and wettability, and enabled sustained and temporal release of VR23 and BDC with the degradation of PCVM. In vitro experiments demonstrated that PCVM can modulate the functions and polarization of macrophages under an inflammatory environment, and possess effective anti-scarring potential and reliable cytocompatibility. Animal studies further confirmed that PCVM can efficiently promote re-epithelialization and angiogenesis and reduce excessive inflammation, thereby remarkably accelerating wound healing while preventing potential scarring. These findings suggest that the prepared PCVM holds promise as a bidirectional regulatory dressing for effectively promoting scar-free healing of chronic wounds.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd., Shanghai, 200233, P. R. China
| | - Beibei Fan
- Department of Pharmacy, Shanghai Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, 181 Youyi Rd., Shanghai, 201999, P. R. China
| | - Panpan Shang
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai, 201620, P. R. China
| | - Ren Ding
- Department of Orthopedics, Shanghai Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, 181 Youyi Rd., Shanghai, 201999, P. R. China
| | - Juan Du
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai, 201620, P. R. China
| | - Tonghe Zhu
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai, 201620, P. R. China
| | - Hongmei Zhang
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai, 201620, P. R. China
| | - Xiaoyu Yan
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd., Shanghai, 200233, P. R. China
| |
Collapse
|
2
|
Hassan MA, Wahdain SF, Onaizi SA. Recent advances in CO 2 capture and mineralization using layered double hydroxide-based materials: A review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-35446-5. [PMID: 39601949 DOI: 10.1007/s11356-024-35446-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024]
Abstract
The continuous release of substantial amounts of carbon dioxide (CO2) to the atmosphere has resulted in numerous severe adverse effects. Several materials have been synthesized and utilized for CO2 capture. One class of such materials is layered double hydroxides (LDHs), which have emerged as promising materials for CO2 capture due to their tunable properties, high surface area, and excellent CO2 adsorption capabilities. Although there are some review articles on CO2 capture and conversion using various materials, there is still a notable lack of thorough reviews focusing on the utilization of LDH-based materials for CO2 capture. Additionally, the field of CO2 capture and mineralization using LDH-based materials is rapidly evolving, necessitating up-to-date comprehensive reviews to analyze, evaluate, and condense the dispersed information found in recently published research articles. Accordingly, this review article provides a comprehensive overview of recent advancements in CO2 capture using LDH-based materials. After briefly introducing the topic, different synthesis protocols of LDH-based materials are briefly reviewed. Then, CO2 capture using LDHs, calcined LDHs, impregnated LDHs, composites containing LDHs, amine functionalized LDHs, and during steam methane reforming, are thoroughly analyzed and discussed. Additionally, the effects of synthesis method and post treatment of LDH-based materials on CO2 capture, effect of modification and functionalization on LDHs, and the effects of various process conditions including temperature, pressure, water vapor, and gas composition on the performance of CO2 capture by LDH-based materials are reviewed. Limitations, challenges, obstacles, and remaining knowledge gaps are highlighted, and future research works to address them are proposed.
Collapse
Affiliation(s)
- Mehrab A Hassan
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31216, Saudi Arabia
| | - Sheikha F Wahdain
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31216, Saudi Arabia
| | - Sagheer A Onaizi
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31216, Saudi Arabia.
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31216, Saudi Arabia.
| |
Collapse
|
3
|
Yapa P, Munaweera I, Weerasekera MM, Weerasinghe L. Synergistic antimicrobial nanofiber membranes based on metal incorporated silica nanoparticles as advanced antimicrobial layers. RSC Adv 2024; 14:33919-33940. [PMID: 39463479 PMCID: PMC11503530 DOI: 10.1039/d4ra05052e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024] Open
Abstract
In this post-new-normal era, the public prioritizes preventive measures over curing, which is a constructive approach to staying healthy. In this study, an innovative antimicrobial membrane material has been developed, showcasing the promising potential for various applications. The metal-doped silica nanoparticles (Ag, Cu, and Co) were incorporated into a cellulose acetate (CA) polymer-based nanofiber membrane using the electrospinning technique. The metal nanoparticles were doped into a silanol network of silica nanoparticles. The fabricated membranes underwent detailed characterization using a wide range of techniques including PXRD, FTIR, Raman, SEM, TEM, TGA, and tensile testing. These analyses provided compelling evidence confirming the successful incorporation of metal-doped silica nanoparticles (Ag, Cu, and Co) into cellulose-based nanofibers. The band gap energies of the fabricated CA mats lie below 3.00 eV, confirming that they are visible light active. The trimetallic silica nanohybrid exhibited the lowest band gap energy of 2.84 eV, proving the self-sterilizing ability of the CA mats. The DPPH assay further confirmed the best radical scavenging activity by the trimetallic silica nanohybrid incorporated nanofiber mat (91.77 ± 0.88%). The antimicrobial activity was assessed by using the bacterial ATCC strains of Staphylococcus aureus, Streptococcus pneumoniae, MRSA (Methicillin-resistant Staphylococcus aureus), Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa and fungal strains; quality control samples of Trichophyton rubrum, Microsporum gypsium, and Aspergillus niger, as well as the ATCC strain of Candida albicans. The trimetallic silica nanohybrid-incorporated CA membranes demonstrated the most significant inhibition zones. The reported findings substantiate the self-sterilizing mat's viability, affordability, efficacy against a broad spectrum of microbial strains, cost-effectiveness, and biodegradability. Furthermore, the mat serves as a dual-purpose physical and biological barrier against microbes, affirming its potential impact.
Collapse
Affiliation(s)
- Piumika Yapa
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura Nugegoda 10250 Sri Lanka +94 772943738
| | - Imalka Munaweera
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura Nugegoda 10250 Sri Lanka +94 772943738
| | - Manjula M Weerasekera
- Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura Nugegoda 10250 Sri Lanka
| | - Laksiri Weerasinghe
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura Nugegoda 10250 Sri Lanka +94 772943738
| |
Collapse
|
4
|
Yapa PN, Munaweera I, Weerasekera MM, Weerasinghe L. Nanoarchitectonics for synergistic activity of multimetallic nanohybrids as a possible approach for antimicrobial resistance (AMR). J Biol Inorg Chem 2024; 29:477-498. [PMID: 38995397 DOI: 10.1007/s00775-024-02066-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Abstract
The global threat posed by antimicrobial resistance (AMR) to public health is an immensurable problem. The effectiveness of treating infections would be more at risk in the absence of effective antimicrobials. Researchers have shown an amplified interest in alternatives, such as developing advanced metallic nanohybrids as new therapeutic candidates for antibiotics due to their promising effectiveness against resistant microorganisms. In recent decades, the antimicrobial activity of monometallic nanoparticles has received extensive study and solid proof, providing new opportunities for developing multimetallic nanohybrid antimicrobials. Advanced metallic nanohybrids are an emerging remedy for a number of issues that develop in the field of medicine. Advanced metallic nanohybrids have shown a promising ability to combat resistant microorganisms due to their overall synergistic activity. Formulating advanced multimetallic nanohybrids falling under the umbrella of the growing field of nanoarchitectonics, which extends beyond nanotechnology. The underlying theory of nanoarchitectonics involves utilizing nanoscale units that follow the concepts of nanotechnology to architect nanomaterials. This review focuses on a comprehensive description of antimicrobial mechanisms of metallic nanohybrids and their enabling future insights on the research directions of developing the nanoarchitectonics of advanced multimetallic nanohybrids as novel antibiotics through their synergistic activity.
Collapse
Affiliation(s)
- Piumika N Yapa
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, 10250, Sri Lanka
| | - Imalka Munaweera
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, 10250, Sri Lanka.
| | - Manjula M Weerasekera
- Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, 10250, Sri Lanka
| | - Laksiri Weerasinghe
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda, 10250, Sri Lanka
| |
Collapse
|
5
|
Kumari S, Sharma V, Soni S, Sharma A, Thakur A, Kumar S, Dhama K, Sharma AK, Bhatia SK. Layered double hydroxides and their tailored hybrids/composites: Progressive trends for delivery of natural/synthetic-drug/cosmetic biomolecules. ENVIRONMENTAL RESEARCH 2023; 238:117171. [PMID: 37734578 DOI: 10.1016/j.envres.2023.117171] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/31/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
Abstract
Layered double hydroxides (LDHs) are well-known and important class of hydrotalcite-type anionic clays (HTs) materials that are cost-effective with additional advantages of facile synthesis, composition, tenability, and reusability. These convincing characteristics are liable for their applications in various fields related to energy, environment, catalysis, biomedical, and biotechnology. HTs/LDHs are generally synthesized from low cost abundantly available chemical precursors through the aqueous synthetic pathways under mild reaction conditions. These materials can be termed green materials based on their non-toxic nature, availability of precursors, facile and low-cost production using aqueous medium conditions with less hazardous effluents. Diverse and fascinating characteristics have been attributed to HTs/LDHs like anion exchange ability, surface basicity, biocompatibility, controlled release of the anion specific area, porosity, easy surface modification, and pH dependent biodegradability. Hence, HTs/LDHs and their modified and/or functionalized nanohybrids/nanocomposites are reported as the potential drug delivery carriers with a capability to stabilize the susceptible bioactive molecules, may enhance the solubility of poorly soluble drugs along with controlled drug/bioactive molecule release and delivery. These clay and bioactive hybrid materials have good biocompatibility, less cytotoxicity, and better site-targeting with improved cellular uptake than that of free parent biomolecules. These lamellar solids of micro/nanostructure are compatible, host-guest materials and able to fabricate with drugs/cosmeceutical/bio- or synthetic polymers without any change in their molecular structure and reactivity along with improvement in their stabilities. Other important features are facile synthesis, basicity, high stability with easy storage, and efficient administration with low bio-toxicity. This study enlightens the applications of HTs/LDHs along with their hybrids/composites in the field of drug/cosmeceutical/gene delivery systems of natural/synthetic biomolecules.
Collapse
Affiliation(s)
- Sonika Kumari
- Department of Chemistry, Career Point University, Tikker - Kharwarian, Hamirpur, Himachal Pradesh, 176041, India; Center for Nanoscience and Technology, Career Point University, Tikker - Kharwarian, Hamirpur, Himachal Pradesh, 176041, India
| | - Varruchi Sharma
- Department of Biotechnology & Bioinformatics, Sri Guru Gobind Singh College, Chandigarh, 160019, India
| | - Savita Soni
- Department of Chemistry, Career Point University, Tikker - Kharwarian, Hamirpur, Himachal Pradesh, 176041, India; Center for Nanoscience and Technology, Career Point University, Tikker - Kharwarian, Hamirpur, Himachal Pradesh, 176041, India
| | - Ajay Sharma
- Department of Chemistry, Career Point University, Tikker - Kharwarian, Hamirpur, Himachal Pradesh, 176041, India; Center for Nanoscience and Technology, Career Point University, Tikker - Kharwarian, Hamirpur, Himachal Pradesh, 176041, India.
| | - Abhinay Thakur
- Department of Zoology, DAV College, Jalandhar, Punjab, 144008, India
| | - Satish Kumar
- Department of Food Science and Technology, Dr. YS Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173230, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, 243122, Uttar Pradesh, India
| | - Anil Kumar Sharma
- Department of Biotechnology, Amity University, Sector 82 A, IT City Rd, Block D, Sahibzada Ajit Singh Nagar, Punjab, 140306, India.
| | - Shashi Kant Bhatia
- Institute for Ubiquitous Information Technology and Applications, Konkuk University, Hwayang-dong Gwangjin-gu, Seoul, 05029, South Korea; Department of Biological Engineering, College of Engineering, Konkuk University, Hwayang-dong Gwangjin-gu, Seoul, 05029, South Korea.
| |
Collapse
|
6
|
Layered Double Hydroxide Materials: A Review on Their Preparation, Characterization, and Applications. INORGANICS 2023. [DOI: 10.3390/inorganics11030121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Layered double hydroxides (LDHs), a type of synthetic clay with assorted potential applications, are deliberated upon in view of their specific properties, such as adsorbent-specific behavior, biocompatibility, fire-retardant capacity, and catalytic and anion exchange properties, among others. LDHs are materials with two-dimensional morphology, high porosity, and exceptionally tunable and exchangeable anionic particles with sensible interlayer spaces. The remarkable feature of LDHs is their flexibility in maintaining the interlayer spaces endowing them with the capacity to accommodate a variety of ionic species, suitable for many applications. Herein, some synthetic methodologies, general characterizations, and applications of LDHs are summarized, encompassing their broader appliances as a remarkable material to serve society and address several problems viz. removal of pollutants and fabrication of sensors and materials with multifaceted useful applications in the medical, electrochemical, catalytic, and agricultural fields, among others.
Collapse
|
7
|
Constantino VRL, Figueiredo MP, Magri VR, Eulálio D, Cunha VRR, Alcântara ACS, Perotti GF. Biomaterials Based on Organic Polymers and Layered Double Hydroxides Nanocomposites: Drug Delivery and Tissue Engineering. Pharmaceutics 2023; 15:pharmaceutics15020413. [PMID: 36839735 PMCID: PMC9961265 DOI: 10.3390/pharmaceutics15020413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/28/2023] Open
Abstract
The development of biomaterials has a substantial role in pharmaceutical and medical strategies for the enhancement of life quality. This review work focused on versatile biomaterials based on nanocomposites comprising organic polymers and a class of layered inorganic nanoparticles, aiming for drug delivery (oral, transdermal, and ocular delivery) and tissue engineering (skin and bone therapies). Layered double hydroxides (LDHs) are 2D nanomaterials that can intercalate anionic bioactive species between the layers. The layers can hold metal cations that confer intrinsic biological activity to LDHs as well as biocompatibility. The intercalation of bioactive species between the layers allows the formation of drug delivery systems with elevated loading capacity and modified release profiles promoted by ion exchange and/or solubilization. The capacity of tissue integration, antigenicity, and stimulation of collagen formation, among other beneficial characteristics of LDH, have been observed by in vivo assays. The association between the properties of biocompatible polymers and LDH-drug nanohybrids produces multifunctional nanocomposites compatible with living matter. Such nanocomposites are stimuli-responsive, show appropriate mechanical properties, and can be prepared by creative methods that allow a fine-tuning of drug release. They are processed in the end form of films, beads, gels, monoliths etc., to reach orientated therapeutic applications. Several studies attest to the higher performance of polymer/LDH-drug nanocomposite compared to the LDH-drug hybrid or the free drug.
Collapse
Affiliation(s)
- Vera Regina Leopoldo Constantino
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05513-970, São Paulo 05513-970, SP, Brazil
- Correspondence: ; Tel.: +55-11-3091-9152
| | - Mariana Pires Figueiredo
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05513-970, São Paulo 05513-970, SP, Brazil
| | - Vagner Roberto Magri
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05513-970, São Paulo 05513-970, SP, Brazil
| | - Denise Eulálio
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, CEP 05513-970, São Paulo 05513-970, SP, Brazil
| | - Vanessa Roberta Rodrigues Cunha
- Instituto Federal de Educação, Ciência e Tecnologia de Mato Grosso (IFMT), Linha J, s/n–Zona Rural, Juína 78320-000, MT, Brazil
| | | | - Gustavo Frigi Perotti
- Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Rua Nossa Senhora do Rosário, 3863, Itacoatiara 69103-128, AM, Brazil
| |
Collapse
|
8
|
Kumari S, Sharma A, Kumar S, Thakur A, Thakur R, Bhatia SK, Sharma AK. Multifaceted potential applicability of hydrotalcite-type anionic clays from green chemistry to environmental sustainability. CHEMOSPHERE 2022; 306:135464. [PMID: 35760140 DOI: 10.1016/j.chemosphere.2022.135464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/04/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Hydrotalcite-like anionic clays (HTs) also known as Layered double hydroxides (LDHs) have been developed as multifunctional materials in numerous applications related to catalysis, adsorption, and ion-exchange processes. These materials constitute an important class of ionic lamellar solid clays of Brucite-like structure which comprise of consecutive layers of divalent and trivalent metal cations with charge balancing anions and water molecules in interlayer space. These materials have received increasing attention in research due to their interesting properties namely layered structure, ease of preparation, flexible tunability, ability to intercalate different types of anions, electronic properties, high thermal stability, high biocompatibility, and easy biodegradation. Moreover, HTs/LDHs have unique tailorable and tuneable characteristics such as both acidic and basic sites, anion exchange capability, surface area, basal spacing, memory effect, and also exhibit high exchange capacities, which makes them versatile materials for a wide range of applications and extended their horizons to diverse areas of science and technology. This study enlightens the various rational researches related to the synthetic methods and features focusing on synthesis and/or fabrication with other hybrids and their applications. The diverse applications (namely catalyst, adsorbent to toxic chemicals, agrochemicals management, non-toxic flame retardants, and recycling of plastics) of these multifunctional materials related to a clean and sustainable environment were also summarized.
Collapse
Affiliation(s)
- Sonika Kumari
- Department of Chemistry, Career Point University, Tikker - Kharwarian, Hamirpur, Himachal Pradesh, 176041, India
| | - Ajay Sharma
- Department of Chemistry, Career Point University, Tikker - Kharwarian, Hamirpur, Himachal Pradesh, 176041, India.
| | - Satish Kumar
- Department of Food Science and Technology, Dr. YS Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173230, India
| | - Abhinay Thakur
- Department of Zoology, DAV College, Jalandhar, Punjab, 144008, India
| | - Ramesh Thakur
- Department of Chemistry, Himachal Pradesh University, Summer Hill, Shimla, Himachal Pradesh, 171005, India
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, Republic of Korea.
| | - Anil Kumar Sharma
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, 133207, India.
| |
Collapse
|
9
|
Disanayake P, Madhusha C, Munaweera I, Wijesinghe G, Weerasekera M, Deraniyagala S, Kottegoda N. Microwave‐Assisted Synthesis of Cobalt‐Doped Rutile/Ilmenite Derived from Natural Sands as Visible‐Light‐Active Photocatalytic and Antimicrobial Agents. ChemistrySelect 2022. [DOI: 10.1002/slct.202202598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Prasad Disanayake
- Institute of Chemistry Ceylon, Adamantane House Welikada Rajagiriya Sri Lanka
| | - Chamalki Madhusha
- Department of Chemistry, Faculty of Applied Sciences University of Sri Jayewardenepura, Gangodawila Nugegoda Sri Lanka
| | - Imalka Munaweera
- Department of Chemistry, Faculty of Applied Sciences University of Sri Jayewardenepura, Gangodawila Nugegoda Sri Lanka
- Instrument Center, Faculty of Applied Sciences University of Sri Jayewardenepura, Gangodawila Nugegoda Sri Lanka
| | - Gayan Wijesinghe
- Department of Medical Laboratory Sciences Faculty of Allied Health Sciences University of Sri Jayewardenepura, Gangodawila Nugegoda Sri Lanka
| | - Manjula Weerasekera
- Department of Microbiology, Faculty of Medical Sciences University of Sri Jayewardenepura, Gangodawila Nugegoda Sri Lanka
| | - Samitha Deraniyagala
- Institute of Chemistry Ceylon, Adamantane House Welikada Rajagiriya Sri Lanka
- Department of Chemistry, Faculty of Applied Sciences University of Sri Jayewardenepura, Gangodawila Nugegoda Sri Lanka
| | - Nilwala Kottegoda
- Institute of Chemistry Ceylon, Adamantane House Welikada Rajagiriya Sri Lanka
| |
Collapse
|
10
|
Matyjasik W, Długosz O, Lis K, Banach M. Nanohybrids of oxides nanoparticles-chitosan and their antimicrobial properties. NANOTECHNOLOGY 2022; 33:435701. [PMID: 35820406 DOI: 10.1088/1361-6528/ac805e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Growing international problem with pathogens acquiring resistance to antibiotics is the reason for the search for bactericidal substances against which microorganisms cannot become resistant. The aim of this study was to synthesize inorganic-organic nanohybrids and obtain materials with antimicrobial effects. Chitosan (CS) was deposited on nanocomposite carriers such as calcium oxide with titanium dioxide (CaO-TiO2), magnesium oxide with titanium dioxide (MgO-TiO2) and copper(II) oxide with titanium dioxide (CuO-TiO2). The efficiency of the process was examined at varying concentrations of chitosan and temperature. The parameters for nanohybrids synthesis were selected based on the highest amount of nano-chitosan deposited on the nanohybrids-for each carrier, the process conditions were as follows: chitosan solution at 5 g l-1and 20 °C. The materials were obtained using these parameters and were used for microbiological tests againstE. coliATCC 25922,S. aureusATCC 25923 andC. albicansATCC 10231. The growth inhibitory activity of the obtained materials was qualitatively defined. These results suggest that the synthesized nanohybrids and nanocomposites exhibit biostatic action. The material with the broadest effect was the CuO-TiO2-CS hybrid, which had biostatic properties against all tested strains at a minimal concentration of 1250μg ml-1. Further research is required to find eco-friendly, non-toxic, and more effective antimicrobials with a broad action to prevent the acquisition of resistance.
Collapse
Affiliation(s)
- Wiktoria Matyjasik
- Faculty of Chemical Engineering and Technology, Department of Chemical Technology and Environmental Analytics, Cracow University of Technology, Warszawska St. 24, 31-155, Cracow, Poland
| | - Olga Długosz
- Faculty of Chemical Engineering and Technology, Department of Chemical Technology and Environmental Analytics, Cracow University of Technology, Warszawska St. 24, 31-155, Cracow, Poland
| | - Kinga Lis
- Faculty of Chemical Engineering and Technology, Department of Chemical Technology and Environmental Analytics, Cracow University of Technology, Warszawska St. 24, 31-155, Cracow, Poland
| | - Marcin Banach
- Faculty of Chemical Engineering and Technology, Department of Chemical Technology and Environmental Analytics, Cracow University of Technology, Warszawska St. 24, 31-155, Cracow, Poland
| |
Collapse
|
11
|
Hu T, Gu Z, Williams GR, Strimaite M, Zha J, Zhou Z, Zhang X, Tan C, Liang R. Layered double hydroxide-based nanomaterials for biomedical applications. Chem Soc Rev 2022; 51:6126-6176. [PMID: 35792076 DOI: 10.1039/d2cs00236a] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Against the backdrop of increased public health awareness, inorganic nanomaterials have been widely explored as promising nanoagents for various kinds of biomedical applications. Layered double hydroxides (LDHs), with versatile physicochemical advantages including excellent biocompatibility, pH-sensitive biodegradability, highly tunable chemical composition and structure, and ease of composite formation with other materials, have shown great promise in biomedical applications. In this review, we comprehensively summarize the recent advances in LDH-based nanomaterials for biomedical applications. Firstly, the material categories and advantages of LDH-based nanomaterials are discussed. The preparation and surface modification of LDH-based nanomaterials, including pristine LDHs, LDH-based nanocomposites and LDH-derived nanomaterials, are then described. Thereafter, we systematically describe the great potential of LDHs in biomedical applications including drug/gene delivery, bioimaging diagnosis, cancer therapy, biosensing, tissue engineering, and anti-bacteria. Finally, on the basis of the current state of the art, we conclude with insights on the remaining challenges and future prospects in this rapidly emerging field.
Collapse
Affiliation(s)
- Tingting Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Zi Gu
- School of Chemical Engineering and Australian Centre for NanoMedicine (ACN), University of New South Wales, Sydney, NSW 2052, Australia
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Margarita Strimaite
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Jiajia Zha
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| | - Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Xingcai Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA.,School of Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | - Chaoliang Tan
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong. .,Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong.,Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| |
Collapse
|
12
|
Awassa J, Cornu D, Ruby C, El-Kirat-Chatel S. Direct contact, dissolution and generation of reactive oxygen species: How to optimize the antibacterial effects of layered double hydroxides. Colloids Surf B Biointerfaces 2022; 217:112623. [PMID: 35714507 DOI: 10.1016/j.colsurfb.2022.112623] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 10/18/2022]
Abstract
Infections by pathogenic bacteria have been threatening several fields as food industries, agriculture, textile industries and healthcare products. Layered double hydroxides materials (LDHs), also called anionic clays, could be utilized as efficient antibacterial materials due to their several interesting properties such as ease of synthesis, tunable chemical composition, biocompatibility and anion exchange capacity. Pristine LDHs as well as LDH-composites including antibacterial molecules and nanoparticles loaded-LDHs were proven to serve as efficient antibacterial agents against various Gram-positive and Gram-negative bacterial strains. The achieved antibacterial effect was explained by the following mechanisms: (1) Direct contact between the materials and bacterial cells driven by electrostatic interactions between positively charged layers and negatively charged cell membranes, (2) Dissolution and gradual release over time of metallic ions or antibacterial molecules, (3) Generation of reactive oxygen species.
Collapse
Affiliation(s)
- Jazia Awassa
- Université de Lorraine, CNRS, LCPME, Nancy F-54000, France
| | - Damien Cornu
- Université de Lorraine, CNRS, LCPME, Nancy F-54000, France.
| | - Christian Ruby
- Université de Lorraine, CNRS, LCPME, Nancy F-54000, France
| | | |
Collapse
|
13
|
Kumarage S, Munaweera I, Kottegoda N. Contemporary, Multidisciplinary Roles of Mesoporous Silica Nanohybrids/Nanocomposites. ChemistrySelect 2022. [DOI: 10.1002/slct.202200574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Senuri Kumarage
- Department of Chemistry Faculty of Applied Sciences University of Sri Jayewardenepura Gangodawila Nugegoda Sri Lanka
| | - Imalka Munaweera
- Department of Chemistry Faculty of Applied Sciences University of Sri Jayewardenepura Gangodawila Nugegoda Sri Lanka
| | - Nilwala Kottegoda
- Department of Chemistry Faculty of Applied Sciences University of Sri Jayewardenepura Gangodawila Nugegoda Sri Lanka
- Centre for Advanced Materials Research (CAMR) Faculty of Applied Sciences University of Sri Jayewardenepura Gangodawila Nugegoda Sri Lanka
| |
Collapse
|